首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heng S  Stieglitz KA  Eldo J  Xia J  Cardia JP  Kantrowitz ER 《Biochemistry》2006,45(33):10062-10071
Escherichia coli aspartate transcarbamoylase (ATCase) catalyzes the committed step in pyrimidine nucleotide biosynthesis, the reaction between carbamoyl phosphate (CP) and l-aspartate to form N-carbamoyl-l-aspartate and inorganic phosphate. The enzyme exhibits homotropic cooperativity and is allosterically regulated. Upon binding l-aspartate in the presence of a saturating concentration of CP, the enzyme is converted from the low-activity low-affinity T state to the high-activity high-affinity R state. The potent inhibitor N-phosphonacetyl-l-aspartate (PALA), which combines the binding features of Asp and CP into one molecule, has been shown to induce the allosteric transition to the R state. In the presence of only CP, the enzyme is the T structure with the active site primed for the binding of aspartate. In a structure of the enzyme-CP complex (T(CP)), two CP molecules were observed in the active site approximately 7A apart, one with high occupancy and one with low occupancy. The high occupancy site corresponds to the position for CP observed in the structure of the enzyme with CP and the aspartate analogue succinate bound. The position of the second CP is in a unique site and does not overlap with the aspartate binding site. As a means to generate a new class of inhibitors for ATCase, the domain-open T state of the enzyme was targeted. We designed, synthesized, and characterized three inhibitors that were composed of two phosphonacetamide groups linked together. These two phosphonacetamide groups mimic the positions of the two CP molecules in the T(CP) structure. X-ray crystal structures of ATCase-inhibitor complexes revealed that each of these inhibitors bind to the T state of the enzyme and occupy the active site area. As opposed to the binding of Asp in the presence of CP or PALA, these inhibitors are unable to initiate the global T to R conformational change. Although the best of these T-state inhibitors only has a K(i) value in the micromolar range, the structural information with respect to their mode of binding provides important information for the design of second generation inhibitors that will have even higher affinity for the active site of the T state of the enzyme.  相似文献   

2.
The design, synthesis, and evaluation of a series of novel inhibitors of aspartate transcarbamoylase (ATCase) are reported. Several submicromolar phosphorus-containing inhibitors are described, but all-carboxylate compounds are inactive. Compounds were synthesized to probe the postulated cyclic transition-state of the enzyme-catalyzed reaction. In addition, the associated role of the protonation state at the phosphorus acid moiety was evaluated using phosphinic and carboxylic acids. Although none of the synthesized inhibitors is more potent than N-phosphonacetyl-l-aspartate (PALA), the compounds provide useful mechanistic information, as well as the basis for the design of future inhibitors and/or prodrugs.  相似文献   

3.
Carbamyl-P synthetase (EC 2.7.2.9), aspartate transcarbamylase (EC 2.1.3.2), and dihydro-orotase (EC 3.5.2.3), the first three enzymes of the de novo pathway for synthesis of pyrimidine nucleotides, have been co-purified as a single oligomeric protein from a mutant line of hamster cells selected for its ability to resist N-(phosphonacetyl)-L-aspartate (PALA), a potent and specific inhibitor of aspartate transcarbamylase. All three enzymes overaccum,late in the mutant cells (Kempe, T.D., Swyryd, E.A., Bruist, M., and Stark, G.R. (1976) Cell 9, 541-550) and the oligomer represents nearly 10% of the total cellular protein. Tens of milligrams of oligomer have been purified to homogeneity by a simple and rapid procedure, with recovery of about 50% of all three activities. The pure protein contains only one size of polypeptide, Mr approximately 200,000, as revealed by electrophoresis in danaturing gels. All three enzyme activities are associated with this polypeptide, indicating that it is multifunctional. Further evidence for a multifunctional protein is provided by titration of the oligomer with radioactive PALA, which reveals that the number of PALA binding sites approximately equals the number of polypeptide chains. The isolated multifunctional protein is a mixture of trimers and hexamers.  相似文献   

