首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The green-fruited Lycopersicon hirsutum Humb. and Bonpl. accumulated sucrose to concentrations of about 118 micromoles per gram fresh weight during the final stages of development. In comparison, Lycopersicon esculentum Mill. cultivars contained less than 15 micromoles per gram fresh weight of sucrose at the ripe stage. Glucose and fructose levels remained relatively constant throughout development in L. hirsutum at 22 to 50 micromoles per gram fresh weight each. Starch content was low even at early stages of development, and declined further with development. Soluble acid invertase (EC 3.2. 1.26) activity declined concomitant with the rise in sucrose content. Acid invertase activity, which was solubilized in 1 molar NaCl (presumably cell-wall bound), remained constant throughout development (about 3 micromoles of reducing sugars (per gram fresh weight) per hour. Sucrose phosphate synthase (EC 2.4.1.14) activity was present at about 5 micromoles of sucrose (per gram fresh weight) per hour even at early stages of development, and increased sharply to about 40 micromoles of sucrose (per gram fresh weight) per hour at the final stages of development studied, parallel to the rise in sucrose content. In comparison, sucrose phosphate synthase activity in L. esculentum remained low throughout development. The possible roles of the sucrose metabolizing enzymes in determining sucrose accumulation are discussed.  相似文献   

2.
The influences of hydrocortisone and thyroxine on the developmental changes of arginase activity in intestine, kidney, and brain of suckling rats were studied. A single injection of hydrocortisone (50 mg/kg) into rats aged 9 days evoked premature increase of jejunal arginase activity due to precocious formation of arginase A4. Arginase A4 can be detected about 48 hr after hydrocortisone injection, whereas in intact rats the enzyme appears in the intestinal mucosa on the 19th-21st days of postnatal life. After hydrocortisone administration to rats aged 6 days, a similar pattern of arginase activity in jejunum was observed. Under the same conditions, the influence of hydrocortisone on kidney arginase was weaker. The hormone did not have any influence on the activity of brain arginase. Daily injection of thyroxine (2 mg/kg) to 6-day-old rats (for 6 consecutive days) caused a precocious increase of the arginase activity in intestine. Under the same conditions, only a slight increase of the arginase activity was observed in kidney, whereas in brain the activity was unaffected.  相似文献   

3.
At cold stress (3 days exposition at 2--4 degrees C) the urea formation in rats brain and liver does not become more active, the content of extraerythrocytic hemoglobin and the total peroxydase activity increase in blood serum, the animals sensitivity to the action of hyperbaric oxygenation (HB0) grows. At cold adaptation (45 days at 2--4 degrees C) the urea content in tissues and the activity of arginase in liver increase, the concentration of extraerythrocytic hemoglobin and the total peroxydase activity normalize, animals become more resistant to HB0. Every day administration of arginine during 3-day cold effect makes the brain and liver arginase on 42 and 28% more active, increases the urea content on 26 and 19%, stabilizes the erythrocytic membranes. The animals protected by arginine against cold are more resistant to the action of HB0.  相似文献   

4.
1. The activities of enzymes of the urea cycle [carbamoyl phosphate synthetase, ornithine transcarbamoylase, argininosuccinate synthetase, argininosuccinase (these last two comprising the arginine-synthetase system) and arginase] have been measured in control, alloxan-diabetic and glucagon-treated rats. In addition, measurements were made on alloxan-diabetic rats treated with protamine–zinc–insulin. 2. Treatment of rats with glucagon for 3 days results in a marked increase in the activities of three enzymes of the urea cycle (carbamoyl phosphate synthetase, argininosuccinate synthetase and argininosuccinase). The pattern of change in the alloxan-diabetic group is very similar to that of the glucagon-treated group, although the magnitude of the change was much greater. 3. Comparison was made of the actual and potential rate of urea synthesis in normal and diabetic rats. In both groups the potential rate of urea production, as measured by the activity of the rate-limiting enzyme, argininosuccinate synthetase, slightly exceeds the actual rate of synthesis by liver slices in the presence of substrates. The relative activities of the actual and potential rates were similar in the two groups of animals, this ratio being 1:0·70. 4. In the alloxan-diabetic rats treated with protamine–zinc–insulin for 2·5 or 4 days there was a marked increase in liver weight. This was associated with a rise in the total hepatic activity of the urea-cycle enzymes located in the soluble fraction of the cell (the arginine-synthetase system and arginase) after 2·5 days of treatment. After 4 days of treatment the concentration of these enzymes/g. of liver decreased, and the total hepatic content then reverted to the untreated alloxan-diabetic value. 5. No effects of glucagon or of insulin in vitro could be found on the rate of urea production by liver slices. 6. The present results are discussed in relation to how far this pattern of change is typical of conditions resulting in a high urea output, and comparison has been made with other values in the literature.  相似文献   

