首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During Drosophila eye development, cell proliferation is coordinated with differentiation. Immediately posterior to the morphogenetic furrow, cells enter a synchronous round of S phase called second mitotic wave. We have examined the role of RBF, the Drosophila RB family homolog, in cell cycle progression in the second mitotic wave. RBF-280, a mutant form of RBF that has four putative cdk phosphorylation sites mutated, can no longer be regulated by Cyclin D or Cyclin E. Expression of RBF-280 in the developing eye revealed that RBF-280 does not inhibit G1/S transition in the second mitotic wave, rather it delays the completion of S phase and leads to abnormal eye development. These observations suggest that RB/E2F control the rate of S-phase progression instead of G1/S transition in the second mitotic wave. Characterization of the role of RBF in Cyclin D/Cdk4-mediated cellular growth showed that RBF-280 blocks Cyclin D/Cdk4 induced cellular growth in the proliferating wing disc cells but not in the non-dividing eye disc cells. By contrast, RBF-280 does not block activated Ras-induced cellular growth. These results suggest that the ability of Cyclin D/Cdk4 to drive growth in the proliferating wing cells is distinct from that in the none-dividing eye cells or the ability of activated Ras to induce growth, and that RBF may have a role in regulating growth in the proliferating wing discs.  相似文献   

2.
3.
The inactivation of retinoblastoma (Rb) family members sensitizes cells to apoptosis. This cell death affects the development of mutant animals and also provides a critical constraint to the malignant potential of Rb mutant tumor cells. The extent of apoptosis caused by the inactivation of Rb is highly cell type and tissue specific, but the underlying reasons for this variation are poorly understood. Here, we characterize a specific time and place during Drosophila melanogaster development where rbf1 mutant cells are exquisitely sensitive to apoptosis. During the third larval instar, many rbf1 mutant cells undergo E2F-dependent cell death in the morphogenetic furrow. Surprisingly, this pattern of apoptosis is not caused by inappropriate cell cycle progression but instead involves the action of Argos, a secreted protein that negatively regulates Drosophila epidermal growth factor receptor (EGFR [DER]) activity. Apoptosis of rbf1 mutant cells is suppressed by the activation of DER, ras, or raf or by the inactivation of argos, sprouty, or gap1, and inhibition of DER strongly enhances apoptosis in rbf1 mutant discs. We show that RBF1 and a DER/ras/raf signaling pathway cooperate in vivo to suppress E2F-dependent apoptosis and that the loss of RBF1 alters a normal program of cell death that is controlled by Argos and DER. These results demonstrate that a gradient of DER/ras/raf signaling that occurs naturally during development provides the contextual signals that determine when and where the inactivation of rbf1 results in dE2F1-dependent apoptosis.  相似文献   

4.
Mutations that inactivate the retinoblastoma (Rb) pathway are common in human tumors. Such mutations promote tumor growth by deregulating the G1 cell cycle checkpoint. However, uncontrolled cell cycle progression can also produce new liabilities for cell survival. To uncover such liabilities in Rb mutant cells, we performed a clonal screen in the Drosophila eye to identify second-site mutations that eliminate Rbf(-) cells, but allow Rbf(+) cells to survive. Here we report the identification of a mutation in a novel highly conserved peptidyl prolyl isomerase (PPIase) that selectively eliminates Rbf(-) cells from the Drosophila eye.  相似文献   

5.
6.
7.
Cooperation between p53 and p130(Rb2) in induction of cellular senescence   总被引:1,自引:0,他引:1  
To determine pathways cooperating with p53 in cellular senescence when the retinoblastoma protein (pRb)/p16INK4a pathway is defunct, we stably transfected the p16INK4a-negative C6 rat glioma cell line with a temperature-sensitive mutant p53. Activation of p53(Val-135) induces a switch in pocket protein expression from pRb and p107 to p130(Rb2) and stalls the cells in late G1, early S-phase at high levels of cyclin E. Maintenance of the arrest depends on the functions of p130(Rb2) repressing cyclin A. Inactivation of p53 in senescent cultures restores the pocket proteins to initial levels and initiates progression into S-phase, but the cells fail to resume proliferation, likely due to DNA damage becoming apparent in the arrest and activating apoptosis subsequent to the release from p53-dependent growth suppression. The data indicate that p53 can cooperate selectively with p130(Rb2) to induce cellular senescence, a pathway that may be relevant when the pRb/p16INK4a pathway is defunct.  相似文献   

