首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An automated device was used to examine, in detail, feeding on disks of wheat germ medium by fifth-instar Manduca sextacaterpillars. Comparisons were made between some animals which had ad libitum access to food at all times and others which were deprived of food for 1–5 h before being tested. Feeding patterns of both groups indicated regulation of feeding both between and within meals. Deprived animals ate more during their first meal than did nondeprived animals chiefly by increasing (a) the number of chewing bouts (and thus the meal duration) and (b) the bite frequency. Calculations indicated that the deficit caused by deprivation was made up during the first meal. However, deprived animals continued to eat more than nondeprived ones in subsequent feeding also. Passage of food through the gut was examined by dissecting out the contents of each region of the gut at various times after a colored test meal. Food passed through the foregut directly into the anterior part of the midgut. It stayed in the middle third of the midgut longer than in the anterior and posterior thirds, and the first pellet resulting from the test meal appeared 4 h after the meal. The following mechanisms of feeding regulation are proposed: (a) volumetric feedback mediated by stretch receptors of the foregut and anterior third of the midgut which terminates meals; (b) the development and subsequent reduction of satietyspecific behaviors mediated either by stretch receptors or by some other means which, e.g., allow the next meal to begin; and (c) metabolites whose levels drop during deprivation, triggering a series of events which lead to the excess feeding observed.  相似文献   

2.
ABSTRACT. Stretch receptors located in the foregut appear to contribute negative feedback to the ingestion of protein by Phormia ; as fluid is consumed, the concomitant stretch impedes further drinking. This inhibitory feedback, transmitted to the frontal ganglion via the recurrent nerve, seems to depress protein ingestion less than carbohydrate ingestion. Such a disparity may help to ensure that the female fly acquires enough protein for egg development through the retention of her ability to consume available protein even after carbohydrate consumption has been terminated.  相似文献   

3.
Genes of the major histocompatibility complex (MHC) in the mouse (H-2 complex) have been shown to be an important factor in determining the immune responsiveness of various strains of mice to isolated antigens (e. g., lysozyme). The role of MHC genes in controlling the responsiveness of mice to multiple alloantigens is less well-defined, and although non-MHC genes have been shown to be important in determining responsiveness in some systems (e. g., haptens), they have not been demonstrated as yet to influence the rejection of vascularized organ allografts. In this study, the responsiveness of mice to vascularized cardiac allografts transplanted across well-defined major (H-2) and minor (non-H-2) histocompatibility barriers was investigated using congenic mice in 32 different donor/recipient combinations. The results show that both H-2 and non-H-2 gene products can act as target alloantigens for rejection. At the responder level, they may interact to effect responsiveness of a recipient strain to multiple alloantigens. In no case in this study has any one gene or group of genes been found to confer universal high or low responder status.  相似文献   

4.
Although ligand-induced dimerization or oligomerization of receptors is a well established mechanism of growth factor signaling, increasing evidence indicates that biological responses are often mediated by receptor trans-signaling mechanisms involving two or more receptor systems. These include G protein-coupled receptors, cytokine, growth factor and trophic factor receptors. Greater responsiveness and inhibitory signaling responses are provided when different signaling pathways merge through receptor trans-signaling.  相似文献   

5.
Two opposing muscle systems underlie abdominal contractions during escape swimming in crayfish. In this study we used extracellular and intracellular stimulation, recording and dye-filling to systematically identify each of the five deep extensor excitors and single inhibitor of the crayfish, Cherax destructor. Functional associations of each neuron were characterised by recording its responses to sensory and abdominal cord inputs, its extensor muscle innervation pattern, and its relationships with other neurons. Each excitor receives excitatory input from the tonic abdominal stretch receptors and the largest neuron also receives input from the phasic stretch receptor. The two largest excitors innervate the muscle bundle containing the fastest fibres and may be electronically coupled. The smaller neurons may also be electronically coupled and innervate the remaining deep extensor fibres which display dynamic characteristics from fast to medium-fast. The inhibitor does not receive input from the stretch receptors, but is strongly excited by tactile afferents. The implications of these findings for the current models of the control of abdominal tailflips and swimming are discussed. Accepted: 21 June 1998  相似文献   