5.
Liver arginase activity in rats fed graded levels of diammonium citrate in high and low casein diets, was measured with simultaneous determination of urea excretion. The arginase activity changed inversely with the urea excretion.

Moreover, when the amino acid balance was quantitatively changed by varying threonine level alone, a similar relationship between total liver arginase activity and urea excretion was again observed.

From these results, the early teleological assumptions are most unlikely in that liver arginase activity increases with the decrease in dietary protein quality and that the change in activity can be used as an index of dietary protein quality.  相似文献   

6.
The developmental pattern of citrate synthase activity has been studied in the liver and several brain areas of hypothyroid rats during the 4 first weeks of life. While citrate synthase activity in the liver showed a rise during the 2 first weeks of life, different patterns of enzyme activity were found in the brain regions of euthyroid animals. Citrate synthase activity increased in the cerebellum, decreased in the cerebral cortex and did not change significantly in the brain stem during the period studied. In the liver and brain areas, too, a decrease in citrate synthase activity was observed during hypothyroidism. From the 2nd week of birth, the citrate synthase activity in the brain but not in the liver was found to have recovered. The newly elevated citrate synthase activity coincided with a slight increase in thyroid hormone serum levels.  相似文献   

7.
Arginase catalyses the last step of the urea cycle. At least two isoenzymes of arginase are known; cytosolic ARG I and mitochondrial ARG II. ARG I is predominantly expressed in liver cytosol, as a part of urea cycle in ureotelic animals. The second isoform ARG II is primarily responsible for non-ureogenic functions, expressed in mitochondria of both hepatic and non-hepatic tissues in most vertebrates. Most micro-organisms and invertebrates are known to have only one type of arginase, whose function is unrelated to ornithine-urea cycle (OUC). However, in ureo-osmotic marine elasmobranchs arginase is localized in liver mitochondria as a part of OUC to synthesize urea for osmoregulation. An evolutionary transition occurred in arginase enzyme in terrestrial ureotelic vertebrates, with the evolution of ARG I from a pre-existing ancestral mitochondrial ARG II. This cytosolic ARG I activity is supposed to have first appeared in lung fishes, but the 40% and 60% distribution of arginase I and II activity in liver and kidney tissue of Heteropneustes fossilis indicates reconsideration of the above fact.  相似文献   

8.
Rats weighing 100 g were made chronically uremic by partial left renal artery ligation and contralateral nephrectomy. Rats with urea clearances below 0.30 ml/min and sham-operated controls were pair-fed arginine-free diets, diets containing normal amounts of arginine or diets with high levels of arginine. After 4 to 8 weeks, rats were killed and plasma levels of arginine, ornithine and lysine were measured. In addition, activities of various urea cycle enzymes in liver and kidney and renal transamidinase were determined. Plasma amino acid levels and enzyme activities of the urea cycle remained constant in control rats fed diets differing in arginine content. However, renal transamidinase activity was elevated in control rats fed arginine-free diets. In plasma of uremic as compared with control rats, arginine levels varied with the arginine intake, and lysine levels were elevated when arginine supplements were fed. With all diets, plasma ornithine remained constant in uremic rats at slightly but not significantly increased levels. Hepatic carbamoyl phosphate synthetase activity and renal arginine synthetase activity were reduced in uremic as compared to control rats. Renal transamidinase activity, expressed per g of kidney, was elevated in uremic rats with all diets except arginine-free. When amino acid diets were fed, hepatic arginase activity was higher in uremic rats and this increase was enhanced by arginine-free diets. Other enzyme activities in uremic rats were not affected by the amount of arginine in the diet.  相似文献   

