首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intracellular molecular oxygen concentration in control and menadione-treated K562 (an erythroleukemic cell line that grows in suspension) and A431 (an epidermal carcinoma that grows in monolayer) cells was measured directly by using the new electron paramagnetic resonance (EPR) probe fusinite. Because the oxidizing agent menadione is known to damage mitochondria and the cytoplasmic membrane in other cell systems, before conducting measurements of oxygen concentration in K562 and A431 cells, it was necessary to establish injury in these systems as well. Consequently, morphological and flow cytometric analyses were conducted after menadione treatment. The data presented here show that the two cell lines are heavily damaged by menadione. Once this menadione-induced injury was demonstrated, measurements of oxygen concentration were carried out in both K562 and A431 cells. Treatment with this quinone induces a sharp increase in intracytoplasmic molecular oxygen in both cell lines (from about 1% to about 10 and 15% in K562 and A431 cells, respectively). In addition, to gain a more complete understanding of the effects of menadione on cells, the extracellular molecular oxygen concentration and the oxygen consumption rate were also measured in control and menadione-treated K562 cells. These measurements demonstrate that menadione treatment results in an increase in the extracellular oxygen concentration (from about 5% in controls to 15% in treated cells) as well as a decrease in the oxygen consumption rate (from about 10 ng O/min/106 cells in controls to 3 ng O/min/106 cells after menadione exposure). The importance of the new EPR probe fusinite in monitoring directly cellular functions in which oxygen is involved and the effects of menadione on cellular oxygen balance are discussed.  相似文献   

2.
Menadione promoted the production of active oxygen species (AOS) in both yeast cell suspension and the crude enzymes from the cells, but menadione sodium bisulfite (MSB) had little effect on the production of AOS in the cell suspension. MSB kept the stable increase in the electron transfer from intact yeast cells to anode compared to menadione, but the electron transfer promoted by MSB was inhibited in permeabilized yeast cell suspension. Menadione promoted oxidation of NAD(P)H much faster than MSB in permeabilized yeast cell suspension, suggesting the oxidative stress due to consumption of NAD(P)H. The proliferation of yeast cells was inhibited by menadione under aerobic conditions rather than anaerobic conditions, and the inhibitory effect was reduced by superoxide dismutase and catalase. The effect of MSB on the proliferation was much smaller than that of menadione. The above facts suggest that harmless MSB promotes the electron transfer from plasma membrane of yeast cells to anode. On the other hand, harmful menadione might promote the electron transfer from cytosol and plasma membrane to anode and dissolved oxygen.  相似文献   

3.
The purpose of this study was to determine the rate of oxygen consumption in mouse aortic endothelial cells (MAECs) and to determine the effect of a variety of inhibitors and stimulators of oxygen consumption measured by electron paramagnetic resonance (EPR) spectroscopy utilizing a new particulate oximetry probe. We have previously demonstrated that the octa-n-butoxy derivative of naphthalocyanine neutral radical (LiNc-BuO) enables accurate, precise, and reproducible measurements of pO(2) in cellular suspensions. In the current study, we carried out measurements to provide an accurate determination of pO(2) in small volume with less number of cells (20,000 cells) that has not been possible with other techniques. To establish the reliability of this method, agents such as menadione, lipopolysaccharide (LPS), potassium cyanide, rotenone, and diphenyleneiodonium chloride (DPI) were used to modulate the oxygen consumption rate in the cells. We observed an increase in oxygen consumption by the cells upon treatment with menadione and LPS, whereas treatment with cyanide, rotenone, and DPI inhibited oxygen consumption. This study clearly demonstrated the utilization of EPR spectrometry with LiNc-BuO probe for determination of oxygen concentration in cultured cells.  相似文献   