6.
The feeding pattern of the adult female of Blattella germanica peaks in the middle of the vitellogenic cycle. Following the hypothesis that a factor inhibiting gut peristalsis also inhibits food intake and is involved in the regulation of feeding, we searched for the most powerful myoinhibitory peptide in brain extracts from B. germanica females collected after the peak within the feeding cycle. Through HPLC purification and sequence analysis, we obtained the peptide leucomyosuppressin (LMS): pQDVDHVFLRFamide. LMS elicited a powerful myoinhibitory effect on B. germanica foregut and hindgut, with ED(50) values around 10(-10) M. In addition, it inhibited food intake in vivo in a dose-dependent manner at doses between 5 and 50 microg. The study of the distribution of ingested food in the foregut, midgut and hindgut of B. germanica females treated with LMS showed that food accumulates in the foregut, which may be due to the myoinhibitory effects of the peptide. We propose that this accumulation inhibits food intake because of the persistence of the signals from gut stretch receptors.  相似文献   

7.
Recordings were made from the nerve innervating the stretch receptors of the abdominal muscle receptor organs and slow extensor muscles of tethered crayfish, Cherax destructor, during so-called non-giant swimming. The stretch receptors were active during the flexor phase of swimming but the duration and pattern of activity varied from cycle to cycle. Their pattern of firing was modified by the activity of the large accessory neurons which make direct inhibitory synapses upon them. Neither the stretch receptors nor the accessory neurons were active during the extensor phase of the cycle. The timing and extent of tailfan movements during the period of stretch receptor activity were measured from video records before and after the stretch receptor nerves were cut in the second to fifth segments. The promotion of the tailfan during flexion was significantly delayed and the minimum angle to which the uropods were remoted at the end of flexion significantly larger in denervated animals. We propose that afferent information from the stretch receptors coordinates the timing and extent of tailfan movements according to variations in the positioning and movement of the abdominal segments such that the hydrodynamic efficiency of the tailfan is enhanced on a cycle by cycle basis during non-giant swimming.Abbreviations A# abdominal segment number - Acc accessory neuron - LUU large unidentified unit - MRO muscle receptor organ - NGS non-giant swimming - SEMN slow extensor motor neuron - SR stretch receptor neuron  相似文献   

8.
The interactions between the activity of three neuropeptides, Manduca sexta allatostatin (Manse-AS), M. sexta allatotropin (Manse-AT) and cydiastatin 4, on the spontaneous foregut contractions of the tomato moth, Lacanobia oleracea, were investigated. Bioassays revealed that application of Manse-AS to the foregut at high concentrations (10(-7)M) stopped contractions completely, and this inhibition could not be reversed by Manse-AT. Conversely, Manse-AS could inhibit a Manse-AT stimulated tissue. In contrast, Manse-AT reversed the inhibition of foregut peristalsis by cydiastatin 4 (10(-7)M), and cydiastatin 4 counteracted the stimulation by Manse-AT. These results imply that the Manse-AS inhibitory effect is dominant over the stimulatory action of Manse-AT. However, when two peptides with opposing actions were added together, the overall effect on foregut peristalsis was determined by the relative concentrations of each peptide, suggesting that in these experiments, no peptide was dominant over the other. When Manse-AS and cydiastatin 4 were applied to foregut tissues simultaneously the overall effect was not significantly different to the individual peptides, i.e. there was no additive effect. This suggests that the individual activities of Manse-AS and cydiastatin 4 are suppressed by an undetermined mechanism in the presence of the other peptide. These results question the need for two structurally different allatostatins that have the same physiological effect on foregut peristalsis in L. oleracea larvae.  相似文献   

9.
Summary Two semi-linear models for lateral inhibition are discussed. The interaction between receptor units is assumed to be linear, as demonstrated by Hartline and Ratliff in the eye of the horseshoe crab Limulus polyphemus. Yet a model of such an inhibitory system must be nonlinear, since the output values correspond to nerve activities, which cannot be negativ. Models with forward inhibition were used often to describe contrast phenomena in the human nervous system. However, in order to simulate the input-output relation in systems similar to the eye of Limulus, a model with backward inhibition must be constructed. Two important properties of backward inhibition not shared by forward inhibition are: (1) Inhibition in a receptor unit has an influence upon its excitation, as well as upon its ability to inhibit other units (Disinhibition). (2) The range of interaction between sensory units is not necessarily the same as the range of direct cross connections. It is shown in this paper, that also forward inhibition may possess these two properties, provided that it is repeated on subsequent levels. Some properties of systems with backward and forward inhibition are studied and compared in models consisting of three units. The input-output relation for large systems with backward inhibition was calculated under special assumptions concerning the inhibitory coefficients. If the inhibitory coefficients in a system with backward inhibition decrease like a power series, as a function of the distance between receptor units, only neighboring receptors have an effect upon each other. That is, in an equivalent system with forward inhibition the inhibitory interaction is confined to neighbouring receptors. Conversely, when backward inhibition exists only between neighbouring receptors, the inhibitory coefficients in an equivalent system with forward inhibition are described, as a function of the distance between the receptor units, by a power series with alternating sign.  相似文献   

