首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of anthracycline antibiotics on the activity of the partially purified and reconstituted tricarboxylate carrier system of the rat liver mitochondria was studied. It was found that the citrate/citrate exchange activity is inhibited by Br-daunomycin and with less potency by doxorubicin, daunomycin, epirubicin and idarubicin. The inhibition of the citrate transport activity is concentration and time-dependent. Cardiolipin protects against the inhibition by Br-daunomycin and the reconstituted citrate transport activity depends upon the ratio of cardiolipin/Br-daunomycin.  相似文献   

2.
The role of cardiolipin in the purification of the mitochondrial phosphate carrier by hydroxylapatite has been investigated. Without added cardiolipin, the reconstituted phosphate-transport activity in the hydroxylapatite eluate is small and only confined to the first fraction. With cardiolipin added to the extract, the eluted activity is much higher and present until fraction 6. The activity retained by hydroxylapatite in the absence of cardiolipin is eluted after addition of this phospholipid to the column. The requirement of added cardiolipin diminishes on increasing the concentration of solubilized mitochondria. The hydroxylapatite eluate contains five protein bands in the Mr-region of 30 000-35 000, which are differently distributed in the various fractions. Among these, only the presence and the relative amount of band 3 of Mr 33 000 corresponds to the phosphate transport activity. Cardiolipin is the only phospholipid tested which causes elution of band 3 from hydroxylapatite; on the other hand, it prevents the elution of band 2 and retards that of band 5 (the ADP/ATP carrier). Band 1 starts to appear in the second fraction even without cardiolipin. On increasing the concentration of cardiolipin, in the first fraction of the hydroxylapatite eluate band 3 increases and the contamination of band 4 decreases. Under optimal conditions a preparation of band 3 about 90% pure and with high reconstituted phosphate transport activity is obtained. It is concluded that the elution of the phosphate carrier from hydroxylapatite requires cardiolipin and that the phosphate carrier is identical with (or with part of) band 3 of the hydroxylapatite eluate.  相似文献   

3.
The effect of doxorubicin on the transport of pyruvate in rat-heart mitochondria was studied. It was found that the rate of pyruvate transport is inhibited by doxorubicin, half maximal inhibition being obtained at concentration of 125 microM of the drug. The inhibition is not due to a change in the transmembrane delta pH nor does it depend on an interaction of doxorubicin with thyol groups of the pyruvate carrier. Doxorubicin also inhibits the pyruvate dependent oxygen uptake and the specific binding of alpha-cyanocinnamate to mitochondria. It is proposed that doxorubicin affects the pyruvate transport by interacting with cardiolipin molecules surrounding the pyruvate carrier in the mitochondrial membrane.  相似文献   

4.
Mitochondria contain two Na+/H+ antiporters, one of which transports K+ as well as Na+. The physiological role of this non-selective Na+/H+ (K+/H+) antiporter is to provide mitochondrial volume homeostasis. The properties of this carrier have been well documented in intact mitochondria, and it has been identified as an 82,000-dalton inner membrane protein. The present studies were designed to solubilize and reconstitute this antiporter in order to permit its isolation and molecular characterization. Proteins from mitoplasts made from rat liver mitochondria were extracted with Triton X-100 in the presence of cardiolipin and reconstituted into phospholipid vesicles. The reconstituted proteoliposomes exhibited electroneutral 86Rb+ transport which was reversibly inhibited by Mg2+ and quinine with K0.5 values of approximately 150 and 300 microM, respectively. Incubation of reconstituted vesicles with dicyclohexylcarbodiimide resulted in irreversible inhibition of 86Rb+ uptake into proteoliposomes. Incubation of vesicles with [14C]dicyclohexylcarbodiimide resulted in labeling of an 82,000-dalton protein. These properties, which are also characteristic of the native Na+/H+ (K+/H+) antiporter, lead us to conclude that this mitochondrial carrier has been reconstituted into proteoliposomes with its known native properties intact.  相似文献   