8.
Saudan P  Vlach J  Beard P 《The EMBO journal》2000,19(16):4351-4361
Adeno-associated virus (AAV) has an antiproliferative action on cells. We investigated the effect of the AAV replication proteins (Rep) on the cell division cycle using retroviral vectors. Rep78 and Rep68 inhibited the growth of primary, immortalized and transformed cells, while Rep52 and Rep40 did not. Rep68 induced cell cycle arrest in phases G(1) and G(2), with elevated CDK inhibitor p21 and reduced cyclin E-, A- and B1-associated kinase activity. Rep78-expressing cells were also impaired in S-phase progression and accumu lated almost exclusively with hypophosphorylated retinoblastoma protein (pRb). The differences between Rep78 and Rep68 were mapped to the C-terminal zinc finger domain of Rep78. Rep78-induced S-phase arrest could be bypassed by adenoviral E1A or papillomaviral E7 proteins but not by E1A or E7 mutants unable to bind pRb. Rb(-/-) primary mouse embryonic fibroblasts displayed a strongly reduced S-phase arrest when challenged with Rep78, compared with matched Rb(+/+) controls. These results suggest that physiological levels of active pRb can interfere with S-phase progression. We propose that the AAV Rep78 protein arrests cells within S-phase by a novel mechanism involving the ectopic accumulation of active pRb.  相似文献   

9.
Rb independent inhibition of cell growth by p15(INK4B).   总被引:2,自引:0,他引:2  
The INK4 cyclin dependent kinase inhibitors (CDKI), such as p15(INK4B) and p16(INK4A), block cell cycle progression from G to S phase. This is mediated by inhibition of phosphorylation of proteins, including the retinoblastoma susceptibility protein (Rb), by cyclin dependent kinases. Ectopic over-expression of the p16(INK4A) CDKI can inhibit growth of cell lines depending on Rb status. Cell lines lacking Rb, with few exceptions, are resistant to growth inhibition by p16(INK4A). The effects of ectopic over-expression of p15(INK4B) in cell lines with and without wild type Rb were examined by measuring cell recovery. Proliferation was inhibited in cells lacking Rb as well as in cells with wild type Rb expression. Experiments analyzing the effectiveness of chimeric p15(INK4B)/p16(INK4A) proteins indicated that the Rb independent growth inhibition required N-terminal residues of p15(INK4B). Linker insertion mutation of p15(INK4B) showed that the inhibition was dependent on intact ankyrin structures. Double staining flow cytometry found that the growth inhibition correlated with a decrease in cells in G2/M phases of the cell cycle. These findings are consistent with Rb independent inhibition of the progression from G1 to S caused by overexpression of p15(INK4B).  相似文献   

10.
The tumor suppressor retinoblastoma protein (pRb) is inactivated in a wide variety of cancers. While its role during cell cycle is well characterized, little is known about its properties on apoptosis regulation and apoptosis-induced cell responses. pRb shorter forms that can modulate pRB apoptotic properties, resulting from cleavages at caspase specific sites are observed in several cellular contexts. A bioinformatics analysis showed that a putative caspase cleavage site (TELD) is found in the Drosophila homologue of pRb (RBF) at a position similar to the site generating the p76Rb form in mammals. Thus, we generated a punctual mutant form of RBF in which the aspartate of the TELD site is replaced by an alanine. This mutant form, RBFD253A, conserved the JNK-dependent pro-apoptotic properties of RBF but gained the ability of inducing overgrowth phenotypes in adult wings. We show that this overgrowth is a consequence of an abnormal proliferation in wing imaginal discs, which depends on the JNK pathway activation but not on wingless (wg) ectopic expression. These results show for the first time that the TELD site of RBF could be important to control the function of RBF in tissue homeostasis in vivo.  相似文献   

11.
RB-dependent S-phase response to DNA damage   总被引:7,自引:0,他引:7       下载免费PDF全文
The retinoblastoma tumor suppressor protein (RB) is a potent inhibitor of cell proliferation. RB is expressed throughout the cell cycle, but its antiproliferative activity is neutralized by phosphorylation during the G(1)/S transition. RB plays an essential role in the G(1) arrest induced by a variety of growth inhibitory signals. In this report, RB is shown to also be required for an intra-S-phase response to DNA damage. Treatment with cisplatin, etoposide, or mitomycin C inhibited S-phase progression in Rb(+/+) but not in Rb(-/-) mouse embryo fibroblasts. Dephosphorylation of RB in S-phase cells temporally preceded the inhibition of DNA synthesis. This S-phase dephosphorylation of RB and subsequent inhibition of DNA replication was observed in p21(Cip1)-deficient cells. The induction of the RB-dependent intra-S-phase arrest persisted for days and correlated with a protection against DNA damage-induced cell death. These results demonstrate that RB plays a protective role in response to genotoxic stress by inhibiting cell cycle progression in G(1) and in S phase.  相似文献   