10.
The slowly adapting stretch receptor of the crayfish is inhibited via the large accessory neuron both by reflex activation of this inhibitory interneuron from the stretch receptor itself (autogenic inhibition) and by activation of the interneuron from stretch receptors in other abdominal segments (neighbourinhibition). Neighbour-inhibition increases proportionally with the increase in impulse frequency in the large accessory neuron produced by activity in neighbouring receptors and largely independently of the level of excitation in the stretch receptor itself. A simple model based on intracellular recordings from the receptor neuron predicts this behaviour fairly accurately. In this model each receptor impulse is followed by an IPSP after a delay proportional to the uninhibited interspike interval of the receptor (autogenic inhibition). The other IPSP's arrive randomly distributed in time (neighbour-inhibition). An alternative model in which all IPSP's arrive randomly produces similar results. This latter model can be modified to fit other neuronal systems.  相似文献   

11.
To study the effects of microinjections of 5 hydroxytryptamine and adrenaline in central grey on pain responsiveness during acute food deprivation, experiments were conducted in nine male rats. Microinjections of 5 HT (10 micrograms/microliter) and adrenaline (10 micrograms/microliter) were given in central grey before and at the end of 6, 12, 18 and 24 hr food deprivation and the effects on pain threshold, cardiorespiratory parameters and body temperature were noted. Observations showed that 5 HT increased the pain threshold (antinociception) significantly (P < 0.05) with no change in cardiorespiratory response and body temperature, adrenaline did not alter pain threshold with no change in cardiorespiratory response and body temperature. The observations suggest the possible existence of two types of monoaminergic receptors or pathways in the central grey.  相似文献   

12.
对虾的慢适应和快适应感受器的放电型式可因环境中 Mg~( )浓度的改变而发生转变:在用蔗糖代替全部 Mg~( )的海水(无镁海水)中,当感受器肌肉受到持续性牵拉时,两种感受器都发出持续性节律放电,即快感受器也给出了慢适应型放电;反之,在 Mg~( )浓度加倍的海水(高镁海水)中,两者都只在感受器肌肉受到牵拉的瞬时给出短暂的放电,即慢感受器也给出了快适应型放电。这种放电型式的转变只有当无镁或高镁海水接触感受器细胞体时才出现。在正常海水中,10~(-3)M 的γ-氨基丁酸(GABA)即可完全抑制由牵拉引起的对虾牵张感受器的放电,但在无镁海水中,必需10~(-2)M GABA 方能达到同样的抑制效果。若在无镁亦无钙海水中,即使用1M 的 GABA 亦不能抑制感受器的牵拉放电。不仅如此,在这种海水中抑制神经对感受器细胞放电的抑制作用也消失。  相似文献   

13.
Light activation of the pea (Pisum sativum) elip gene promoter was analysed in transgenic plants and in transiently transfected plant protoplasts. A series of promoter deletions fused to the gusA reporter was tested, and the results obtained by the two experimental approaches were in good agreement. We identified two nucleotide sequence elements involved in light-regulated expression of the elip gene. One element is similar to the GT1 binding site of the rbcS-3A gene, and the other resembles a G-box-like ACGT element. The region containing both elements was able to confer light responsiveness on a heterologous basic promoter. Electrophoretic mobility shift assays demonstrated that each element is specifically recognized by DNA-binding proteins present in nuclear extracts from pea seedlings. The G-box-like ACGT element is necessary but not sufficient for light inducibility, indicating that the two elements act together in confering light responsiveness.  相似文献   