4.
The replacement of Arg-54 by Ala in the active site of Escherichia coli aspartate transcarbamoylase causes a 17,000-fold loss of activity but does not significantly influence the binding of substrates or substrate analogs (Stebbins, J.W., Xu, W., & Kantrowitz, E.R., 1989, Biochemistry 28, 2592-2600). In the X-ray structure of the wild-type enzyme, Arg-54 interacts with both the anhydride oxygen and a phosphate oxygen of carbamoyl phosphate (CP) (Gouaux, J.E. & Lipscomb, W.N., 1988, Proc. Natl. Acad. Sci. USA 85, 4205-4208). The Arg-54-->Ala enzyme was crystallized in the presence of the transition state analog N-phosphonacetyl-L-aspartate (PALA), data were collected to a resolution limit of 2.8 A, and the structure was solved by molecular replacement. The analysis of the refined structure (R factor = 0.18) indicates that the substitution did not cause any significant alterations to the active site, except that the side chain of the arginine was replaced by two water molecules. 31P-NMR studies indicate that the binding of CP to the wild-type catalytic subunit produces an upfield chemical shift that cannot reflect a significant change in the ionization state of the CP but rather indicates that there are perturbations in the electronic environment around the phosphate moiety when CP binds to the enzyme. The pH dependence of this upfield shift for bound CP indicates that the catalytic subunit undergoes a conformational change with a pKa approximately 7.7 upon CP binding. Furthermore, the linewidth of the 31P signal of CP bound to the Arg-54-->Ala enzyme is significantly narrower than that of CP bound to the wild-type catalytic subunit at any pH, although the change in chemical shift for the CP bound to the mutant enzyme is unaltered. 31P-NMR studies of PALA complexed to the wild-type catalytic subunit indicate that the phosphonate group of the bound PALA exists as the dianion at pH 7.0 and 8.8, whereas in the Arg-54-->Ala catalytic subunit the phosphonate group of the bound PALA exists as the monoanion at pH 7.0 and 8.8. Thus, the side chain of Arg-54 is essential for the proper ionization of the phosphonate group of PALA and by analogy the phosphate group in the transition state. These data support the previously proposed proton transfer mechanism, in which a fully ionized phosphate group in the transition state accepts a proton during catalysis.  相似文献   

5.
Modeling of the tetrahedral intermediate within the active site of Escherichia coli aspartate transcarbamoylase revealed a specific interaction with the side-chain of Gln137, an interaction not previously observed in the structure of the X-ray enzyme in the presence of N-phosphonacetyl-L-aspartate (PALA). Previous site-specific mutagenesis experiments showed that when Gln137 was replaced by alanine, the resulting mutant enzyme (Q137A) exhibited approximately 50-fold less activity than the wild-type enzyme, exhibited no homotropic cooperativity, and the binding of both carbamoyl phosphate and aspartate were extremely compromised. To elucidate the structural alterations in the mutant enzyme that might lead to such pronounced changes in kinetic and binding properties, the Q137A enzyme was studied by time-resolved, small-angle X-ray scattering and its structure was determined in the presence of PALA to 2.7 angstroms resolution. Time-resolved, small-angle X-ray scattering established that the natural substrates, carbamoyl phosphate and L-aspartate, do not induce in the Q137A enzyme the same conformational changes as observed for the wild-type enzyme, although the scattering pattern of the Q137A and wild-type enzymes in the presence of PALA were identical. The overall structure of the Q137A enzyme is similar to that of the R-state structure of wild-type enzyme with PALA bound. However, there are differences in the manner by which the Q137A enzyme coordinates PALA, especially in the side-chain positions of Arg105 and His134. The replacement of Gln137 by Ala also has a dramatic effect on the electrostatics of the active site. These data taken together suggest that the side-chain of Gln137 in the wild-type enzyme is required for the binding of carbamoyl phosphate in the proper orientation so as to induce conformational changes required for the creation of the high-affinity aspartate-binding site. The inability of carbamoyl phosphate to create the high-affinity binding site in the Q137A enzyme results in an enzyme locked in the low-activity low-affinity T state. These results emphasize the absolute requirement of the binding of carbamoyl phosphate for the creation of the high-affinity aspartate-binding site and for inducing the homotropic cooperativity in aspartate transcarbamoylase.  相似文献   