5.
Molecular species in the three major mitochondrial lipids cardiolipin, phosphatidylcholine and phosphatidylethanolamine were analysed in bovine heart and Saccharomyces cerevisiae. In both organisms cardiolipin contains mainly diacylglycerol moieties with two unsaturated chains and a significant higher proportion of C18-C18 species than phosphatidylcholine and phosphatidylethanolamine. To study whether the specific acyl composition of cardiolipin has a functional significance in lipid-protein interaction, experiments were made with the isolated ADP/ATP carrier of bovine heart mitochondria since this dimeric protein is known to be tightly associated with six molecules of cardiolipin [Beyer, K. and Klingenberg, M. (1985) Biochemistry 24, 3821-3826]. This association seems to be very strong as protein-bound cardiolipin does not exchange with soluble cardiolipin on a time scale of hours. Analysis of the species composition suggests that one carriers dimer is associated with four molecules of tetralinoleoyl cardiolipin and two molecules of trilinoleoyl-monolinolenoyl cardiolipin. Catalytic hydrogenation of the acyl chains of carrier-bound cardiolipin does not result in release of cardiolipin as judged by 31P-NMR spectroscopy. The ADP/ATP carrier was reconstituted with saturated phosphatidylcholines and spin-labelled cardiolipin whose double bonds were subsequently saturated by catalytic hydrogenation. ESR spectroscopy shows that saturation of spin-labelled cardiolipin has no significant impact on its association with the ADP/ATP carrier. However, precipitation of the detergent-solubilized ADP/ATP carrier can only be induced by addition of unsaturated but not by saturated cardiolipin. It is concluded that the specific acyl composition of cardiolipin is not a prerequisite of its high affinity for the ADP/ATP carrier, at least when the protein is reconstituted in a saturated phosphatidylcholine environment.  相似文献   

6.
The adenine nucleotide carrier from maize (Zea mays L. cv B 73) shoot mitochondria was solubilized with Triton X-100 and purified by sequential chromatography on hydroxyapatite and Matrex Gel Blue B in the presence of cardiolipin and asolectin. Sodium dodecyl sulfate-gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent molecular mass of 32 kD. When reconstituted in liposomes, the adenine nucleotide carrier catalyzed a pyridoxal 5'-phosphate-sensitive ATP/ATP exchange. It was purified 168-fold with a recovery of 60% and a protein yield of 0.25% with respect to the mitochondrial extract. Among the various substrates and inhibitors tested, the reconstituted protein transported only ADP, ATP, GDP, and GTP, and was inhibited by atractyloside, bongkrekate, phenylisothiocianate, pyridoxal 5'-phosphate, and mersalyl (but not N-ethylmaleimide). Maximum initial velocity of the reconstituted ATP/ATP exchange was determined to be 2.2 mumol min-1 mg-1 protein at 25 degrees C. The half-saturation constants and the corresponding inhibition constants were 17 microM for ATP, 26 microM for ADP, 59 microM for GTP, and 125 microM for GDP. The activation energy of the ATP/ATP exchange was 48 kilojoule/mol between 0 and 15 degrees C, and 22 kilojoule/mol between 15 and 35 degrees C. Partial amino acid sequences showed that the purified protein was the product of the ANT-G1 gene sequenced previously (B. Bathgate, A. Baker, C.J. Leaver [1989] Eur J Biochem 183: 303-310).  相似文献   

7.
The effect of hyperthyroidism on the transport of phosphate in rat-liver mitochondria has been examined. Thyroid hormones administered in vivo increased carrier mediated (mersalyl-sensitive) phosphate transport. Kinetic analysis of the phosphate transport showed that the thyroid hormone affects the Vmax of this process, while having no effect on the Km values. The higher activity of the phosphate carrier was found not to be due to a change in the endogenous content of phosphate nor to a change in the transmembrane delta pH value. Inhibitor titrations with mersalyl showed that mitochondria from both control and hyperthyroid rats required the same concentrations of inhibitor to produce total inhibition of phosphate transport, thus suggesting that the amount of functional translocase present is unaffected. The level of cardiolipin was significantly higher in mitochondrial membranes from hyperthyroid rats as compared to the control rats. The thyroid hormone induced change in the activity of the phosphate carrier appears to be due to a more favorable lipid microenvironment (cardiolipin content) surrounding the carrier molecule in the mitochondrial membrane.  相似文献   