14.
Regulation of Hex gene expression by a Smads-dependent signaling pathway   总被引:2,自引:0,他引:2  
The homeobox gene Hex is expressed in multiple cell types during embryogenesis and is required for liver and monocyte development. Hex is expressed in the foregut region of late gastrula avian and mammalian embryos in a pattern that overlaps with expression of bone morphogenetic proteins (BMPs). Here we investigate the relationship between BMP signaling and Hex gene expression. We find that Hex expression in avian anterior lateral endoderm is regulated by autocrine BMP signaling. Characterization of the mouse Hex gene promoter identified a 71-nucleotide BMP-responsive element (BRE) that is required for up-regulation of Hex by an activated BMP signaling pathway. The Hex BRE binds Smad4 and Smad1-Smad4 complexes in vitro, and in transfection assays, it is responsive to Smad1 and Smad4 but not to Smad2 and Smad4 or Smad3 and Smad4. The BRE contains two copies of a GCCGnCGC-like motif that in Drosophila is the binding site for Mad and Madea followed by two CAGAG boxes that are similar to sequences required for transforming growth factor-beta/activin responsiveness of several vertebrate genes. Mutation of the GC elements, but not the two CAGAG boxes, abolishes Smads responsiveness in the intact Hex promoter, whereas mutations in both the GC elements and CAGAG boxes show that they act cooperatively to confer Smads responsiveness to the Hex promoter. The Hex BRE can confer Smads responsiveness to a heterologous promoter, and in this context, both the GC-rich elements and the CAGAG boxes are required for Smads-dependent promoter activity. An element almost identical to the Hex BRE is present within the BMP-responsive Nkx2-5 gene promoter, suggesting that the Hex BRE represents a common response element for genes regulated by BMP signaling in the foregut region of the embryo.  相似文献   

15.
Natriuretic peptides exist in the fishes as a family of structurally-related isohormones including atrial natriuretic peptide (ANP), C-type natriuretic peptide (CNP) and ventricular natriuretic peptide (VNP); to date, brain natriuretic peptide (or B-type natriuretic peptide, BNP) has not been definitively identified in the fishes. Based on nucleotide and amino acid sequence similarity, the natriuretic peptide family of isohormones may have evolved from a neuromodulatory, CNP-like brain peptide. The primary sites of synthesis for the circulating hormones are the heart and brain; additional extracardiac and extracranial sites, including the intestine, synthesize and release natriuretic peptides locally for paracrine regulation of various physiological functions. Membrane-bound, guanylyl cyclase-coupled natriuretic peptide receptors (A- and B-types) are generally implicated in mediating natriuretic peptide effects via the production of cyclic GMP as the intracellular messenger. C- and D-type natriuretic peptide receptors lacking the guanylyl cyclase domain may influence target cell function through G(i) protein-coupled inhibition of membrane adenylyl cyclase activity, and they likely also act as clearance receptors for circulating hormone. In the few systems examined using homologous or piscine reagents, differential receptor binding and tissue responsiveness to specific natriuretic peptide isohormones is demonstrated. Similar to their acute physiological effects in mammals, natriuretic peptides are vasorelaxant in all fishes examined. In contrast to mammals, where natriuretic peptides act through natriuresis and diuresis to bring about long-term reductions in blood volume and blood pressure, in fishes the primary action appears to be the extrusion of excess salt at the gills and rectal gland, and the limiting of drinking-coupled salt uptake by the alimentary system. In teleosts, both hypernatremia and hypervolemia are effective stimuli for cardiac secretion of natriuretic peptides; in the elasmobranchs, hypervolemia is the predominant physiological stimulus for secretion. Natriuretic peptides may be seawater-adapting hormones with appropriate target organs including the gills, rectal gland, kidney, and intestine, with each regulated via, predominantly, either A- or B-type (or C- or D-type?) natriuretic peptide receptors. Natriuretic peptides act both directly on ion-transporting cells of osmoregulatory tissues, and indirectly through increased vascular flow to osmoregulatory tissues, through inhibition of drinking, and through effects on other endocrine systems.  相似文献   

16.
The correct navigation of axons to their targets depends on guidance molecules in the extra‐cellular environment. Differential responsiveness to a particular guidance cue is largely an outcome of disparity in the expression of its receptors on the reacting axons. Here, we show that the differential responsiveness of sympathetic and sensory neurons to the transmembrane Semaphorin Sema6A is mainly determined by its co‐expression in the responding neurons. Both sympathetic and sensory neurons express the Sema6A receptor Plexin‐A4, but only sympathetic neurons respond to it. The expression of Sema6A counteracts this responsiveness and is detected only in sensory neurons. Remarkably, sensory neurons that lack Sema6A gain sensitivity to it in a Plexin‐A4‐dependent manner. Using heterologus systems, we show that the co‐expression of Sema6A and Plexin‐A4 hinders the binding of exogenous ligand, suggesting that a Sema6A–Plexin‐A4 cis interaction serves as an inhibitory mechanism. Finally, we provide evidence for differential modes of interaction in cis versus in trans. Thus, co‐expression of a transmembrane cue together with its receptor can serve as a guidance response modulator.  相似文献   