9.
Because L-arginine is degraded by hepatic arginase to ornithine and urea and is transported by the regulated 2A cationic amino acid y(+) transporter (CAT2A), hepatic transport may regulate plasma arginine concentration. Groups of rats (n = 6) were fed a diet of either low salt (LS) or high salt (HS) for 7 days to test the hypothesis that dietary salt intake regulates plasma arginine concentration and renal nitric oxide (NO) generation by measuring plasma arginine and ornithine concentrations, renal NO excretion, and expression of hepatic CAT2A, and arginase. LS rats had lower excretion of NO metabolites and cGMP, lower plasma arginine concentration (LS: 83 +/- 7 vs. HS: 165 +/- 10 micromol/l, P < 0.001), but higher plasma ornithine concentration (LS: 82 +/- 6 vs. HS: 66 +/- 4 micromol/l, P < 0.05) and urea excretion. However, neither the in vitro hepatic arginase activity nor the mRNA for hepatic arginase I was different between groups. In contrast, LS rats had twice the abundance of mRNA for hepatic CAT2A (LS: 3.4 +/- 0.4 vs. HS: 1.6 +/- 0.5, P < 0.05). The reduced plasma arginine concentration with increased plasma ornithine concentration and urea excretion during LS indicates increased arginine metabolism by arginase. This cannot be ascribed to changes in hepatic arginase expression but may be a consequence of increased hepatic arginine uptake via CAT2A.  相似文献   

10.
In order to establish if the urea found in foetal fluids in sheep could be of foetal origin and whether there are changes in the ability of ovine liver to synthesise urea during foetal and postnatal development, the rates of urea production from ammonium and bicarbonate ions have been measured in liver and kidney slices from animals aged from 50 days conceptual age to 16 weeks after birth, and in pregnant and non-pregnant ewes. The activities of five enzymes directly involved in the biosynthesis of urea have also been determined.Urea was found to be synthesised by foetal liver from at least 50 days conceptual age at rates similar to those observed in adult ewes. Highest rates of urea synthesis per unit weight of liver were found immediately after birth. In the liver there were significant positive correlations between the rates of urea synthesis by slices and the activities of carbomoyl phosphate synthase (ammonia) (EC 2.7.2.5), argininosuccinate synthetase (EC 6.3.4.5) and argininosuccinate lyase EC 4.3.2.1). Ornithine carbomoyl transferase (EC 2.1.3.3) activity was highest in the livers of ruminating animals. Hepatic arginase activity (EC 3.5.3.1) was highest during the late foetal life and in the mature foetuses the activity was ten-fold greated than that in maternal liver.Urea was not synthesised from ammonia and bicarbonate in kidney slices and neither ornithine carbomoyl transferase activity nor argininosuccinate synthetase activity could be detected. The activity of renal arginase was at least 70 times less than that found in the liver and the highest activity was found in ruminating lambs.The changes observed in the activities of the urea cycle enzymes during development have been contrasted with those reported to occur in other species. It is concluded that there is no single factor regulating the activities of the five enzymes directly concerned with urea synthesis during development. The results support the hypothesis that in mammals the ability of the liver to synthesise urea in foetal life is related to renal development.  相似文献   