12.
13.
Cooper S  Yu C  Shayman JA 《IUBMB life》1999,48(2):225-230
Phosphorylation of the retinoblastoma protein (Rb) during the G1-phase of the mammalian cell division cycle is currently believed to be a controlling element regulating the passage of cells into S-phase. We find, however, that the suspension-grown cell lines U937, L1210, and MOLT-4 contain exclusively hyperphosphorylated Rb. Furthermore, when adherent NIH3T3 cells are grown at very low densities to avoid overgrowth and contact inhibition, they also contain only hyperphosphorylated Rb. NIH3T3 cells exhibit hypophosphorylation when the cells are grown at moderate to high cell densities. We propose that cultures of adherent cells such as NIH3T3, when grown to moderate cell densities, are made up of two populations of cells: (a) cells that are relatively isolated and therefore growing exponentially without contact inhibition, and (b) cells that are growth-inhibited by local cell density or contact inhibition. The common observation in adherent cell lines, that Rb is both hyper- and hypophosphorylated in the G1-phase and only hyperphosphorylated in the S- and G2-phases, is explained by the effects of cell density and contact inhibition. Thus, phosphorylation-dephosphorylation of Rb protein during the G1 phase is not a necessary process during the NIH3T3, L1210, MOLT-4, and U937 division cycles. We propose that phosphorylation-dephosphorylation of Rb is independent of the division cycle and is primarily determined by growth conditions throughout the division cycle.  相似文献   

14.
In MCF-7/Dox human breast carcinoma cells, down-regulation of integrin α5β1 and inhibition of epidermal growth factor receptor (EGFR) markedly reduced cell proliferation. Cell cycle analysis showed that α5β1 down-regulation resulted in cycle arrest at the S-phase, followed by a significant increase in the population of apoptotic cells (subG1 population). Inhibition of EGFR activity also caused cell cycle arrest at the S-phase but without any increase in the subG1 population. Down-regulation of α5β1 and EGFR inhibition resulted in a significant decrease of cell content of the active (phosphorylated) forms of FAK and Erk protein kinases. The data obtained suggest that α5β1 integrin is implicated in cell growth control via inhibition of apoptotic cell death and through EGFR activation.  相似文献   

15.
We have explored the hypothesis that hypertrophy of vascular smooth muscle cells may be regulated, in part, by growth inhibitory factors that alter the pattern of the growth response to serum mitogens by characterizing the effects of the potent growth inhibitor, transforming growth factor-beta (TGF-beta), on both hyperplastic and hypertrophic growth of cultured rat aortic smooth muscle cells. TGF-beta inhibited serum-induced proliferation of rat aortic smooth muscle cells (ED50 = 2 pM); this is consistent with previously reported observations in bovine aortic smooth muscle cells (Assoian et al. 1982. J. Biol. Chem. 258:7155-7160). Growth inhibition was due in part to a greater than twofold increase in the cell cycle transit time in cells that continued to proliferate in the presence of TGF-beta. TGF-beta concurrently induced cellular hypertrophy as assessed by flow cytometric analysis of cellular protein content (47% increase) and forward angle light scatter (32-50% increase), an index of cell size. In addition to being time and concentration dependent, this hypertrophy was reversible. Simultaneous flow cytometric evaluation of forward angle light scatter and cellular DNA content demonstrated that TGF-beta-induced hypertrophy was not dependent on withdrawal of cells from the cell cycle nor was it dependent on growth arrest of cells at a particular point in the cell cycle in that both cycling cells in the G2 phase of the cell cycle and those in G1 were hypertrophied with respect to the corresponding cells in vehicle-treated controls. Chronic treatment with TGF-beta (100 pM, 9 d) was associated with accumulation of cells in the G2 phase of the cell cycle in the virtual absence of cells in S phase, whereas subsequent removal of TGF-beta from these cultures was associated with the appearance of a significant fraction of cycling cells with greater than 4c DNA content, consistent with development of tetraploidy. Results of these studies support a role for TGF-beta in the control of smooth muscle cell growth and suggest that at least one mechanism whereby hypertrophy and hyperploidy may occur in this, as well as other cell types, is by alterations in the response to serum mitogens by potent growth inhibitors such as TGF-beta.  相似文献   