17.
Different odorants are recognized by different combinations of G protein-coupled olfactory receptors, and thereby, odor identity is determined by a combinatorial receptor code for each odorant. We recently demonstrated that odorants appeared to compete for receptor sites to act as an agonist or an antagonist. Therefore, in natural circumstances where we always perceive a mixture of various odorants, olfactory receptor antagonism between odorants may result in a receptor code for the mixture that cannot be predicted from the codes for its individual components. Here we show that stored isoeugenol has an antagonistic effect on a mouse olfactory receptor, mOR-EG. However, freshly purified isoeugenol did not have an inhibitory effect. Instead, an isoeugenol derivative produced during storage turned out to be a potent competitive antagonist of mOR-EG. Structural analysis revealed that this derivative is an oxidatively dimerized isoeugenol that naturally occurs by oxidative reaction. The current study indicates that as odorants age, they decompose or react with other odorants, which in turn affects responsiveness of an olfactory receptor(s).  相似文献   

18.
Studies on the interaction between mitogens and human lymphocytes in vitro   总被引:1,自引:0,他引:1  
The initial events in interaction between mitogens and lymphocytes were studied with kidney bean phytohemagglutinin (PHA-W), concanavalin A (Con A), kidney bean leucoagglutinin (LA) and antilymphocyte globulin (ALG). The lectins were characterized by disc electrophoresis and immunoelectrophoresis. LA was found to be homogeneous while PHA-W was separated in three bands and showed two antigenic components. When lymphocytes were incubated with mitogen for a short time (1 h) and in experiments according to the described technique for transfer of mitotic stimulation between lymphocytes it was found that the binding of PHA-W to the cell differed from that of LA and ConA. In binding experiments with labelled mitogens PHA-W was found to have twice as many binding sites per cell as LA and ConA, although similar affinity constants were found. The relationship between mitogens and lymphocyte receptors was studied in lymphocytes incubated with two mitogens simultaneously for a short period. Both inhibitory and synergistic effects were found. The results indicate that (a) mitogens with different receptor specificities give a synergistic response; (b) mitogens reacting with the same or closely related receptors are inhibitory to each other. The interpretation of the binding of PHA-W to lymphocytes and of the inhibitory and synergistic effects of mitogens are discussed.  相似文献   

19.
20.
The spiny lobster Panulirus argus has a life cycle consisting of a long-term (~9-12 months) planktonic larval period with 11 larval stages (the phyllosoma), a short (<1 month?) planktonic-to-benthic transitional postlarval stage (the puerulus), and benthic juvenile and adult phases. The mouthparts and foregut during these stages were examined and described by means of scanning electron microscopy (SEM) in an investigation of the species' developmental morphology, diet, and ecology. The phyllosoma mouthparts close to the esophagus are the labrum, mandibles, paragnaths, and first maxillae. The second maxillae and first and second maxillipeds are increasingly distant from the esophagus as the larva develops. The pair of asymmetrical mandibles bear many teeth and spines, and the molar processes form what appears to be an intricate toothed shear. The mandibles remain similar throughout the phyllosoma stages. During the molt into the puerulus, the mouthparts are greatly changed, and the second maxilla and the three maxillipeds join the other mouthparts near the esophagus. However, the transformation appears incomplete, and many of the mouthparts are not fully formed until the molt to juvenile completes their development. The phyllosoma foregut lacks a gastric mill and has but one chamber. In addition, the first two stages lack a gland filter. During the molt to puerulus, the foregut is greatly changed and subsequently is similar to typical decapod foreguts in having an anterior cardiac and posterior pyloric chamber. Only rudimentary internal armature is present. Following the molt to juvenile, the foregut is quite similar to that of the adult, which exhibits a substantial gastric mill. The 11 phyllosoma stages were separated into two groups (group A = stages 1-5, group B = stages 6-11) on the basis of changes in both mouthpart and foregut morphology. The puerulus has never been observed to feed. Nothing was observed in our investigations that would prevent feeding, though both mouthpart and foregut development appeared incomplete. The mouthpart and foregut structures of larval, postlarval and juvenile P. argus differ widely, possibly reflecting the extreme modifications for different habitats found among these life phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号