6.
Glu-50 of aspartate transcarbamoylase from Escherichia coli forms a set of interdomain bridging interactions between the 2 domains of the catalytic chain; these interactions are critical for stabilization of the high-activity high-affinity form of the enzyme. The mutant enzyme with an alanine substituted for Glu-50 (Glu-50-->Ala) exhibits significantly reduced activity, little cooperativity, and altered regulatory behavior (Newton CJ, Kantrowitz ER, 1990, Biochemistry 29:1444-1451). A study of the structural consequences of replacing Glu-50 by alanine using solution X-ray scattering is reported here. Correspondingly, in the absence of substrates, the mutant enzyme is in the same, so-called T quaternary conformation as is the wild-type enzyme. In the presence of a saturating concentration of the bisubstrate analog N-phosphonacetyl-L-aspartate (PALA), the mutant enzyme is in the same, so-called R quaternary conformation as the wild-type enzyme. However, the Glu-50-->Ala enzyme differs from the wild-type enzyme, in that its scattering pattern is hardly altered by a combination of carbamoyl phosphate and succinate. Addition of ATP under these conditions does result in a slight shift toward the R structure. Steady-state kinetic studies indicate that, in contrast to the wild-type enzyme, the Glu-50-->Ala enzyme is activated by PALA at saturating concentrations of carbamoyl phosphate and aspartate, and that PALA increases the affinity of the mutant enzyme for aspartate. These data suggest that the enzyme does not undergo the normal T to R transition upon binding of the physiological substrates and verifies the previous suggestion that the interdomain bridging interactions involving Glu-50 are critical for the creation of the high-activity, high-affinity R state of the enzyme.  相似文献   

7.
Most investigations of the allosteric properties of the regulatory enzyme aspartate transcarbamoylase (ATCase) from Escherichia coli are based on the sigmoidal dependence of enzyme activity on substrate concentration and the effects of the inhibitor, CTP, and the activator, ATP, on the saturation curves. Interpretations of these effects in terms of molecular models are complicated by the inability to distinguish between changes in substrate binding and catalytic turnover accompanying the allosteric transition. In an effort to eliminate this ambiguity, the binding of the 3H-labeled bisubstrate analog N-(phosphonacetyl)-L-aspartate (PALA) to aspartate transcarbamoylase in the absence and presence of the allosteric effectors ATP and CTP has been measured directly by equilibrium dialysis at pH 7 in phosphate buffer. PALA binds with marked cooperativity to the holoenzyme with an average dissociation constant of 110 nM. ATP and CTP alter both the average affinity of ATCase for PALA and the degree of cooperativity in the binding process in a manner analogous to their effects on the kinetic properties of the enzyme; the average dissociation constant of PALA decreases to 65 nM in the presence of ATP and increases to 266 nM in the presence of CTP while the Hill coefficient, which is 1.95 in the absence of effectors, becomes 1.35 and 2.27 in the presence of ATP and CTP, respectively. The isolated catalytic subunit of ATCase, which lacks the cooperative kinetic properties of the holoenzyme, exhibits only a very slight degree of cooperativity in binding PALA. The dissociation constant of PALA from the catalytic subunit is 95 nM. Interpretation of these results in terms of a thermodynamic scheme linking PALA binding to the assembly of ATCase from catalytic and regulatory subunits demonstrates that saturation of the enzyme with PALA shifts the equilibrium between holoenzyme and subunits slightly toward dissociation. Ligation of the regulatory subunits by either of the allosteric effectors leads to a change in the effect of PALA on the association-dissociation equilibrium.  相似文献   