4.
Menadione is selectively toxic to erythrocytes. Although GSH is considered a primary target of menadione, intraerythrocyte thiolic alterations consequent to menadione exposure are only partially known. In this study alterations of GSH and protein thiols (PSH) and their relationship with methemoglobin formation were investigated in human and rat red blood cells (RBC) exposed to menadione. In both erythrocyte types, menadione caused a marked increase in methemoglobin associated with GSH depletion and increased oxygen consumption. However, in human RBC, GSH formed a conjugate with menadione, whereas, in rat RBC it was converted to GSSG, concomitantly with a loss of protein thiols (corresponding to menadione arylation), and an increase in glutathione-protein mixed disulfides (GS-SP). Such differences were related to the presence of highly reactive cysteines, which characterize rat hemoglobin (cys beta125). In spite of the greater thiol oxidation in rat than in human RBC, methemoglobin formation and the rate of oxygen consumption elicited by menadione in both species were rather similar. Moreover, in repeated experiments under N2 or CO-blocked heme, it was found that menadione conjugation (arylation) in both species was not dependent on the presence of oxygen or the status of heme. Therefore, we assumed that GSH (human RBC) and protein (rat RBC) arylation was equally responsible for increased oxygen consumption and Hb oxidation. Moreover, thiol oxidation of rat RBC was strictly related to methemoglobin formation.  相似文献   

5.
Cytotoxic effects of menadione on normal and cytochrome c-deficient yeast cells were examined on the basis of the cell growth rate, NAD(P)H concentration, reactive oxygen production, plasma membrane H+-ATPase activity, and ethanol production. In aerobically or anaerobically cultured yeast cells, NAD(P)H concentration decreased with increasing concentration of menadione, and the recovery of NAD(P)H concentration was proportional to the cell growth rate. However, there was no relationship among the inhibition of the cell growth and reactive oxygen production, plasma membrane H+-ATPase activity, and ethanol production. Among them, ethanol production showed resistance to the cytotoxicity of menadione, suggesting the resistance of glycolysis to menadione. The growth inhibitory effect of menadione depended on the rapid decrease and the recovery of NAD(P)H rather than production of reactive oxygen species regardless of aerobic culture or anaerobic culture and presence or absence of mitochondrial function. The recovery of NAD(P)H concentration after the addition of menadione might depend on menadione-resistant glycolytic enzymes.  相似文献   

6.
AIM To identify and characterize the protective effect that L-carnitine exerted against an oxidative stress in C2C12 cells.METHODS Myoblastic C2C12 cells were treated with menadione, a vitamin K analog that engenders oxidative stress, and the protective effect of L-carnitine(a nutrient involved in fatty acid metabolism and the control of the oxidative process), was assessed by monitoring various parameters related to the oxidative stress, autophagy and cell death. RESULTS Associated with its physiological function, a muscle cell metabolism is highly dependent on oxygen and may produce reactive oxygen species(ROS), especially under pathological conditions. High levels of ROS are known to induce injuries in cell structure as they interact at many levels in cell function. In C2C12 cells, a treatment with menadione induced a loss of transmembrane mitochondrial potential, an increase in mitochondrial production of ROS; it also induces autophagy and was able to provoke cell death. Pre-treatment of the cells with L-carnitine reduced ROS production, diminished autophagy and protected C2C12 cells against menadione-induced deleterious effects. CONCLUSION In conclusion, L-carnitine limits the oxidative stress in these cells and prevents cell death.  相似文献   

7.
Hypoxia, reactive oxygen, and cell injury   总被引:2,自引:0,他引:2  
Hypoxia usually decreases the formation of reactive oxygen species by oxidases and by autoxidation of components of cellular electron transfer pathways and of quinoid compounds such as menadione. In the case of menadione reactive oxygen species are liberated to a significant extent only at non-physiologically high oxygen partial pressures (PO2). At physiological and hypoxic PO2 values electron shuttling of menadione in the mitochondrial respiratory chain predominates. In contrast, lipid peroxidation induced by halogenated alkanes, such as carbon tetrachloride, in liver leads to an increase in the formation of reactive oxygen and thus in cell injury under hypoxic conditions. Reactive oxygen species may also be generated during reoxygenation of a previously hypoxic tissue. Based on experiments with isolated hepatocytes a three-zone-model of liver injury due to hypoxia and reoxygenation is presented; 1) a zone where the cells die by hypoxia; 2) a zone where the cells are destroyed upon reoxygenation, presumably mediated by an increase in the cellular ATP content; and 3) a zone where cell injury occurs upon reoxygenation, mediated by reactive oxygen species possibly liberated by xanthine oxidase.  相似文献   

