首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1) The relationship between activation of the membrane-bound ATPase and the stimulation of dissipation of the flash-induced membrane potential by preillumination was studied in intact spinach leaves by measuring the ATPase activity of rapidly isolated chloroplasts and the decay of the flash-induced 515-nm absorbance change (ΔA515) in intact leaves. (2) The decay of ΔA515 was accelerated by preillumination. The ΔA515 decay in leaves treated with N,N′-dicyclohexylcarbodiimide (DCCD) became slower and was not accelerated by preillumination. However, treatment with DCCD did not lower the intensity of delayed fluorescence. (3) Membrane-bound ATPase of chloroplasts which were rapidly isolated from the preilluminated leaves (90 s preparation time) showed a higher activity (over 200 μmol Pi/mg chlorophyll per h in the case of 2-min preillumination) than that of chloroplasts isolated from dark-adapted leaves. (4) The acceleration of ΔA515 decay and the activation of ATPase showed similar dependences on illumination time in intact leaves. 3-(3′,4′-Dichlorophenyl)-1,1-dimethylurea, carbonyl cyanide p-chlorophenylhydrazone and DCCD inhibited the activation of ATPase and the acceleration of the ΔA515 decay by preillumination. (5) The ATPase activity of chloroplasts isolated from illuminated leaves showed a single exponential decay (‘dark inactivation in vitro’). The ATPase activity induced by illuminating the leaves became lower as the dark interval between illumination and the isolation of chloroplasts was increased (‘dark inactivation in vivo’). The time course of the decay of activity had a lag and showed a sigmoidal curve when plotted semilogarithmically. The decay had an apparent half-time of 25 min. (6) The recovery of the accelerated ΔA515 decay in preilluminated leaves to the original slow rate showed a sigmoidal decay similar to that of the activity of ATPase in intact leaves with a half-time of about 23 min in the dark. (7) It was concluded that the decay rate of ΔA515 reflected the chloroplast ATPase activity in intact leaves and that the ion conductance of thylakoid membrane was mainly determined by the H+ flux through the ATPase, the activity of which was increased after the formation of the high-energy state.  相似文献   

2.
The P515 absorbance change upon single-turnover light flashes has been studied in intact leaves and isolated chloroplasts from spinach. A comparative study of the effects of preillumination on the kinetics of the P515 response and on the activity of the chloroplast ATPase has been made. The slow component (reaction 2) in the flash-induced P515 response normally present in dark-adapted chloroplasts is reduced or even absent under conditions in which the ATPase is activated by preillumination. This suppression of reaction 2 appeared to be temporary in leaves and chloroplasts; its duration in chloroplasts is shown to be dependent on the amount of ATP present. Tentoxin inhibits the preillumination-dependent suppression of reaction 2.  相似文献   

3.
The flash-induced P515 absorbance change in intact chloroplasts consists of a fast and a slow phase. There is disagreement in the literature over the origin of the slow phase. Here we argue that the flash-induced slow phase in P515 absorbance change is composed of two different components. One component is most probably due to the electrogenic Q-cycle associated with the cytochrome b/f complex. The second component has decay kinetics that are much slower than the electrogenic reactions. We suggest that the second component is due to a non-electrogenic reaction.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD dicyclohexylcarbodiimide - DQH2 durohydroquinone - MV methylviologen - P515 Absorbance change at 518 nm  相似文献   

4.
Flash-induced P515 absorbance changes have been studied in dark-adapted chloroplasts isolated from spinach plants grown under two different light intensities. The slow component (reaction 2), normally present in the P515 response of chloroplasts isolated from plants grown at an intensity of 60 W · m–2, was largely reduced in chloroplasts isolated from plants grown at an intensity of 6 W · m–2. This reduction of the slow component in the P515 response appeared to be coincident with an alteration in the lipid composition of the thylakoid membrane. Mainly the ratio monogalactosyldiacylglycerol to digalactosyldiacylglycerol appeared to be altered. In thylakoids from plants grown at 6 W · m–2, the ratio was approximately 35% lower than that of plants grown at 60 W · m–2. The amount of both cytochromeb 563 and cytochromef was largely reduced in chloroplasts isolated from plants grown at low light intensity. These results may indicate a possible correlation between structural organization of the thylakoid membrane and the kinetics of the flash-induced P515 response.  相似文献   