8.
The importance of the interdomain bridging interactions observed only in the R-state structure of Escherichia coli aspartate transcarbamylase between Glu-50 of the carbamoyl phosphate domain with both Arg-167 and Arg-234 of the aspartate domain has been investigated by using site-specific mutagenesis. Two mutant versions of aspartate transcarbamylase were constructed, one with alanine at position 50 (Glu-50----Ala) and the other with aspartic acid at position 50 (Glu-50----Asp). The alanine substitution totally prevents the interdomain bridging interactions, while the aspartic acid substitution was expected to weaken these interactions. The Glu-50----Ala holoenzyme exhibits a 15-fold loss of activity, no substrate cooperativity, and a more than 6-fold increase in the aspartate concentration at half the maximal observed specific activity. The Glu-50----Asp holoenzyme exhibits a less than 3-fold loss of activity, reduced cooperativity for substrates, and a 2-fold increase in the aspartate concentration at half the maximal observed specific activity. Although the Glu-50----Ala enzyme exhibits no homotropic cooperativity, it is activated by N-(phosphonoacetyl)-L-aspartate (PALA). As opposed to the wild-type enzyme, the Glu-50----Ala enzyme is activated by PALA at saturating concentrations of aspartate. At subsaturating concentrations of aspartate, both mutant enzymes are activated by ATP, but are inhibited less by CTP than is the wild-type enzyme. At saturating concentrations of aspartate, the Glu-50----Ala enzyme is activated by ATP and inhibited by CTP to an even greater extent than at subsaturating concentrations of aspartate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A new system has been developed capable of monitoring conformational changes of the 240s loop of aspartate transcarbamoylase, which are tightly correlated with the quaternary structural transition, with high sensitivity in solution. Pyrene, a fluorescent probe, was conjugated to residue 241 in the 240s loop of aspartate transcarbamoylase to monitor changes in conformation by fluorescence spectroscopy. Pyrene maleimide was conjugated to a cysteine residue on the 240s loop of a previously constructed double catalytic chain mutant version of the enzyme, C47A/A241C. The pyrene-labeled enzyme undergoes the normal T to R structural transition, as demonstrated by small-angle x-ray scattering. Like the wild-type enzyme, the pyrene-labeled enzyme exhibits cooperativity toward aspartate, and is activated by ATP and inhibited by CTP at subsaturating concentrations of aspartate. The binding of the bisubstrate analogue N-(phosphonoacetyl)-l-aspartate (PALA), or the aspartate analogue succinate, in the presence of saturating carbamoyl phosphate, to the pyrenelabeled enzyme caused a sigmoidal change in the fluorescence emission. Saturation with ATP and CTP (in the presence of either subsaturating amounts of PALA or succinate and carbamoyl phosphate) caused a hyperbolic increase and decrease, respectively, in the fluorescence emission. The half-saturation values from the fluorescence saturation curves and kinetic saturation curves were, within error, identical. Fluorescence and small-angle x-ray scattering stopped-flow experiments, using aspartate and carbamoyl phosphate, confirm that the change in excimer fluorescence and the quaternary structure change correlate. These results in conjunction with previous studies suggest that the allosteric transition involves both global and local conformational changes and that the heterotropic effect of the nucleotides may be exerted through local conformational changes in the active site by directly influencing the conformation of the 240s loop.  相似文献   