8.
G L Powell  P F Knowles  D Marsh 《Biochemistry》1987,26(25):8138-8145
The selectivity of interaction of various cardiolipin analogues with beef heart cytochrome oxidase in reconstituted complexes with dimyristoylphosphatidylcholine has been studied by electron spin resonance spectroscopy, using lipids spin-labeled in the acyl chains. No difference in selectivity is observed between cardiolipin and its monolyso derivative, and similarly no selectivity is observed between phosphatidylcholine and lysophosphatidylcholine. Removal of the cardiolipin charge by methylation of the phosphate groups reduces but does not eliminate selectivity relative to phosphatidylcholine. The dependence of the lipid selectivity on head group and chain composition is in the order cardiolipin approximately equal to monolysocardiolipin greater than acylcardiolipin greater than dimethylcardiolipin greater than phosphatidylcholine approximately equal to lysophosphatidylcholine, where acylcardiolipin has the spin-label chain attached at the center -OH of the head group. The degree of association of the negatively charged cardiolipin derivatives with cytochrome oxidase decreases with increasing salt concentration, to a level comparable to that for dimethylcardiolipin. At high ionic strength there is still a marked selectivity relative to phosphatidylcholine. Li+ ions are more effective in screening the interaction than are Na+ ions, and divalent ions are more effective than monovalent ions. The selectivity for cardiolipin is only slightly reduced on titrating the protein to high pH. Alkylation of the protein with N-ethylmaleimide has little effect on the titration behavior. Covalent modification of the protein by reaction with citraconic anhydride decreases the selectivity of interaction with cardiolipin. It is concluded that cardiolipin possesses an additional specificity of interaction with cytochrome oxidase other than that of purely electrostatic origin.  相似文献   

9.
The isolated and liposome-reconstituted mitochondrial phosphate carrier exhibits a sigmoidal inhibition curve by mersalyl, similar to that found with intact mitochondria. In contrast a hyperbolic inhibition curve is found (a) by titration of the soluble carrier with mersalyl before reconstitution in liposomes and (b) by titration of the reconstituted carrier with mersalyl after successively pretreatment of the mitochondria with low, non-inhibitory concentrations of mersalyl, excess N-ethylmaleimide and dithiothreitol. The inhibition of the reconstituted, but not of the soluble, phosphate carrier by mersalyl can be reversed by dithiothreitol. Cupric di(1,10-phenanthroline) inhibits the soluble but not the reconstituted phosphate carrier. The inhibited phosphate carrier can be reactivated by dithiothreitol in the soluble state but not after reconstitution in liposomes. The data support the previously suggested model of the phosphate carrier, assuming a dimer of two identical subunits for the active unit.  相似文献   

10.
The stoichiometry and specificity of lipid-protein interaction, as well as the lipid exchange rates at the protein interface, have been determined from the electron spin resonance spectra of spin-labeled lipids in reconstituted complexes of the mitochondrial ADP-ATP carrier with egg phosphatidylcholine. With the exception of cardiolipin and phosphatidic acid, the lipids studied are found to compete for approximately 50 sites at the intramembranous surface of the protein dimer. This number of first-shell lipid sites is unusually large for a protein of this size. The specificity for the protein is in the order stearic acid approximately phosphatidic acid approximately cardiolipin greater than phosphatidylserine greater than phosphatidylglycerol approximately phosphatidylcholine, with the maximum association constant relative to phosphatidylcholine being approximately 4. The selectivity for anionic lipids was partially screened with increasing ionic strength, but to a lesser extent for cardiolipin and phosphatidic acid than for stearic acid. Only in the case of phosphatidylserine was the selectivity reduced at high ionic strength to a level close to that for phosphatidylcholine. The off rates for lipid exchange at the protein surface were independent of lipid/protein ratio and correlated in a reciprocal fashion with the different lipid selectivities, varying from 5 x 10(6) s-1 for stearic acid at low ionic strength to 2 x 10(7) s-1 for phosphatidylcholine and phosphatidylglycerol. The off rates for cardiolipin were unusually low in comparison with the observed selectivity, and indicated the existence of a special population of sites (ca. 30% of the total) for cardiolipin, at which the exchange rate was very low.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The kinetic interaction of various substrates and inhibitors with the dicarboxylate carrier from rat liver mitochondria was investigated using the isolated and reconstituted carrier protein. Due to their inhibitory interrelation the ligands could be divided into two classes: dicarboxylates, sulphate, sulphite and butylmalonate on the one hand and phosphate, thiosulphate and arsenate on the other. The mutual inhibition of substrates or inhibitors taken from one single class was found to be competitive, whereas the kinetic interaction of ligands when taken from the two different classes could be described as purely non-competitive. The half-saturation transport constants Km and the corresponding inhibition constants Ki of one single ligand, either used as substrate or as inhibitor, respectively, were found to be very similar. These kinetic data strongly support the presence of two different binding sites at the dicarboxylate carrier for the two different classes of substrates considering the external side of the reconstituted protein. When these two sites were saturated simultaneously with malate and phosphate, the turnover of the carrier was considerably reduced, hence indicating that a non-catalytic ternary complex is formed by the two substrates and the carrier molecule.  相似文献   