5.
Structural and functional stability of isolated intact chloroplasts   总被引:1,自引:0,他引:1  
The effect of in vitro ageing on the ultrastructure, electron transport, thermoluminescence and flash-induced 515 nm absorbance change of isolated intact (type A) chloroplasts compared with non-intact (types B and C) chloroplasts was studied.When stored in the dark for 18 h at 5°C, the structural characteristics of intact and non-intact chloroplasts were only slightly altered. The most conspicuous difference between the two was in the coupling of the electron transport which was tighter and more stable in intact chloroplasts. Under dark-storage the activity of PS 2* decreased and the -20°C peak of thermoluminescence increased at the expense of the emission at +25°C. These changes were less pronounced in the intact chloroplasts. PS 1 activity and the flash-induced 515 nm absorbance change were not affected by dark-storage.When kept in the light (80 W m-2 (400–700 nm) for 1 h at 5°C), the thylakoid system of chloroplasts rapidly became disorganized. Although the initial activity of electron transport was much higher in intact chloroplasts, after a short period of light-storage the linear electron transport and the electron transport around PS 2 decreased in both types of preparations to the same low level. These changes were accompanied by an overall decrease of the intensity of thermoluminescence. PS 1 was not inhibited by light-storage, while the flash-induced 515 nm absorbance change was virtually abolished both in preparations of intact and non-intact chloroplasts.The data show that in stored chloroplast preparations intactness cannot be estimated reliably either by the FeCy test or by inspection under the electron microscope. These tests should be cross-checked on the level and coupling of the electron transport.  相似文献   

6.
The flash-induced absorbance changes at 515 nanometers has been studied in chloroplasts and in digitonin subchloroplast particles of lettuce. The effect of various conditions and uncouplers was tested on the decay kinetics of this absorbance change and on ATP formation in the presence of phenazine methosulphate, either by continuous or flash illumination. It has been found that in chloroplasts, carbonyl cyanide m-chloromethoxyphenylhydrazone and nigericin in the presence of K+ accelerate the decay of the 515 change and inhibit ATP formation. However, under a variety of conditions the rate of decay of the 515 absorbance change was found to be unrelated to ATP formation. Preillumination, addition of valinomycin in the presence of K+, addition of Na+, or divalent cations accelerate the decay of the 515 absorbance change markedly but have no effect on ATP formation. Addition of phosphorylation reagents has no effect on the decay rate beyond that obtained by Mg2+ and inorganic phosphate. NH4Cl, and to some extent atebrin, while inhibiting ATP formation, do not affect the decay of the 515 absorbance change.  相似文献   

7.
1. The oligomeric dicyclohexylcarbodiimide (DCCD)-binding protein of mitochondrial ATPase was studied using (a) the relationship between [14C]DCCD binding and inhibition of ATPase activities and (b) the analysis of the kinetics of inhibition. 2. The [14C]DCCD binding to bovine heart mitochondria is linearly proportional to the inhibition of ATP hydrolysis up to a 50% decrease of the original activity resulting in 0.6 mol DCCD bound covalently to the specific inhibitory site (Hous?t?k, J., Svoboda, P., Kopecký, J., Kuz?ela, S?. and Drahota, Z. (1981) Biochim. Biophys. Acta 634, 331–339) per mol of the fully inhibited enzyme. 3. Kinetics of the inhibition of both the ATPase activity (heart and liver mitochondria) and ADP-stimulated respiration (liver) reveal that 1 mol DCCD per mol ATPase eliminates both the synthetic and the hydrolytic activities. It is inferred that the activity-binding correlation underestimates the number of DCCD-reactive sites. 4. The second-order rate constant of the DCCD-ATPase interaction (k) is inversely related to the concentration of membranes, indicating that DCCD reaches the inhibitory site by concentrating in the hydrophobic (phospholipid) environment. 5. At a given concentration of liver mitochondria, comparable k values are obtained both for the inhibition of ATP hydrolysis (k=5.35·102M?1·min?1) and ADP-stimulated respiration (k=5.67·102M?1·min?1). 6. It is concluded that both the synthetic and the hydrolytic functions of ATPase are inhibited via a common single DCCD-reactive site. This site is represented by one of the several polypeptide chains forming the oligomer of the DCCD-binding protein. The inhibitor-ATPase interaction does not exhibit cooperativity, indicating that the preferential reactivity towards DCCD is an inherent property of the inhibitory site.  相似文献   

