首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D-Arabinose is degraded by Escherichia coli B via some of the L-fucose pathway enzymes and a D-ribulokinase which is distinct from the L-fuculokinase of the L-fucose pathway. We found that L-fucose and D-arabinose acted as the apparent inducers of the enzymes needed for their degradation. These enzymes, including D-ribulokinase, appeared to be coordinately regulated, and mutants which constitutively synthesized the L-fucose enzymes also constitutively synthesized D-ribulokinase. In contrast to D-arabinose-positive mutants of E. coli K-12, in which L-fuculose-1-phosphate and D-ribulose-1-phosphate act as inducers of the L-fucose pathway, we found that these intermediates did not act as inducers in E. coli B. To further characterize the E. coli B system, some of the L-fucose-D-arabinose genes were mapped by using bacteriophage P1 transduction. A transposon Tn10 insertion near the E. coli B L-fucose regulon was used in two- and three-factor reciprocal crosses. The gene encoding D-ribulokinase, designated darK, was found to map within the L-fucose regulon, and the partial gene order was found to be Tn10-fucA-darK-fucI-fucK-thyA.  相似文献   

2.
Mutants of Klebsiella aerogenes W70 were isolated that had gained the ability to utilize the uncommon pentose D-arabinose as their sole source of carbon and energy. In contrast to the D-arabinose-negative, parent strain, these mutants were found to be either constitutive for certain enzymes of the L-fucose catabolic pathway or inducible for such enzymes when incubated in the presence of D-arabinose. The mutants used L-fucose isomerase to convert D-arabinose to D-ribulose, which is an intermediate and inducer of the ribitol catabolic pathway. The D-ribulokinase of the ribitol pathway was then induced. This enzyme catalyzed the phosphorylation of D-ribulose at the 5-carbon position. Mutants that were negative for D-ribulokinase could still dissimilate D-arabinose slowly by using all three enzymes, the isomerase, kinase, and aldolase, of the L-fucose pathway. Using condition negative mutants, we were able to demonstrate that the natural induction of the L-fucose pathway enzymes by L-fucose required the activity of a functional L-fucose isomerase and a functional L-fuculokinase but not an L-fuculose-1-phosphate aldolase. A metabolic intermediate, L-fuculose-1-phosphate, was thereby shown to be a probable inducer of at least the isomerase and kinase of the L-fucose catabolic pathway. Similar experiments, with D-arabinose-positive mutants, which were induced for the L-fucose pathway enzymes upon incubation with D-arabinose, revealed that the activities of the L-fucose isomerase and the L-fuculokinase were also required for the induction of the L-fucose enzymes. These D-arabinose-positive mutants apparently produced an altered regulatory protein that accepted both L-fuculose-1-phosphate and D-ribulose-1-phosphate as inducers. Examination of constitutive mutants revealed that L-fucose isomerase and L-fuculokinase were both synthesized constitutively, with the aldolase apparently under separate control.  相似文献   

3.
A ribitol catabolic pathway was transduced into Escherichia coli K-12 in an effort to determine whether the ribitol pathway would confer an advantage to D-arabinose-positive mutants growing on D-arabinose as the sole carbon source. Competition studies in chemostats showed that ribitol-positive strains, with a selection coefficient of 9%/h, have a significant competitive advantage over ribitol-negative strains. Ribitol-positive strains grown in batch culture also exhibited a shorter lag period than did ribitol-negative strains when transferred from glucose to D-arabinose. Repeated transfer of a ribitol-positive strain of E. coli K-12 on D-arabinose yielded a strain with further improved growth on D-arabinose. This "evolved" strain was found to constitutively synthesize L-fucose permease, isomerase, and kinase but had lost the ability to grow on L-fucose, apparently owing to the loss of a functional aldolase. This constitutive mutation is not linked to the fucose gene cluster and may be similar to an unlinked constitutive mutation described by Chen et al. (J. Bacteriol. 159:725-729, 1984).  相似文献   

4.
A ribitol-positive transductant of Escherichia coli K-12, JM2112, was used to facilitate the isolation and identification of mutations affecting the L-fucose catabolic pathway. Analysis of L-fucose-negative mutants of JM2112 enabled us to confirm that L-fucose-1-phosphate is the apparent inducer of the fucose catabolic enzymes. Plating of an L-fuculokinase-negative mutant of JM2112 on D-arabinose yielded an isolate containing a second fucose mutation which resulted in the constitutive synthesis of L-fucose permease, isomerase, and kinase. This constitutive mutation differs from the constitutive mutation described by Chen et al. (J. Bacteriol. 159:725-729, 1984) in that it is tightly linked to the fucose genes and appears to be located in the gene believed to code for the positive activator of the L-fucose genes.  相似文献   