11.
M R Ball  P McLean 《Enzyme》1982,28(4):368-374
The activities of adenine nucleotide translocase (ANT), Na+-K+-ATPase (EC 3.6.1.3) and Mg2+-ATPase (EC 3.6.1.3) together with mitochondrial marker enzymes, succinic dehydrogenase (EC 1.3.99.1) and glutamate dehydrogenase (EC 1.4.1.2), were measured in liver, kidney, brain and testis from normal and thyroidectomised rats. Na+-K+-ATPase decreased by approximately 50% in liver and kidney; ANT decreased only in liver (-40%) while the activity of ANT per gram kidney increased by 38%. The activity of Mg2+-ATPase closely correlated with the pattern of change of ANT. The hormonal and substrate regulation of ANT is discussed in relation to its role in the regulation of intracellular phosphate potential and compartmentation in liver and kidney.  相似文献   

12.
The arginase activity of the liver of rats was measured after they had been maintained for 11 or 12 days on diets containing natural proteins (casein or gluten) or amino acid mixtures of various tryptophan levels.

Specific activity or total arginase activity increased with the increasing protein quality. Liver arginase activity of the casein group was significantly higher than that of the gluten group in every case for 27-, 61-, and 158-day-old rats. In the case of amino acid diets, the arginase increased with the increments of tryptophan levels up to the “tentative” minimum requirement in the diet. Moreover, these alterations in arginase activity varied inversely with the urinary urea excretion.

From the results, it was assumed that the total activity of liver arginase is not necessarily determined only by the metabolic needs for urea biosynthesis.  相似文献   

13.
Genetic tests of the roles of the embryonic ureases of soybean   总被引:8,自引:5,他引:3       下载免费PDF全文
We assayed the in vivo activity of the ureases of soybean (Glycine max) embryos by genetically eliminating the abundant embryo-specific urease, the ubiquitous urease, or a background urease. Mutant embryos accumulated urea (250-fold over progenitor) only when lacking all three ureases and only when developed on plants lacking the ubiquitous urease. Thus, embryo urea is generated in maternal tissue where its accumulation is not mitigated by the background urease. However, the background urease can hydrolyze virtually all urea delivered to the developing embryo. Radicles of 2-day-old germinants accumulated urea in the presence or absence of the embryo-specific urease (2 micromoles per gram dry weight radicle). However, mutants lacking the ubiquitous urease exhibited increased accumulation of urea (to 4-5 micromoles urea per gram dry weight radicle). Thus, the ubiquitous and not the embryo-specific urease hydrolyzes urea generated during germination. In the absence of both of these ureases, the background urease activity (4% of ubiquitous urease) may hydrolyze most of the urea generated. A pleiotropic mutant lacking all urease accumulated 34 micromoles urea per gram dry weight radicle (increasing 2.5-fold at 3 days after germination). Urea (20 millimolar) was toxic to in vitro-cultured cotyledons which contained active embryo-specific urease. Cotyledons lacking the embryo-specific urease accumulated more protein when grown with urea than with no nitrogen source. Among cotyledons lacking the embryo-specific urease, fresh weight increases were virtually unchanged whether grown on urea or on no nitrogen and whether in the presence or absence of the ubiquitous urease. However, elimination of the ubiquitous urease reduced protein deposition on urea-N, and elimination of both the ubiquitous and background ureases further reduced urea-derived protein. The evidence is consistent with the lack of a role in urea hydrolysis for the embryo-specific urease in developing embryos or germinating seeds. Because the embryo-specific urease is deleterious to cotyledons cultured in vitro on urea-N, its role may be to hydrolyze urea in wounded or infected embryos, creating a hostile environment for pest or pathogen. While the ubiquitous urease is operative in leaves and in seedlings, all or most of its function can be assumed by the background urease in embryos and in seedlings.  相似文献   