12.
Purified mouse protoporphyrinogen oxidase (EC 1.3.3.4) and ferrochelatase (EC 4.99.1.1), the two terminal enzymes of the heme biosynthetic pathway, have been reconstituted into phospholipid vesicles, and the kinetics of the enzymes in the reconstituted systems were compared with the values obtained with the free enzymes. The apparent Km for free protoporphyrinogen oxidase in detergent solution is 5.61 +/- 0.62 microM for free protoporphyrinogen. The Km was lower when the enzyme was inserted into phospholipid vesicles (0.78 +/- 0.28 microM) and when both enzyme and substrate were incorporated into phospholipid vesicles (0.61 +/- 0.14 microM). In the presence of cardiolipin, a phospholipid present mainly in the inner mitochondrial membrane, the value of the Km for the substrate decreased 3-fold (0.20 +/- 0.02 microM). For reconstituted ferrochelatase similar kinetic analyses were carried out and it was found that the apparent Km values were only weakly affected by the lipid environment. Studies on the orientation of ferrochelatase demonstrated that approximately 50% of the enzyme in the reconstituted system had the active site located in the inner face of the phospholipid vesicle. This is in contrast to intact mitochondria where the active site is located on the matrix side of the inner mitochondrial membrane. The activation energies for both enzymes were determined for free and reconstituted enzymes. It was found that for both enzymes the activation energies were lower for the reconstituted systems than for the free enzymes.  相似文献   

13.
The carnitine carrier was purified from rat liver mitochondria and reconstituted into liposomes by removing the detergent from mixed micelles by Amberlite. Optimal transport activity was obtained with 1 microgram/ml and 12.5 mg/ml of protein and phospholipid concentration, respectively, with a Triton X-100/phospholipid ratio of 1.8 and with 16 passages through the same Amberlite column. The activity of the carrier was influenced by the phospholipid composition of the liposomes, being increased in the presence of cardiolipin and decreased in the presence of phosphatidylinositol. In the reconstituted system the incorporated carnitine carrier catalyzed a carnitine/carnitine exchange which followed a first-order reaction. The maximum transport rate of external [3H]carnitine was 1.7 mmol/min per g protein at 25 degrees C and was independent of the type of countersubstrate. The half-saturation constant (Km) for carnitine was 0.51 mM. The affinity of the carrier for acylcarnitines was in the microM range and depended on the carbon chain length. The activation energy of the carnitine/carnitine exchange was 133 kJ/mol. The carrier function was independent of the pH in the range between 6 and 8 and was inhibited at pH below 6.  相似文献   

14.
Cardiolipin is a specific and functionally important phospholipid of mitochondria, and its biosynthesis is considered to be crucial for the assembly of this organelle. However, little information is available about the enzyme cardiolipin synthase, largely because it has not yet been isolated. We solubilized cardiolipin synthase from rat liver mitochondrial membranes with Zwittergent 3-14 and purified it by Mono Q anion exchange chromatography, Superose 12 gel filtration, and Mono P chromatofocusing. Cardiolipin synthase is one of the most acidic mitochondrial proteins (isoelectric point, pH 4-5) and appears as a 50-kilodalton band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme requires CO2+ for activity, has an alkaline pH optimum (pH 8-9), and exhibits Km values of 45 and 1.6 microM for phosphatidylglycerol and CDP-diacylglycerol, respectively. Cardiolipin synthase loses activity during purification, and the activity can be partially reconstituted by the addition of phospholipids. The most effective phospholipid is phosphatidylethanolamine which reactivates in a cooperative manner. Cardiolipin reactivates hyperbolically at low concentrations but inhibits the enzyme at higher concentrations. In addition, cardiolipin shifts the sigmoidal reactivation curve of phosphatidylethanolamine toward lower concentrations. It is suggested that cardiolipin synthase requires interaction with several molecules of phosphatidylethanolamine and at least one molecule of cardiolipin for full enzymatic activity.  相似文献   

15.
The tricarboxylate carrier from beef liver mitochondria was reconstituted into liposomes using a protocol based on the absorption of Triton X-100 to hydrophobic Amberlite XAD-2 beads. The activity of the reconstituted carrier was determined spectroscopically by measuring the citrate/isocitrate exchange with an enzymatic assay. The Km for citrate obtained with this method was 35 microM and the Ki of 1,2,3-benzenetricarboxylate was 27 microM.  相似文献   