5.
Escherichia coli K-12 strains have deletions for the normal lambda integration site were lysogenized with bacteriophage lambda at a site within the L-fucose utilization system (fuc). The frequency of lambda integration at this site is approximately 2 X 10(-8) to 5 X 10(-7). Studies of the lytic properties of these strains indicated very infrequent cell lysis with a relatively low phage burst size. Transductional ability of the phage lysates was found to be normal, comparable to that found in conventional low-frequency transducing lysates. Two major classes of transducing phage were found. One carried the markers argA and fucA (a fucose utilization gene of unknown function previously referred to as fuc-1) and the gene for D-arabinose utilization (dar+). The other carried only fucC, the gene specifying L-fuculose-1-phosphate aldolase. A minor class of phage was found that carried fucA, but not argA or dar+. Upon consideration of the transductional nature of these phage classes, we are proposing that the gene order for the L-fucose utilization system is dar, fucA, (lambda), fucC.  相似文献   

6.
7.
Summary Mutants ofKlebsiella aerogenes W70 that metabolize the uncommon pentose D-arabinose were isolated. These mutants were found to be either constitutive or indicible by D-arabinose for the synthesis of enzymes in the L-fucose pathway. Such mutants could then utilize L-fucose isomerase to convert the structurally similar D-arabinose molecule to D-ribulose. D-Ribulose is an inter-mediate and the inducer of an existing ribitol pathway and could thus be metabolized. In those D-arabinose-positive mutants where the ribitol pathway was blocked by mutation, D-ribulose could alternatively be metabolized by using the remaining L-fucose pathway enzymes. When the two D-arabinose catabolic routes were compared, catabolism of D-arabinose via the ribitol pathway was found to be more efficient. Catabolism of D-arabinose using the L-fucose pathway per-mitted D-ribulose to escape into the media and produced an unmetabolizable end product, L-glycolic acid. A comparison of growth using constitutive versus inducible control of the borrowed L-fucose isomerase did not reveal an advantage for one control type over the other. Several differences were observed,however, when we determined the degree to which these control mutations perturbed the normal functioning of the L-fucose and associated pathways. Growth of the constitutive mutant was impaired with L-fucose as substrate. The inducible-control mutant had altered growth characteristics on ribitol and L-rhamnose.  相似文献   

8.
A mutant strain of Escherichia coli K-12, designated 618, accumulates glycogen at a faster rate than wild-type strain 356. The mutation affects the ADPglucose pyrophosphorylase regulatory properties (N. Creuzat-Sigal, M. Latil-Damotte, J. Cattaneo, and J. Puig, p. 647-680, in R. Piras and H. G. Pontis, ed., Biochemistry of the Glycocide Linkage, 1972). The enzyme is less dependent on the activator, fructose 1,6 bis-phosphate for activity and is less sensitive to inhibition by the inhibitor, 5'-AMP. The structural gene, glgC, for this allosteric mutant enzyme was cloned into the bacterial plasmid pBR322 by inserting the chromosomal DNA at the PstI site. The glycogen biosynthetic genes were selected by cotransformation of the neighboring asd gene into an E. coli mutant also defective in branching enzyme (glgB) activity. Two recombinant plasmids, pEBL1 and pEBL3, that had PstI chromosomal DNA inserts containing glgC and glgB were isolated. Branching enzyme and ADPglucose pyrophosphorylase activities were increased 240- and 40-fold, respectively, in the asd glgB mutant, E. coli K-12 6281. The E. coli K-12 618 mutant glgC gene product was characterized after transformation of an E. coli B ADPglucose pyrophosphorylase mutant with the recombinant plasmid pEBL3. The kinetic properties of the cloned ADPglucose pyrophosphorylase were similar to those of the E. coli K-12 618 enzyme. The inserted DNA in pEBL1 was arranged in opposite orientation to that in pEBL3.  相似文献   

9.
The control mutation that results in a concomitant severalfold increase in the activities of gamma-aminobutyrate-alpha-ketoglutarate transaminase (GSST, EC 2.6.1.19) and succinic semialdehyde dehydrogenase (SSDH, EC 1.2.1.16), leading to the acquisition of the ability to utilize gamma-aminobutyrate (GABA) as the sole source of nitrogen by Escherichia coli K-12 mutants, was mapped by mating and transduction with P1kc. The locus affected, gabC, is approximately 48% co-transduced with the thyA gene, located at min 55 of the E. coli K-12 chromosome. The structural gene of the first enzyme in the GABA pathway, GSST, was mapped by interrupted mating, using one of the GSST-less mutants, DB742, isolated in this work. The mutated locus, gabT, is situated at about min 73 of the E. coli chromosome, close to the gltC gene. Genetic evidence concerning the sensitivity of the enzymes of the GABA pathway to catabolite repression under different physiological conditions suggests that the two structural genes of the GABA regulon do not constitute one operon.  相似文献   