8.
A flash-induced transthylakoid electric field was measured at 515 nm as an electrochromic absorbance shift in intact potato leaves using a double flash differential spectrophotometer. The decay rate of the electrochromic shift in dark-adapted samples was used to examine the conductance to ions of thylakoid membranes. Heat stress (39.5 °C for 15 min) was found to accelerate drastically the electric field decay, with the half decay time falling from more than 200 ms to less than 45 ms. Heat-induced acceleration of the electric field breakdown was insensitive to the PSII electron donor Hydroxylamine and to the ATPase inhibitor dicyclohexylcarbodiimide (DCCD), thus indicating that it reflects an increase in thylakoid membrane permeability after heat stress. This phenomenon did not involve peroxidative damage of membrane lipids. Acceleration of the electric field relaxation exhibited the same temperature dependence as that of PSII deactivation, suggesting that the ionic permeability of thylakoid membranes is one of the most heat-sensitive components of the photosynthetic apparatus. When potato leaves were infiltrated with 100 mol m?3 ascorbate (in a buffer of pH 5), there was massive conversion of the carotenoid violaxanthin to zeaxanthin. This change in carotenoid composition protected thylakoid membranes against heat-induced changes in permeability, as revealed by the maintenance of a slow decay of the 515 nm absorbance change after heat stress. No such effect was observed after treatments which did not induce the vio-laxanthin-to-zeaxanthin conversion: leaf infiltration with 0 mol m?3 ascorbate (at pH 5 or 8), 100 mol m?3 ascorbate at pH 8 or 100 mol m?3 ascorbate +5 mol m?3 dithiothreitol at pH 5. Increased stability of the permeability properties of thylakoid membranes was also observed after a mild heat treatment (2 h at 35 °C). The data presented suggest that de-epoxidized xanthophylls in vivo stabilize thylakoid membranes and protect thylakoids against heat-induced disorganization.  相似文献   

9.
In intact (type A) chloroplasts isolated from mesophyll protoplasts of maize (Zea mays L. convar. KSC 360) the flash-induced 515 nanometer absorbance change was much higher than in conventionally prepared (types B and C) chloroplasts. The 515 nanometer signal of type A chloroplasts exhibited a biphasic rise: the initial very fast rise (rise time «1 millisecond) was followed by a slow increase of absorbance (rise time 10 to 20 milliseconds). With decreasing degree of envelope retention the slow phase disappeared. Thus the biphasic rise of the flash-induced 515 nanometer absorbance change can be regarded as an attribute of intact chloroplasts.  相似文献   

10.
Experiments were performed to determine the effect of plasmalemma ATPase inhibitors on cell potentials (Ψ) and K+ (86Rb) influx of corn root tissue over a wide range of K+ activity. N,N′Dicyclohexylcarbodiimide (DCCD), oligomycin, and diethylstilbestrol (DES) pretreatment greatly reduced active K+ influx and depolarized Ψ at low, but not at high, K+ activity (K°). More comprehensive studies with DCCD and anoxia showed nearly complete inhibition of the active component of K+ influx over a wide range of K°, with no effect on the apparent permeability constant. DCCD had no effect on the electrogenic component of the cell potential (Ψp) above 0.2 millimolar K°. Net proton efflux was rapidly reduced 80 to 90% by DCCD. Since tissue ATP content and respiration were only slightly affected by the DCCD-pretreatment, the inhibitions of active K+ influx and Ψp at low K° can be attributed to inhibition of the plasmalemma ATPase.  相似文献   