14.
High-output synthesis of nitric oxide (NO) by the inducible isoform of NO-synthases (NOS-2) plays an important role in hepatic pathophysiological processes and may contribute to both organ protection and organ destruction during inflammatory reactions. As they compete for the same substrate, L-arginine, an interdependence of NOS-2 and arginase-1 has been repeatedly observed in cells where arginase-1 is cytokine-inducible. However, in hepatocytes, arginases are constitutively expressed and thus, their impact on hepatic NOS-2-derived NO synthesis as well as the influence of L-arginine influx via cationic amino acid transporters during inflammatory reactions are still under debate. Freshly isolated rat hepatocytes were cultured for 24h in the presence of various L-arginine concentrations with or without cytokine addition and nitrite and urea accumulation in culture supernatants was measured. We find that both, cytokine-induced NOS-2 and arginase activities strongly depend on extracellular L-arginine concentrations. When we competed for L-arginine influx via the cationic amino acid transporters by addition of L-lysine, we find a 60-70% inhibition of arginase activity without significant loss of NOS-2 activity. Addition of L-valine, as an arginase inhibitor, leads to a 25% increase in NO formation and an 80-90% decrease in arginase activity. Interestingly, product inhibition of arginase and competitive inhibition of CATs through the addition of L-ornithine leads to a highly significant increase in hepatocytic NOS-2 activity with a concomitant and complete abolishment of its dependence on extracellular L-arginine concentrations. In conclusion, hepatocytic NOS-2 activity shows a surprising pattern of dependence on exogenous L-arginine concentrations. Inhibition and competition experiments suggest a relatively tight link of NOS-2 and urea cycle activities. These data stress the hypothesis of a metabolon-like organization of the urea cycle together with NOS-2 in hepatocytes as excess L-ornithine will be metabolized to l-arginine and thereby increases NO production.  相似文献   

15.
The content of urea and activity of arginase in the brain and liver have been determined in squirrels falling into hibernation and in rats with an artificial decrease of the body temperature. It is shown that the intensity of urea synthesis under hypothermia (20, 10 degrees C) in the studied organs of animals falling into hibernation remains at high level in contrast to animals without such adaptation.  相似文献   

16.
P K Reddi  W E Knox  A Herzfeld 《Enzyme》1975,20(5):305-314
Significant amounts of arginase activity were found in homogenates of submaxillary salivary gland and epididymis, as well as of liver, kidney, mammary gland, and small intestine. The isoelectric point of arginase solubilized from kidney was at pH 7.0 in contrast to that of pH 9.4 characteristic of hepatic arginase in rat. The isozymic variants of arginase in the different tissues were identified by their electrophoretic migration on polyacrylamide gels and by titration of the enzymes against antibody prepared against purified rat liver arginase. Antibody titrations confirmed the indications obtained by electrophoresis that one type of arginase is limited to hepatic tissues (and possibly submaxillary gland) while the other type is found in all other tissues. The physiological role of arginase in hepatic tissues has been previously associated with the urea cycle; the possible function of arginase in proline synthesis in other tissues remains to substantiated.  相似文献   

17.
The activities and regulatory patterns of arginase and ornithine aminotransferase (OAT) of the liver (a mitotic tissue) and kidney cortex (a post-mitotic tissue) of immature, adult, and senescent male rats were studied. The activities of the liver enzymes were highest in the immature rat and decreased gradually with age. However, in the kidney cortex, the activity of arginase was highest and decreased significantly thereafter while that of OAT shows no significant change throughout the life span of the rat. Further, the activity of kidney cortex arginase was approximately 1/20th of that of the liver enzyme. Adrenalectomy and hydrocortisone treatments altered the activity of arginase in both tissues and that of OAT in the liver only. However, the kidney cortex OAT was not responsive towards these treatments. Actinomycin D inhibited the hydrocortisone-mediated induction of arginase of both the liver and kidney cortex and that of the liver OAT.  相似文献   