8.
Characterization of free radical-induced cell injury processes of placenta cells is of vital importance for clinical medicine for the maintenance of intrauterine fetal life. The present study has analyzed cell injury processes in cells of the choriocarcinoma cell line JAR treated with menadione, an anticancer drug, and H(2)O(2) in comparison to osteosarcoma 143B cells using electron microscopic and flow cytometric techniques. Flow cytometry on JAR cells exposed to 100 muM menadione and double-stained with Annexin V and propidium iodide (PI) detected apoptotic cells reaching the maximum after 4 h of incubation with a rapid decrease thereafter. Viable cells became decreased to 46% of the control after 2 h of incubation, reaching 5% after 4 h. Cells stainable with both Annexin V and PI began to increase distinctly after 2 h of incubation, reaching 55% after 4 h. Electron microscopy showed that cells stainable with both dyes specified above had condensed nuclei and swollen cytoplasm, suggesting that they were undergoing a switch of the cell death mode from apoptosis to necrosis. On the other hand, 90% of 143B cells remained intact after 4 h of menadione treatment although the intracellular levels of superoxide were always higher than those of JAR cells treated with the drug. In contrast, JAR cells were more resistant than 143B cells to H(2)O(2)-induced cytotoxicity. These results may suggest that cytotoxicity of menadione cannot be explained simply by oxygen free radicals generated from the drug. The resistance of JAR cells to oxygen free radical-induced cytotoxicity may be advantageous for intrauterine fetal life.  相似文献   

9.
In the present study, we investigated the changes in blood-brain barrier (BBB) permeability following brain endothelial cell exposure to different xenobiotics able to promote free radical generation during their metabolism. Our in vitro BBB model consisted of confluent monolayers of immortalized rat brain capillary endothelial cells (RBE4) grown on collagen-coated filters in the presence of C6 glioma cells grown in the lower compartment. We have recently shown that a range of xenobiotics, including menadione, nitrofurazone, and methylviologen (paraquat) may undergo monoelectronic redox cycling in isolated brain capillaries, giving rise to reactive oxygen species. In this study, addition of 100 microM menadione to the culture medium for 30 min significantly increased the permeability of endothelial cell monolayers to radiolabeled sucrose. The effect on endothelial permeability induced by menadione was dose-dependent and reversible. These permeability changes preceded the onset of cell death, as assessed by the Trypan blue exclusion method. Pre-incubation with superoxide dismutase and catalase blocked changes in sucrose permeability to control levels in a dose-dependent manner, suggesting the involvement of reactive oxygen species in menadione-induced BBB opening.  相似文献   

10.
Menadione and vicasol completely restore the respiration rate of rat liver mitochondria after its inhibition by rotenone. Under the same conditions these compounds stimulate oxygen consumption by rabbit heart mitochondria up to 40% of the maximal uncoupled respiration rate in the presence of 5 mM glutamate and up to 30% of the maximal uncoupled respiration rate in a lymphocyte suspension containing glucose. Cyanide and dicumarol, specific inhibitors of DT-diaforase, completely suppress the stimulating effect of menadione and vicasol in isolated mitochondria and by 50% in lymphocyte suspensions. The DiS-C3-(5) fluorescence in lymphocyte suspensions suggests that the menadione and vicasol-induced respiration is capable of supporting the mitochondrial transmembrane potential in lymphocytes. Thus, in different tissues menadione and vicasol can restore oxygen consumption in mitochondria, in which the first and second energy coupling sites are inhibited.  相似文献   

11.
Quinones are widely distributed in the environment, both as natural products and as pollutants. This paper reports that one of the simplest quinones, 2-methyl-1,4-naphthoquinone (menadione), effectively inhibited apoptosis in the presence of UVA. Menadione suppressed the apoptosis induced by serum depletion and cell detachment. This effect was significantly enhanced by UVA irradiation. An antioxidant, N-acetylcysteine, completely inhibited the antiapoptotic effects of both menadione itself and menadione plus UVA, and peroxidation of the cells after treatment was observed using a probe to detect the intracellular production of peroxides. By contrast, 2-hydroxy-1,4-naphtoquinone (lawsone) showed no antiapoptotic effect in the presence or absence of UVA. Lawsone is reported not to undergo the redox process that produces reactive oxygen species. These results indicated that intracellular peroxidation contributed to the antiapoptotic effects of both menadione itself and menadione plus UVA. Dysregulation of the apoptotic process is critical to carcinogenesis. The photosensitization of quinone compounds as it relates to the inhibition of apoptosis should be examined in the future.  相似文献   