11.
Pre-illumination of the thylakoid membrane of Peperomia metallica chloroplasts leads to a reversible suppression of the flash-induced electrical potential as measured either with the electrochromic bandshift (P515), microelectrode impalement or patch-clamp technique. The energization-dependent potential suppression was not observed in the presence of 1 μ M nigericin suggesting the involvement of proton and/or cation gradients. Energization in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and N,N,N',N'-tetramethylphenylenediamine (TMPD), i.e. cyclic electron flow around photosystem (PS) I, results in the accumulation of TMPD+ in the thylakoid lumen. The reversible suppression of the flash-induced membrane potential was not observed in these conditions indicating that it is not a general cation-induced increase of membrane capacitance. Cyclic electron flow around PSI in the presence of DCMU and phenazine methosulfate (PMS) results in the accumulation of PMS+ and H+ in the thylakoid lumen. The absence of reversible suppression of the flash-induced membrane potential for this condition shows that accumulation of protons does not lead to (1) a reversible increase of membrane capacitance and (2) a reversible suppression of PSI-dependent electrogenesis. Reversible inactivation of PSII by a low pH in the thylakoid lumen is therefore proposed to be the cause for the temporary suppression of the flash-induced electrical potential. The flash-induced PSII-dependent membrane potential, as measured after major oxidation of P700 in far-red background light, was indeed found to be suppressed at low assay pH (pH 5) in isolated spinach ( Spinacia oleracea ) chloroplasts.  相似文献   

12.
N,N′-dicyclohexylcarbodiimide (DCCD) was found to uncouple phosphorylation from oxidation with succinate and NAD+-linked substrates in the system from Mycobacterium phlei. However, in contrast to the effect of this agent in mammalian mitochondria, DCCD was found to stimulate oxidation with succinate as an electron donor and to inhibit the oxidation of NAD+-linked substrates. Furthermore, in the M. phlei system DCCD was found to inhibit the membrane bound latent ATP-ase but had no effect on this activity when the latent ATPase was removed from the membrane vesicles. Reconstitution with the fraction containing latent ATPase activity and the membrane vesicles resulted in inhibition of latent ATPase by DCCD. Studies of the effect of DCCD on the resolved system indicated that DCCD may be associated with membrane vesicles or causes secondary changes in conformation of membrane vesicles. Although DCCD inhibited membrane bound ATPase it did not prevent the addition of the solubilized ATPase to the membrane vesicles. DCCD was found to have no effect on purified succinic dehydrogenase activity but stimulated this activity in the electron transport particles.  相似文献   

13.
Neeraj Agarwal  Vijay K. Kalra 《BBA》1983,723(2):150-159
Interaction of N,N′-dicyclohexylcarbodiimide (DCCD) with ATPase of Mycobacterium phlei membranes results in inactivation of ATPase activity. The rate of inactivation of ATPase was pseudo-first order for the initial 30–65% inactivation over a concentration range of 5–50 μM DCCD. The second-order rate constant of the DCCD-ATPase interaction was k = 8.5·105 M?1·min?1. The correlation between the initial binding of [14C]DCCD and 100% inactivation of ATPase activity shows 1.57 nmol DCCD bound per mg membrane protein. The proteolipid subunit of the F0F1-ATPase complex in membranes of M. phlei with which DCCD covalently reacts to inhibit ATPase was isolated by labeling with [14C]DCCD. The proteolipid was purified from the membrane in free and DCCD-modified form by extraction with chloroform/methanol and subsequent chromatography on Sephadex LH-20. The polypeptide was homogeneous on SDS-acrylamide gel electrophoresis and has an apparent molecular weight of 8000. The purified proteolipid contains phosphatidylinositol (67%), phosphatidylethanolamine (18%) and cardiolipin (8%). Amino acid analysis indicates that glycine, alanine and leucine were present in elevated amounts, resulting in a polarity of 27%. Cysteine and tryptophan were lacking. Butanol-extracted proteolipid mediated the translocation of protons across the bilayer, in K+-loaded reconstituted liposomes, in response to a membrane potential difference induced by valinomycin. The proton translocation was inhibited by DCCD, as measured by the quenching of fluorescence of 9-aminoacridine. Studies show that vanadate inhibits the proton gradient driven by ATP hydrolysis in membrane vesicles of M. phlei by interacting with the proteolipid subunit sector of the F0F1-ATPase complex.  相似文献   

14.
A.A. Bulychev  W.J. Vredenberg 《BBA》1976,423(3):548-556
The kinetics of the photoelectric response induced by saturating light pulses were studied in isolated chloroplasts of Peperomia metallica as a function of K+- and Mg2+-concentrations in the medium in the absence and presence of ionophores for K+ and divalent cations. The dark decay of the potential generated in the light is found to be accelerated upon an increase in K+- or Mg2+-concentrations in the presence of valinomycin and A23187. An acceleration of the decay phase in the flash-induced response is also observed immediately after preillumination of the chloroplast. It is concluded that the dark kinetics of the potential decay after short and long light exposures are controlled by two different processes with rate constants of about 20 and 0.2 s?1, respectively.  相似文献   