18.
Kimmerer TW 《Plant physiology》1987,84(4):1210-1213
Pyruvate decarboxylase (PDC, EC 4.1.1.1) and alcohol dehydrogenase (ADH, EC 1.1.1.1) are responsible for the anaerobic production of acetaldehyde and ethanol in higher plants. In developing soybean embryos, ADH activity increased upon imbibition and then declined exponentially with development, and was undetectable in leaves by 30 days after imbibition. PDC was not detectable in soybean leaves. In contrast, ADH activity remained high in developing cottonwood seedlings, with no decline in activity during development. ADH activity in the first fully expanded leaf of cottonwood was 230 micromoles NADH oxidized per minute per gram dry weight, and increased with leaf age. Maximal PDC activity of cottonwood leaves was 10 micromoles NADH oxidized per minute per gram dry weight. ADH activity in cottonwood roots was induced by anaerobic stress, increasing from 58 to 205 micromoles NADH oxidized per minute per gram dry weight in intact plants in 48 hours, and from 38 to 246 micromoles NADH oxidized per minute per gram dry weight in detached roots in 48 hours. Leaf ADH activity increased by 10 to 20% on exposure to anaerobic conditions. Crude leaf enzyme extracts with high ADH activity reduced little or no NADH when other aldehydes, such as trans-2-hexenal, were provided as substrate. ADH and PDC are constitutive enzyme in cottonwood leaves, but their metabolic role is not known.  相似文献   

19.
An extensive survey of higher fungi revealed that members of the family Agaricaceae, including Agaricus bisporus, accumulate substantial amounts of urea in their fruit bodies. An important role of the ornithine cycle enzymes in urea accumulation has been proposed. In this work, we present the cloning and sequencing of the arginase gene and its promoter region from A. bisporus. A PCR-probe based on fungal arginase was used to identify the A. bisporus arginase gene from a cDNA library. The arginase cDNA encodes a 311-aa protein which is most likely expressed in the cytosol. Expression of the cDNA in Escherichia coli was established as a His-tagged fusion protein. The arginase gene was used as a molecular marker to study expression and regulation during sporophore formation and postharvest development. The expression of the arginase gene was significantly up-regulated from developmental stage 3 onwards for all the tissues studied. A maximum of expression was reached at stage 6 for both stipe and cap tissue. In postharvest stages 5, 6 and 7 the level of expression observed was similar to normal growth stages 5, 6 and 7. A good correlation was found between arginase expression and urea content of stipe, velum, gills, cap and peel tissue. For all tissues the urea content decreased over the first four stages of development. From stage 4 onwards urea accumulated again except for stipe tissue where no significant changes were observed. The same trend was also observed for postharvest development, but the observed increase of urea in postharvest tissues was much higher.  相似文献   

20.
The activity of arginase converting arginine into ornithine and urea is of particular interest among many factors regulating NO production in the cells. It is known that by competing with NO-synthase for common substrate, arginase can affect the NO synthesis. In the present work, the properties of arginase from the frog Rana temporaria L. urinary bladder epithelial cells possessing the NO-synthase activity were characterized, and possible contribution of arginase to regulation of NO production by epithelial cells was studied. It has been shown that the enzyme had the temperature optimum in the range of 55-60 degrees C, K(m) for arginine 23 mM, and V(max) about 10 nmol urea/mg protein/min, and its activity was effictively inhibited by (S)-(2-boronoethyl)-L-cysteine (BEC), an inhibitor of arginase, at concentrations from 10(-6) to 10(-4) M. The comparison of arginase activity in various frog tissues revealed the following pattern: liver > kidney > brain > urinary bladder (epithelium) > heart > testis. The arginase activity in the isolated urinary bladder epithelial cells was 3 times higher than that in the intact urinary bladder. To evaluate the role of arginase in the regulation of NO production, epithelial cells were cultivated in the media L-15 or 199 containing different amounts of arginine; the concentration of NO2-, the stable NO metabolite, was determined in the culture fluid after 18-20 h of cells incubation. The vast majority of the produced nitrites are associated with the NOS activity, as L-NAME, the NOS-inhibitor, decreased their accumulation by 77.1% in the L-15 medium and by 80% in 199 medium. BEC (10(-4) M) increased the nitrite production by 18.0 % +/- 2.7 in the L-15 medium and by 24.2 +/- 3.5 in the 199 medium (p < 0.05). The obtained data indicate a relatively high arginase activity in the frog urinary bladder epithelium and its involvement in regulation of NO production by epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号