16.
Treatment of rat heart mitochondria with phosphate or mersalyl releases a number of proteins, including the mitochondrial creatine kinase (mt-CK). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the released proteins showed that phosphate is more selective than mersalyl in releasing mt-CK. The rebinding of mt-CK to mitochondria was selectively inhibited by adriamycin, which complexes membrane-bound cardiolipin. mt-CK activity and binding experiments have shown that intact mitochondria are able to bind approximately twice the amount of mt-CK they originally contain. Liver mitochondria bound heart mitochondria mt-CK to the same extent as creatine kinase-depleted heart mitochondria. mt-CK was bound by liposomes but only if they contained cardiolipin. The binding of mt-CK to cardiolipin-containing liposomes was inhibited by adriamycin. Phosphatidylcholine liposomes reconstituted with the purified ADP/ATP translocator failed to bind mt-CK.  相似文献   

17.
The selectivity of lipid-protein interaction for various spin-labelled cardiolipin analogues in Na+/K+-ATPase membranes from Squalus acanthias has been investigated by ESR spectroscopy. Cardiolipin derivatives with different numbers of acyl chains, or in which the headgroup charge has been removed by methylation of the phosphate groups, all show a pronounced selectivity relative to phosphatidylcholine. Maximally three times more of the cardiolipin analogue is associated with the protein, than is phosphatidylcholine. The selectivity pattern in the absence of salt is in the order: cardiolipin approximately monolysocardiolipin greater than or equal to acylcardiolipin greater than dimethylcardiolipin much greater than phosphatidylcholine, where acylcardiolipin has the spin label chain attached to the centre-OH group of the headgroup. The degree of association of the negatively charged cardiolipins with the protein is reduced by salt, corresponding to the lower selectivity for dimethylcardiolipin. It is concluded that the selectivity of the Na+/K+-ATPase for cardiolipin is not solely of electrostatic origin, nor is it likely to originate in the larger number of fatty acid chains relative to diacyl phospholipids.  相似文献   

18.
The monocarboxylate (pyruvate) carrier from bovine heart mitochondria was extracted from submitochondrial particles with Triton X-114 in the presence of cardiolipin. By a single hydroxylapatite chromatography step a 125-fold purification of the carrier protein could be achieved. High pyruvate/pyruvate-exchange activity was recovered, when the protein was reconstituted into phospholipid vesicles. No transport activity was observed, when the isolation occurred in the absence of phospholipids. The 2-cyano-4-hydroxycinnamate sensitive pyruvate exchange reaction was strongly temperature sensitive and dependent on the amount of protein reconstituted. Other 2-ketoacids caused competitive inhibition of the pyruvate uptake. Inhibitors of other mitochondrial carries, however, had very low or no effect on the monocarboxylate exchange. The influence of different -SH group reagents on the measured pyruvate/pyruvate-exchange in the reconstituted system was similar to the one observed with intact mitochondria. It is concluded that the described procedures for extraction, purification and reconstitution of the mitochondrial monocarboxylate carrier conserved the functional properties of the protein.  相似文献   

19.
The effect of aging and treatment with acetyl-L-carnitine on the activity of the phosphate carrier and on the phospholipid composition in rat heart mitochondria was studied. It was found that the activity of the phosphate carrier was reduced by aging. Treatment of aged rats with acetyl-L-carnitine reversed this effect. The mitochondrial level of cardiolipin was decreased with aging. Treatment of aged rats with acetyl-L-carnitine restored the level of cardiolipin to that of young rats. It is proposed that acetyl-L-carnitine may restore the correct phospholipid composition (cardiolipin level) of the mitochondrial membrane, altered by aging, thereby restoring the activity of the phosphate carrier.  相似文献   

20.
The periplasmic histidine transport system of Salmonella typhimurium has been reconstituted in isolated right-side-out membrane vesicles. The reconstituted system is entirely dependent on both the periplasmic protein, HisJ, and the membrane-bound complex, composed of proteins HisQ, HisM, and HisP. Transport is also dependent on the presence of ascorbate and phenazine methosulfate, which provide the energy for transport. Ascorbate oxidation generates a proton-motive-force, which allows ATP synthesis. ATP (or a cogenerated molecule) appears to be the immediate energy donor. Dissipation of the proton-motive-force or reduction of the level of ATP by a variety of treatments results in inhibition of transport. Vanadate inhibits transport, indicating that ATP utilization is necessary to energize transport. The interaction between liganded HisJ and the membrane complex has been measured directly: it displays Michaelis-Menten type kinetics, with a K1/2 of approximately 65 microM. The significance of this finding in terms of transport properties of whole cells is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号