15.
Differential absorbance measurements and fluorometry were applied to examine the impact of dicyclohexylcarbodiimide (DCCD, an inhibitor of H+ conductance in thylakoid membranes) and nigericin (a K+/H+ antiporter) on photoinduced redox state transients of chlorophyll P700 and the induction curves of chlorophyll fluorescence in pea (Pisum sativum L., cv. Premium) leaves. The treatment of leaves with DCCD strongly modified the kinetics of P700+ absorbance changes (ΔA 810) by promoting rapid photooxidation of P700. These characteristic changes in ΔA 810 induction kinetics and P700+ accumulation did not appear when the leaves were treated with DCCD in the presence of nigericin. In addition to opposite modifications of ΔA 810 kinetics evoked by permeability-modifying agents, the fluorescence induction curves differed conspicuously depending on leaf incubation in DCCD solutions with or without nigericin. The observed modifications of fluorescence induction curves and ΔA 810 indicate that DCCD suppresses electron transport from photosystem II (PSII) to P700, whereas this inhibition is removed by nigericin. The results suggest that slowing down of the electron transport rate in the presence of DCCD was caused by elevation of ΔpH in thylakoids. The prevention of pH gradient formation in the presence of protonophore lowered also the steady-state P700+ level in far-red irradiated leaves and accelerated the subsequent dark reduction of P700. These findings indicate that PSI-driven cyclic electron flow is accelerated after the removal of the pH gradient.  相似文献   

16.
The Na level inside cells of Anacystis nidulans is lower than in the external medium reflecting an effective Na extrusion. Na efflux is an active process and is driven by a Na+/H+-antiport system. The necessary H+-gradient is generated by a proton translocating ATPase in the plasmalemma. This ATPase (electrogenic proton pump) also produces the membrane potential (about -110 mV) responsible for K accumulation. N,N-dicyclohexylcarbodiimide (DCCD) inhibits the ATPase and the H+-gradient completely, but the membrane potential is only reduced (<-70 mV), since K efflux initiated by DCCD maintains the potential partly by diffusion potential.With DCCD, active Na efflux is inhibited thus revealing Na uptake and leading by equilibration to the membrane potential to a 5–20 fold accumulation. Na uptake depends on the DCCD concentration with an optimum at (1–2)×10-4 M DCCD. Pretreatment with DCCD for a few minutes followed by replacement of the medium suffices to induce Na uptake.DCCD induced Na influx is about 5 times faster in light than in darkness, and the steady state is reached much earlier in light; a 5 fold increase by light was also found for Rb uptake with untreated cells. Valinomycin stimulates the influx of Rb to about the same rate in light and dark. Therefore light may unspecifically increase the permeability of the plasma-lemma probably via the ATP level. Similarly to DCCD also 3×10-3 M N-ethylmaleimide induces Na uptake.Abbreviations Used DCCD N,N-dicyclohexylcarbodiimide - NEM N-ethylmaleimide - CCCP carbonylcyanide m-chlorophenylhydrazone - Pipes piperazine-N,N-bis(2-ethanesulfonic acid) - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

17.
N,N'-dicyclohexylcarbodiimide (DCCD) has been reported to inhibit proton translocation by cytochrome bc(1) and b(6)f complexes without significantly altering the rate of electron transport, a process referred to as decoupling. To understand the possible role of DCCD in inhibiting the protonogenic reactions of cytochrome bc(1) complex, we investigated the effect of DCCD modification on flash-induced electron transport and electrochromic bandshift of carotenoids in Rb. sphaeroides chromatophores. DCCD has two distinct effects on phase III of the electrochromic bandshift of carotenoids reflecting the electrogenic reactions of the bc(1) complex. At low concentrations, DCCD increases the magnitude of the electrogenic process because of a decrease in the permeability of the membrane, probably through inhibition of F(o)F(1). At higher concentrations (>150 microM), DCCD slows the development of phase III of the electrochromic shift from about 3 ms in control preparations to about 23 ms at 1.2 mM DCCD, without significantly changing the amplitude. DCCD treatment of chromatophores also slows down the kinetics of flash-induced reduction of both cytochromes b and c, from 1.5-2 ms in control preparations to 8-10 ms at 0.8 mM DCCD. Parallel slowing of the reduction of both cytochromes indicates that DCCD treatment modifies the reaction of QH(2) oxidation at the Q(o) site. Despite the similarity in the kinetics of both cytochromes, the onset of cytochrome c re-reduction is delayed 1-2 ms in comparison to cytochrome b reduction, indicating that DCCD inhibits the delivery of electrons from quinol to heme c(1). We conclude that DCCD treatment of chromatophores leads to modification of the rate of Q(o)H(2) oxidation by the iron-sulfur protein (ISP) as well as the donation of electrons from ISP to c(1), and we discuss the results in the context of the movement of ISP between the Q(o) site and cytochrome c(1).  相似文献   