12.
Menadione is a synthetic derivative of the natural vitamins K with antiinflammatory activity among its potentially significant clinical properties. We have found this agent to stimulate the production of superoxide anion (O2-) in human polymorphonuclear leukocytes (PMN) and dimethylsulfoxide-differentiated HL-60 cells in a time-, cell number-, and drug concentration-dependent manner. Conversely, menadione attenuates both O2- production and lysozyme release in cells stimulated by phorbol myristate acetate (PMA), fMet-Leu-Phe, or Ca2+ ionophore. 4-Acetamido-4'-isothiocyano-2-2'-disulfonic acid stilbene and 4,4'-diisothiocyano-2-2'disulfonic acid stilbene, agents which inhibit transmembrane O2-) flux, do not alter menadione's effects on superoxide dismutase (SOD) inhibitable cytochrome c reduction in resting or PMA-stimulated PMN. Likewise, quinone reductase inhibitors, warfarin and dicumarol, known to attenuate vitamin K-dependent responses and enhance quinone-mediated oxidative stress, have no effect upon menadione-stimulated O2- production. Furthermore, menadione-induced suppression of stimulus-mediated lysozyme release is not reversed by cotreatment with oxygen metabolite scavenging enzymes SOD and catalase. Nevertheless, under conditions of restricted oxygen supply, the suppressive effect of menadione on stimulant-induced lysozyme release is greatly diminished. Thus, although pharmacological manipulation suggests otherwise, there appears to exist at least a component of the inhibitory activity of menadione that is oxygen dependent, and may be oxidative stress-related.  相似文献   

13.
Neurons and glia are highly susceptible to reactive oxygen species that play a key role in various neurodegenerative diseases. Menadione, a synthetic derivative of vitamin K, induces reactive oxygen generation. Quercetin one of the most ubiquitous bioflavonoids in food of plant origin, has strong antioxidant activities on different cell types, however recent studies demonstrated that it has also prooxidant and cytotoxic potentials. We examined the action of pre- and co-treatment of quercetin on menadione induced glial toxicity. The primary mixed glial cells obtained from 1 to 3 day old rat brain were pretreated with 10, 25, 100 or 250 μM quercetin for 1 h, washed out and 10, 25, 50, 75 or 100 μM menadione was added for 6 h. The other group of cells was treated with respective doses of quercetin combined simultaneously with the same doses of menadione for 6 h. The cells were washed and incubated for additional 24 h for recovery period and the viability was measured by using MTT assay. Menadione was dose-dependently toxic to glia cells and pretreatment with respective quercetin doses for 1 h could not eliminate this toxicity. Although 10 and 25 μM quercetin combined with 10 and 25 μM menadione could not change, 100 and 250 μM quercetin together with 10 or 25 μM menadione for 6 h increased further the menadione induced toxicity. We conclude that when combined with menadione, quercetin at high doses could be toxic to primary rat glia cells in culture.  相似文献   

14.
Previous studies have shown that NAD(P)H:quinone oxidoreductase 1 (NQO1) plays an important role in the detoxification of menadione (2-methyl-1,4-naphthoquinone, also known as vitamin K3). However, menadiol (2-methyl-1,4-naphthalenediol) formed from menadione by NQO1-mediated reduction continues to be an unstable substance, which undergoes the reformation of menadione with concomitant formation of reactive oxygen species (ROS). Hence, we focused on the roles of phase II enzymes, with particular attention to UDP-glucuronosyltransferases (UGTs), in the detoxification process of menadione. In this study, we established an HEK293 cell line stably expressing NQO1 (HEK293/NQO1) and HEK293/NQO1 cell lines with doxycycline (DOX)-regulated expression of UGT1A6 (HEK293/NQO1/UGT1A6) and UGT1A10 (HEK293/NQO1/UGT1A10), and evaluated the role of NQO1 and UGTs against menadione-induced cytotoxicity. Our results differed from those of previous studies. HEK293/NQO1 was the most sensitive cell line to menadione cytotoxicity among cell lines established in this study. These phenomena were also observed in HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells in which the expression of UGT was suppressed by DOX treatment. On the contrary, HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells without DOX treatment were resistant to menadione-induced cytotoxicity. These results demonstrated that NQO1 is not a detoxification enzyme for menadione and that UGT-mediated glucuronidation of menadiol is the most important detoxification process.  相似文献   