16.
The retinoblastoma tumor suppressor (RB) plays an important role in the regulation of cell cycle progression and terminal differentiation of many cell types. Rb(-/-) mouse embryos die at midgestation with defects in cell cycle regulation, control of apoptosis and terminal differentiation. However, chimeric mice composed of wild-type and Rb-deficient cells are viable and show minor abnormalities. To determine the role of Rb in development more precisely, we analyzed chimeric embryos and adults made with marked Rb(-/-) cells. Like their germline Rb(-/-) counterparts, brains of midgestation chimeric embryos exhibited extensive ectopic S-phase entry. In Rb-mutants, this is accompanied by widespread apoptosis. However, in chimeras, the majority of Rb-deficient cells survived and differentiated into neuronal fates. Rescue of Rb(-/-) neurons in the presence of wild-type cells occurred after induction of the p53 pathway and led to accumulation of cells with 4n DNA content. Therefore, the role of Rb during development can be divided into a cell-autonomous function in exit from the cell cycle and a non-cell-autonomous role in the suppression of apoptosis and induction of differentiation.  相似文献   

17.
Summary. 1′-Acetoxychavicol acetate (ACA) has been shown to inhibit tumor cell growth, but there is limited information on its effects on cell signaling and the cell cycle control pathway. In this study, we sought to determine how ACA alters cell cycle and its related control factors in its growth inhibitory effect in Ehrlich ascites tumor cells (EATC). ACA caused an accumulation of cells in the G1 phase and an inhibition of DNA synthesis, which were reversed by supplementation with N-acetylcysteine (NAC) or glutathione ethyl ester (GEE). Furthermore, ACA decreased hyperphosphorylated Rb levels and increased hypophosphorylated Rb levels. NAC and GEE also abolished the decease in Rb phosphorylation by ACA. As Rb phosphorylation is regulated by G1 cyclin dependent kinase and CDK inhibitor p27kip1, which is an important regulator of the mammalian cell cycle, we estimated the amount of p27kip1 levels by western blotting. Treatment with ACA had virtually no effect on the amount of p27kip1 levels, but caused a decrease in phosphorylated p27kip1 and an increase in unphosphorylated p27kip1 as well as an increase in the nuclear localization of p27kip1. These events were abolished in the presence of NAC or GEE. These results suggest that in EATC, cell growth inhibition elicited by ACA involves decreases in Rb and p27kip1 phosphorylation and an increase in nuclear localization of p27kip1, and these events are dependent on the cellular thiol status.  相似文献   

18.
Complexes of D-type cyclins and cdk4 or 6 are thought to govern progression through the G(1) phase of the cell cycle. In DROSOPHILA:, single genes for Cyclin D and Cdk4 have been identified, simplifying genetic analysis. Here, we show that DROSOPHILA: Cdk4 interacts with Cyclin D and the Rb homolog RBF as expected, but is not absolutely essential. Flies homozygous for null mutations develop to the adult stage and are fertile, although only to a very limited degree. Overexpression of inactive mutant Cdk4, which is able to bind Cyclin D, does not enhance the Cdk4 mutant phenotype, confirming the absence of additional Cyclin D-dependent cdks. Our results indicate, therefore, that progression into and through the cell cycle can occur in the absence of Cdk4. However, the growth of cells and of the organism is reduced in Cdk4 mutants, indicating a role of D-type cyclin-dependent protein kinases in the modulation of growth rates.  相似文献   

19.
20.
The p16(INK4a)-Rb tumour suppressor pathway is required for the initiation and maintenance of cellular senescence, a state of permanent growth arrest that acts as a natural barrier against cancer progression. Senescence can be overcome if the pathway is not fully engaged, and this may occur when p16(INK4a) is inactivated. p16(INK4a) is frequently altered in human cancer and germline mutations affecting p16(INK4a) have been linked to melanoma susceptibility. To characterize the functions of melanoma-associated p16(INK4a) mutations, in terms of promoting proliferative arrest and initiating senescence, we utilized an inducible expression system in a melanoma cell model. We show that wild-type p16(INK4a) promotes rapid cell cycle arrest that leads to a senescence programme characterized by the appearance of chromatin foci, activation of acidic beta-galactosidase activity, p53 independence and Rb dependence. Accumulation of wild-type p16(INK4a) also promoted cell enlargement and extensive vacuolization independent of Rb status. In contrast, the highly penetrant p16(INK4a) variants, R24P and A36P failed to arrest cell proliferation and did not initiate senescence. We also show that overexpression of CDK4, or its homologue CDK6, but not the downstream kinase, CDK2, inhibited the ability of wild-type p16(INK4a) to promote cell cycle arrest and senescence. Our data provide the first evidence that p16(INK4a) can initiate a CDK4/6-dependent autonomous senescence programme that is disabled by inherited melanoma-associated mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号