18.
The effect of bicarbonate ions on induction of Mg2+-ATPase activity, on the N-ethylmaleimide inhibition of phosphorylation and on energy-dependent adenine nucleotide exchange has been examined with pea seedling chloroplasts. Incubation of chloroplasts with N-ethylmaleimide in the presence of 15 millimolar bicarbonate in the light results in enhanced inhibition of ATP synthesis when the preillumination pH is maintained between 7.0 and 7.5. Bicarbonate also enhances Mg2+-ATPase activity when it is included in the light-triggering stage at pH 7.0. The conditions (medium pH, bicarbonate concentration, etc.) for demonstrating the bicarbonate-induced enhancement of the N-ethylmaleimide inhibition and ATPase activity are similar to those required for the direct effect of bicarbonate on phosphorylation. Bicarbonate, under the same conditions, does not affect adenine nucleotide exchange (binding or release). It is concluded that the stimulatory effect of bicarbonate on ATP synthesis may be related to its ability to alter directly the conformation of the chloroplast coupling factor under conditions (suboptimal pH) where the enzyme shows minimal activity.  相似文献   

19.
Dicyclohexylcarbodiimide (DCCD), a potent inhibitor of the F0F1-type H+-translocating ATPase, was employed to determine the possible involvement of such an ATPase in urinary acidification. Two methods were used in this approach: (1) the reaction of [14C]DCCD with tissues involved in urinary acidification and (2) the inhibition of ATPase activity by DCCD. Membrane components from epithelial cells of toad and turtle urinary bladder and brush borders of rabbit kidney were reacted with [14C]DCCD and analyzed by polyacrylamide gel electrophoresis both before and after extraction with organic solvents. Although a DCCD-binding component was extracted from toad and turtle bladder membranes by chloroform/methanol (2:1, vv), the binding was not saturable. Analysis of this DCCD-binding component by thin-layer chromatography indicated that there was no ninhydrin reactivity associated with the [14C]DCCD binding. Moreover, all attempts to precipitate a DCCD-binding protein were unsuccessful. This and other evidence suggested that the observed DCCD binding was to phospholipid. In the second type of experiments, the ATPase activity present in brush borders from rabbit kidney was partially inhibited by DCCD, but at a concentration that is over two orders of magnitude greater than that required for typical DCCD-sensitive ATPase. We conclude from our failure to find positive evidence of a DCCD-reactive protein and from the relative insensitivity of the ATPase to DCCD that either urinary acidification is not accomplished by a typical F0F1-type translocating ATPase, or the F0 has been modified so that the sensitivity to DCCD has been altered or lost.  相似文献   

20.
In isolated spinach chloroplasts, low concentrations (I(50)=14 microM) of methyl trachyloban-19-oate ester inhibited ATP synthesis and coupled electron transport as well as light-activated membrane-bound Mg(2+)-ATPase activity. Basal (-Pi) and uncoupled electron transport and heat-activated Ca(2+)-dependent ATPase activity of isolated coupling factor proteins were unaffected by methyl trachyloban-19-oate. Thylakoids partially stripped of coupled factor by EDTA were unable to accumulate protons in the light. However, increasing concentrations of methyl trachyloban-19-oate ester restored this ability. It is concluded that the methyl trachyloban-19-oate ester effects result from blocking proton transport through the CF(0) channel. Methyl trachyloban-19-oate ester exhibited non-competitive kinetics with DCCD and triphenyltin. These results suggest that the natural products, DCCD and triphenyltin, access inhibition sites in CF(0). The K(i) is 75 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号