10.
13C isotope effects have been measured for the aspartate transcarbamylase holoenzyme (ATCase) and catalytic subunit catalyzed reactions in the presence of the bisubstrate analog N-(phosphonoacetyl)-L-aspartate (PALA). For holoenzyme-catalyzed reactions in the physiological direction with very low levels of L-aspartate as substrate, or with L-cysteine sulfinate as substrate, or in the reverse direction with carbamyl-L-aspartate and phosphate as substrates, the isotope effect data show a slight dependence on PALA concentration. Under these conditions, PALA first stimulates the rate and then inhibits it at higher concentrations. The observed isotope effect at maximum stimulation by PALA is slightly smaller than in the absence of the analog, but as the PALA concentration is increased to reduce the rate to its original value, the observed isotope effect also increases and approaches the value of the isotope effect determined in the absence of PALA. These data suggest that the kinetic properties of the active enzyme are affected by the number of active sites occupied by PALA, indicating communication between subunits, and a mathematical model is proposed which explains our experimental observations. In contrast to these results with the holoenzyme, isotope effects measured for the reaction catalyzed by the isolated catalytic subunits are not altered in the presence of PALA. Taken together, these data are consistent with the two-state model for the homotropic regulation of ATCase.  相似文献   

11.
K Hemmi  J W Harper  J C Powers 《Biochemistry》1985,24(8):1841-1848
Several 3-halo-3-(1-haloalkyl)-1(3H)-isobenzofuranones, 3-(1-haloalkylidene)-1(3H)-isobenzofuranones, and 3-bromomethyl-1H-2-benzopyran-1-ones containing masked halo ketone functional groups were synthesized and tested as inhibitors of several serine proteases including human leukocyte (HL) elastase and cathepsin G. While many of the 3-halo-3-(1-haloalkyl)-1(3H)-isobenzofuranones were quite potent inhibitors of the enzymes tested, the alkylideneisobenzofuranones and benzopyran-1-ones inhibited poorly or not at all. The 3-halo-3-(1-haloalkyl)-1(3H)-isobenzofuranones decomposed rapidly upon addition to buffer to give the corresponding 3-alkyl-1H-2-benzopyran-1,4(3H)-diones. The pure benzopyran-1,4-diones were extremely potent inhibitors of HL elastase and chymotrypsin A alpha but did not inactivate porcine pancreatic elastase or cathepsin G. Enzymes inhibited by the isobenzofuranones and benzopyran-1,4-diones regained activity slowly upon standing or after dialysis (t1/2 = 5-16 h) and more rapidly in the presence of 0.5 M hydroxylamine, which indicated the presence of labile acyl moieties in the inhibited enzyme. These results are consistent with a scheme in which the active site serine of the protease reacts with the lactone carbonyl of these inhibitors to give a stable acyl enzyme and alkylation of another active site residue by the unmasked halo ketone functional group does not occur.  相似文献   