15.
The rates of consumption of oxygen and glucose by EMT6/Ro cells in multicellular spheroids were measured at various times during normal growth. In situ spheroid cellular consumption rates were similar to those of exponentially growing single cells up to a spheroid diameter of 150 micron. Further growth resulted in decreases in the rates of both oxygen and glucose consumption which were correlated with the increase in spheroid diameter and cell number. At a diameter of 1300 micron, both rates of cellular consumption had decreased by a factor of 2.5. The rates of consumption per unit of nonnecrotic spheroid volume decreased in a similar manner. Measurements with single cells demonstrated that the rate of oxygen consumption was coupled with glucose concentration, and vice versa. The rates of consumption for cells dissociated from small spheroids indicated that there was some effect of the spheroid environment. As the spheroids grew, however, association in the spheroid structure accounted for a smaller proportion of the total observed reduction in the rates of nutrient consumption. The presence of central necrosis also appeared to have no effect on the rates of consumption of these nutrients. Spheroid-derived cells showed a decrease in cell volume with growth as the cells accumulated in a quiescent state. Measurements with single cells demonstrated that oxygen and glucose consumption were correlated with cell volume and with the development of nonproliferating cells. We conclude that the observed decrease in oxygen and glucose consumption with growth in spheroids is largely due to the progressive accumulation of cells in a quiescent state characterized by an inherently lower cellular rate of nutrient utilization.  相似文献   

16.
Interaction of menadione (2-methyl-1,4-naphthoquinone) with glutathione   总被引:2,自引:0,他引:2  
The interaction of menadione with reduced glutathione (GSH) led to a removal of menadione and formation of menadione-GSH conjugate and glutathione disulfide (GSSG). The changes in thiol level were essentially biphasic with an initial rapid decrease in GSH and appearance of GSSG (less than 1 min) followed by secondary less pronounced changes. The interaction of menadione and GSH caused an oxygen uptake and both superoxide anion radical and hydrogen peroxide were produced during the reaction, the amount dependent on the GSH/menadione ratio. Catalase did not protect against the initial decrease in GSH level but markedly inhibited the secondary changes while superoxide dismutase had little effect. These results suggest that the initial changes in thiol level are the result in part of a redox reaction between menadione and GSH as well as conjugate formation, whilst the secondary changes reflect conjugate formation and the activity of other oxidants such as hydrogen peroxide. The potential biological significance of this reaction was investigated using hepatocytes depleted of reduced pyridine nucleotides and thus not able to perform enzyme-catalyzed reduction of menadione. In these cells menadione induced GSSG formation at a rate similar to that observed in control cells. This suggests that quinone-induced oxidative challenge caused by the chemical interactions of a quinone and glutathione may have biological relevance.  相似文献   

17.
Menadione (VK3), a quinone that undergoes redox cycles leading to the formation of superoxide radicals, was found to induce cell death in suspension culture of carrot cells. The effect of menadione was in a dose-dependent manner. 100-800 mumol/L menadione caused 10-33 percent cell death. When concentration of menadione reached 1 mmol/L, 100 percent of cell death was observed. DNA cleavage, a hallmark of apoptosis was further studied. DNA ladders were observed in cells treated with 600 and 800 mumol/L menadione but not with lower concentration treatments where only very low percentage of cell death was found. There was no DNA ladders in the cells treated with 1 mmol/L menadion indicating that necrosis may occur. In situ detection of nuclear DNA fragmentation by TUNEL reaction revealed fragmented nuclear DNA in cells treated with 100-800 mumol/L menadion but not in cells treated with 1 mmol/L menadione.  相似文献   

18.
Oxygen consumption rates were measured in a respirometer for different mammalian cell lines (BHK, murine hybridoma, and CHO), and the effects of cell density (1-20 million cells/mL) and temperature (6 to 37 degrees C) on specific oxygen consumption rate were investigated. The specific oxygen consumption was cell line dependent. For a given temperature, the murine hybridoma cells had the lowest and the CHO cells had the highest oxygen consumption rate. The specific oxygen consumption rate was not affected by the cell concentration for cell densities between 1 and 20 million cells/mL. However, artificial trends implicating the effects of cell density were obtained when traditional analysis was used and the probe response time was neglected. A detailed mathematical analysis was presented to investigate the magnitude of errors originating from neglecting the probe response time for the calculation of oxygen consumption rate. The error was significant, especially when the probe response was slow and/or the oxygen consumption was fast. Temperature influenced the specific oxygen consumption rate similarly for the cells studied, and about 10% decrease was observed in specific oxygen consumption by 1 degrees C decrease in the temperature. Between 6 and 37 degrees C, the effect of temperature on oxygen consumption rate could be described using an Arrhenius model, i.e., qO2 = qoO2. e-E/RT. The activation energy, E, in this equation was similar for different cells (between 80 and 90 kJ/mol), indicating the action of a similar mechanism for the effect of temperature on oxygen consumption.  相似文献   

19.
Oxidative stress may be an important determinant of the severity of acute pancreatitis. One-electron reduction of oxidants generates reactive oxygen species (ROS) via redox cycling, whereas two-electron detoxification, e.g. by NAD(P)H:quinone oxidoreductase, does not. The actions of menadione on ROS production and cell fate were compared with those of a non-cycling analogue (2,4-dimethoxy-2-methylnaphthalene (DMN)) using real-time confocal microscopy of isolated perfused murine pancreatic acinar cells. Menadione generated ROS with a concomitant decrease of NAD(P)H, consistent with redox cycling. The elevation of ROS was prevented by the antioxidant N-acetyl-l-cysteine but not by the NADPH oxidase inhibitor diphenyliodonium. DMN produced no change in reactive oxygen species per se but significantly potentiated menadione-induced effects, probably via enhancement of one-electron reduction, since DMN was found to inhibit NAD(P)H:quinone oxidoreductase detoxification. Menadione caused apoptosis of pancreatic acinar cells that was significantly potentiated by DMN, whereas DMN alone had no effect. Furthermore, bile acid (taurolithocholic acid 3-sulfate)-induced caspase activation was also greatly increased by DMN, whereas DMN had no effect per se. These results suggest that acute generation of ROS by menadione occurs via redox cycling, the net effect of which is induction of apoptotic pancreatic acinar cell death. Two-electron detoxifying enzymes such as NAD(P)H:quinone oxidoreductase, which are elevated in pancreatitis, may provide protection against excessive ROS and exert an important role in determining acinar cell fate.  相似文献   

20.

Menadione (2-methyl-1,4-naphthoquinone) is a synthetic derivative of vitamin K that allows rapid redox cycling in cells and thereby generates reactive oxygen species (ROS). To test for the consequences of a treatment of brain astrocytes with menadione, we incubated primary astrocyte cultures with this compound. Incubation with menadione in concentrations of up to 30 µM did not affect cell viability. In contrast, exposure of astrocytes to 100 µM menadione caused a time-dependent impairment of cellular metabolism and cell functions as demonstrated by impaired glycolytic lactate production and strong increases in the activity of extracellular lactate dehydrogenase and in the number of propidium iodide-positive cells within 4 h of incubation. In addition, already 5 min after exposure of astrocytes to menadione a concentration-dependent increase in the number of ROS-positive cells as well as a concentration-dependent and transient accumulation of cellular glutathione disulfide (GSSG) were observed. The rapid intracellular GSSG accumulation was followed by an export of GSSG that was prevented in the presence of MK571, an inhibitor of the multidrug resistance protein 1 (Mrp1). Menadione-induced glutathione (GSH) oxidation and ROS formation were found accelerated after glucose-deprivation, while the presence of dicoumarol, an inhibitor of the menadione-reducing enzyme NQO1, did not affect the menadione-dependent GSSG accumulation. Our study demonstrates that menadione rapidly depletes cultured astrocytes of GSH via ROS-induced oxidation to GSSG that is subsequently exported via Mrp1.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号