12.
13.
Nuclear magnetic resonance has been used to study the binding of [13C]carbamyl-P (90% enriched) to the catalytic subunit of Escherichia coli aspartate transcarbamylase. Upon forming a binary complex, there is a small change in the chemical shift of the carbonyl carbon resonance, 2 Hz upfield at pH 7.0, indicating that the environments of the carbonyl group in the active site and in water are similar. When succinate, an analog of L-aspartate, is added to form a ternary complex, there is a large downfield change in the chemical shift for carbamyl-P, consistent with interaction between the carbonyl group and a proton donor of the enzyme. The change might also be caused by a ring current froma nearby aromatic amino acid residue. From the pH dependence of this downfield change and from the effects of L-aspartate analogs other than succinate, the form of the enzyme involved is proposed to be an isomerized ternary complex, previously observed in temperature jump and proton NMR studies. The downfield change to chemical shift for carbamyl-P bound to the isomerized complex is 17.7 +/- 1.0 Hz. Using this value, the relative ability of other four-carbon dicarboxylic acids to form isomerized ternary complexes with the enzyme and carbamyl-P has been evaluated quantitatively. The 13C peak for the transition state analog N-(phosphonacetyl)-L-aspartate (PALA), 90% enriched specifically at the amide carbonyl group, is shifted 20 Hz downfield of the peak for free PALA upon binding to the catalytic subunit at pH 7.0. In contrast, the peak for [1-13C] phosphonaceatmide shifts upfield by about 6 Hz upon binding. Since PALA induces isomerization of the enzyme and phosphonacetamide does not, these data provide further evidence consistent with protonation of the carbonyl group only upon isomerization. The degrees of protonation is strong acids of the carbonyl groups of PALA, phosphonacetamide and urethan (a model for the labile carbamyl-P) have been determined, as have the chemical shifts for these compounds upon full protonation. From these data it is calculated that the amide carbonyl groups of carbamyl-P and PALA might be protonated to a maximum of about 20% in the isomerized complexes at pH 7.0. The change in conformation of the enzyme-carbamyl-P complex upon binding L-aspartate, previously proposed to aid catalysis by compressing the two substrates together in the active site, may be accompanied by polarization of the C=O bond, making this ordinarily unreactive group a much better electrophile. A keto analog of PALA, 4,5-dicarboxy-2-ketopentyl phosphonate, also binds tightly to the catalytic subunit and induces a very similar conformational change, whereas an alcohol analog, 4,5-dicarboxy-2-hydroxypentyl phosphonate, does not bind tightly, indicating the critical importance of an unhindered carbonyl group with trigonal geometry.  相似文献   

14.
Jin L  Stec B  Kantrowitz ER 《Biochemistry》2000,39(27):8058-8066
The only cis-proline residue in Escherichia coli aspartate transcarbamoylase has been replaced by alanine using site-specific mutagenesis. The Pro268-->Ala enzyme exhibits a 40-fold reduction in enzyme activity and decreased substrate affinity toward carbamoyl phosphate and aspartate compared to the corresponding values for the wild-type enzyme. The concentration of the bisubstrate analogue N-phosphonacetyl-L-aspartate (PALA) required to activate the mutant enzyme to the same extent as the wild-type enzyme is significantly increased. The heterotropic effects of ATP and CTP upon the Pro268-->Ala enzyme are also altered. Crystal structures of the Pro268-->Ala enzyme in both T- and R-states show that the cis-peptidyl linkage between Leu267 and Ala268 is maintained. However, the tertiary structure of both the catalytic and regulatory chains has been altered by the amino acid substitution, and the mobility of the active-site residues is increased for the R-state structure of Pro268-->Ala enzyme as comparison with the wild-type R-state structure. These structural changes are responsible for the loss of enzyme activity. Thus, Pro268 is required for the proper positioning of catalytically critical residues in the active site and is important for the formation of the high-activity high-affinity R-state of E. coli aspartate transcarbamoylase.  相似文献   

15.
Two mutant versions of Escherichia coli aspartate transcarbamylase were created by site-specific mutagenesis. Arg-234 of the 240s loop was replaced by serine in order to help deduce the function of the interactions that normally occur between Arg-234 and both Glu-50 and Gln-231 in the R state of the enzyme. The other mutation involved the replacement of Asp-271 by asparagine to further test the functional importance of the Tyr-240-Asp-271 link that has previously been proposed to stabilize the T state of the enzyme [Middleton, S. A., & Kantrowitz, E. R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5866-5870]. The Arg-234----Ser holoenzyme exhibits no cooperativity, a 24-fold reduction in maximal velocity, normal affinity for carbamyl phosphate, and substantially reduced affinity for aspartate and N-(phosphonoacetyl)-L-aspartate (PALA). Unlike the wild-type enzyme, the heterotropic effectors ATP and CTP are able to influence the activity of the Arg-234----Ser enzyme at saturating aspartate concentrations. The Arg-234----Ser catalytic subunit exhibits a 33-fold reduction in maximal activity, an aspartate Km of 261 mM, compared to 5.7 mM for the wild-type catalytic subunit, and only a small alteration in the Km for carbamyl phosphate. Together these results provide additional evidence that the interdomain bridging interactions between Glu-50 of the carbamyl phosphate domain and both Arg-167 and Arg-234 of the aspartate domain are necessary for the stabilization of the high-activity-high-affinity configuration of the active site of the enzyme. Furthermore, without the interdomain bridging interactions, the holoenzyme no longer exhibits homotropic cooperativity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Pyridoxal-P reacts specifically with a single lysine residue at the active site of Escherichia coli aspartate transcarbamylase (Greenwell, P., Jewett, S. L., and Stark, G. R. (1973) J. Biol. Chem. 248, 5994-6001). Reduction of the Schiff base with sodium borohydride, succinylation of the remaining lysine residues, and digestion with trypsin result in formation of a single pyridoxyl peptide, which was purified to homogeneity after chromatography on DEAE-cellulose, treatment with alkaline phosphatase, and rechromatography. Amino acid composition and the results of limited sequential degradation showed that this peptide corresponds to residues 62 to 98 in the sequence of Konigsberg and co-workers, and contains 2 residues of lysine (Henderson, L., Roy, D., Martin, D., and Konigsberg, W., personal communication). By similar isolation, a second peptide was obtained from unsuccinylated catalytic subunit, containing only the pyridoxylated lysine, which corresponds to Lys-80. Derivatives of catalytic subunit containing an average of either one, two, or three pyridoxamine-P moieties per trimer have been prepared by reduction. These species, which retain catalytic activity in proportion to their unmodified active sites, were recombined with regulatory subunit to prepare partially modified derivatives of native aspartate transcarbamylase. At pH 8, fluorescence emission bands were observed at 340 nm, due to aromatic amino acids in the protein, and at 395 nm, due to the pyridoxamine-P moiety. Upon excitation at 280 nm energy transfer from protein to pyridoxamine-P was approximately 15%. The properties of the probe were used to study changes accompanying the binding of substrates and inhibitors. The effects of CTP and ATP were small. With the transition state analog N-(phosphonacetyl)-L-aspartate (PALA) or the substrate carbamyl-P, two types of response were observed. Derivatives of catalytic subunit and native enzyme which contain some unmodified sites and hence retain partial catalytic activity gave large increases in fluorescence at 395 nm. However, fully modified inactive derivatives gave much smaller increases. A derivative of native enzyme containing one triply modified and one unmodified catalytic subunit behaved like the other partially modified species. These results indicate that there is communication among the active sites of different catalytic trimers in modified native enzyme, as well as among active sites within the same modified catalytic trimer. The increases in fluorescence result from a red shift of the absorption maximum of the pyridoxamine-P moiety from 315 to 325 nm, which increases the absorbance at the excitation wavelength for fluorescence. At pH 7, the absorption spectrum is already shifted and, consequently, the binding of PALA and carbamyl-P has little effect on the fluorescence. Therefore, the binding of these compounds at pH 8.0 must cause a structural change in the protein, which in turn causes protonation of a group in the modified active sites, altering the spectral properties.  相似文献   

17.
The design, syntheses, and enzymatic activity of two submicromolar competitive inhibitors of aspartate transcarbamoylase (ATCase) are described. The phosphinate inhibitors are analogs of N-phosphonacetyl-l-aspartate (PALA) but have a reduced charge at the phosphorus moiety. The mechanistic implications are discussed in terms of a possible cyclic transition-state during enzymatic catalysis.  相似文献   

18.
The binding of the bisubstrate ligand N-(phosphonacetyl)-L-aspartate (PALA) to the active sites of both the free catalytic subunit of aspartate transcarbamoylase and the intact holoenzyme causes conformational changes which have been studied extensively. However, no kinetic information has been available about the sequence of events occurring during the formation or dissociation of the complexes. Stopped flow kinetics, 31P saturation transfer NMR spectroscopy, and presteady-state kinetics were used to monitor the interaction of PALA with the catalytic subunit (or a derivative containing nitrotyrosyl chromophores which served as spectral probes). The various experimental approaches lead to a mechanism that includes a rapid binding of PALA with an "on" rate of about 10(8)M-1s-1 and an "off" rate of 28 s-1, followed by a much slower isomerization of the complex with a forward rate constant of 0.18 s-1. Analysis of the presteady-state bursts of enzyme activity when the protein is added to a mixture of substrates and PALA and of the lag in activity when the PALA complex with catalytic subunit is added to substrates yielded a rate constant for the reverse isomerization of 0.018s-1. Thus, the conformational change subsequent to PALA binding leads to a 10-fold increase in the equilibrium constant for complex formation. Stopped flow kinetic measurements of the spectral change resulting from mixing the complex of PALA and nitrated protein with native enzyme showed a slow process with a t1/2 of about 11 s, whereas 31P saturation transfer NMR experiments yielded at t1/2 of about 260 ms for the dissociation of PALA from the complex. This apparent disparity is understood in terms of the two-step binding scheme where rapid dissociation of the initial ligand X enzyme complex is measured by the NMR technique and the slow isomerization of the complex is responsible for the bulk of the stopped flow signal.  相似文献   

19.
Quinazolinone derivatives have been studied as both in vitro and in vivo inhibitors of aspartate transcarbamylase (ATCase). In vitro treatment of mammalian ATCase with four compounds revealed that they inhibited enzyme activity and that 2-phenyl-1,3-4(H)benzothiazin-4-thione was the most potent one. This compound acts as a noncompetitive inhibitor towards both aspartate and carbamoyl phosphate. The values of the inhibition constant (K(i)) indicate that this compound exerts a potent inhibitory effect upon ATCase activity. Moreover, in vivo treatment with different doses of these derivatives showed also an inhibitory effect upon ATCase, the relative activity being decreased by 40%-58% with a 1 mg dose. These data support the inhibition of ATCase by quinazolinone derivatives as a new type of inhibitor for the enzyme.  相似文献   

20.
The pyrimidine de novo nucleotide synthesis consists of 6 sequential steps. Various inhibitors against these enzymes have been developed and evaluated in the clinic for their potential anticancer activity: acivicin inhibits carbamoyl-phosphate-synthase-II, N-(phosphonacetyl)-L- aspartate (PALA) inhibits aspartate-transcarbamylase, Brequinar sodium and dichloroallyl-lawsone (DCL) inhibit dihydroorotate-dehydrogenase, and pyrazofurin (PF) inhibits orotate-phosphoribosyltransferase. We compared their growth inhibition against 3 cell lines from head-and-neck-cancer (HEP-2, UMSCC-14B and UMSCC-14C) and related the sensitivity to their effects on nucleotide pools. In all cell lines Brequinar and PF were the most active compounds with IC50 (50% growth inhibition) values between 0.06–0.37 µM, Acivicin was as potent (IC50s 0.26-1 µM), but DCL was 20-31-fold less active. PALA was most inactive (24–128 µM). At equitoxic concentrations, all pure antipyrimidine de novo inhibitors depleted UTP and CTP after 24 hr exposure, which was most pronounced for Brequinar (between 6–10% of UTP left, and 12–36% CTP), followed by DCL and PF, which were almost similar (6–16% UTP and 12–27% CTP), while PALA was the least active compound (10–70% UTP and 13–68% CTP). Acivicin is a multi-target inhibitor of more glutamine requiring enzymes (including GMP synthetase) and no decrease of UTP was found, but a pronounced decrease in GTP (31–72% left). In conclusion, these 5 inhibitors of the pyrimidine de novo nucleotide synthesis varied considerably in their efficacy and effect on pyrimidine nucleotide pools. Inhibitors of DHO-DH were most effective suggesting a primary role of this enzyme in controlling pyrimidine nucleotide pools  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号