10.
A series of lambda defective ilvC specialized transducing phage has been isolated which carry regions of isoleucine and valine structural and regulatory genes derived from the ilv cluster at minute 83 on the linkage map of the chromosome of Escherichia coli K-12. The ilv genes carried by these phages and their order have been determined by transduction of auxotrophs. The ilvC+ lysogen of an ilvC- strain gave rise, after heat induction of the lysogen, to transducing particles which carried the wild-type allele of the cya-marker. Further experiments have shown that the lambda defective ilvC phages were able to cotransduce a rho-15ts mutation as well as a rep-5 mutation. Hence, the order of the clockwise excision of the ilv cluster was found to be ilvC-rho-rep-cya. Enzyme levels in strains carrying the lambda defective ilvC phages indicated the the ilvC gene was not altered by the insertion of lambda into the ilv cluster. The isolation and digestion of lambda defective ilvC DNA by EcoRI and HindIII restriction endonucleases demonstrated that the specialized transducing phages carried part of the genome from the E. coli K-12 chromosome.  相似文献   

11.
This report describes the sequencing in the Escherichia coli B genome of 36 randomly chosen regions that are present in most or all of the fully sequenced E. coli genomes. The phylogenetic relationships among E. coli strains were examined, and evidence for the horizontal gene transfer and variation in mutation rates was determined. The overall phylogenetic tree indicated that E. coli B and K-12 are the most closely related strains, with E. coli O157:H7 being more distantly related, Shigella flexneri 2a even more, and E. coli CFT073 the most distant strain. Within the B, K-12, and O157:H7 clusters, several regions supported alternative topologies. While horizontal transfer may explain these phylogenetic incongruities, faster evolution at synonymous sites along the O157:H7 lineage was also identified. Further interpretation of these results is confounded by an association among genes showing more rapid evolution and results supporting horizontal transfer. Using genes supporting the B and K-12 clusters, an estimate of the genomic mutation rate from a long-term experiment with E. coli B, and an estimate of 200 generations per year, it was estimated that B and K-12 diverged several hundred thousand years ago, while O157:H7 split off from their common ancestor about 1.5-2 million years ago.  相似文献   

12.
Escherichia coli C strains can grow at the expense of the two natural pentitols ribitol and D-arabitol, sugar alcohols previously thought not to be utilized by E. coli. E. coli strains K-12 and B cannot utilize either compound. The genetic loci responsible for pentitol catabolism in E. coli C, designated rtl and atl, are separate and closely linked. Each lies between metG and his and is highly co-transducible with metG and with a P2 prophage attachment site. rtl and atl readily can be transduced into E. coli K-12 or B strains, in which they integrate at, or very near, their E. coli C location. Transduction also can be used to insert rtl and atl into certain E. coli K-12 F' plasmids. No recombination between E. coli C strains and either K-12 or B strains occurs within the rtl-atl genetic region after interstrain conjugations or transductions. No cryptic rtl or atl genes in K-12 or B strains can be detected by complementation, recombination, or mutagenesis. These results are consistent with the view that the rtl-atl portion of the E. coli C chromosome has no counterpart in E. coli K-12 or B and may have been obtained from an extrageneric source. Detailed biochemical and genetic comparisons of penitol utilization in E. coli and Klebsiella aerogenes are in progress. The ability to catabolize xylitol is conferred upon E. coli C strains by a mutation at or adjacent to the rtl locus, whereas in E. coli K-12 or B strains harboring rtl an additional mutation at a separate locus is required for xylitol utilization.  相似文献   

13.
Colanic acid (CA) is an extracellular polysaccharide produced by most Escherichia coli strains as well as by other species of the family Enterobacteriaceae. We have determined the sequence of a 23-kb segment of the E. coli K-12 chromosome which includes the cluster of genes necessary for production of CA. The CA cluster comprises 19 genes. Two other sequenced genes (orf1.3 and galF), which are situated between the CA cluster and the O-antigen cluster, were shown to be unnecessary for CA production. The CA cluster includes genes for synthesis of GDP-L-fucose, one of the precursors of CA, and the gene for one of the enzymes in this pathway (GDP-D-mannose 4,6-dehydratase) was identified by biochemical assay. Six of the inferred proteins show sequence similarity to glycosyl transferases, and two others have sequence similarity to acetyl transferases. Another gene (wzx) is predicted to encode a protein with multiple transmembrane segments and may function in export of the CA repeat unit from the cytoplasm into the periplasm in a process analogous to O-unit export. The first three genes of the cluster are predicted to encode an outer membrane lipoprotein, a phosphatase, and an inner membrane protein with an ATP-binding domain. Since homologs of these genes are found in other extracellular polysaccharide gene clusters, they may have a common function, such as export of polysaccharide from the cell.  相似文献   

14.
The O antigen of Escherichia coli O111 is identical in structure to that of Salmonella enterica serovar adelaide. Another O-antigen structure, similar to that of E. coli O111 and S. enterica serovar adelaide is found in both E. coli O55 and S. enterica serovar greenside. Both O-antigen structures contain colitose, a 3,6 dideoxyhexose found only rarely in the Enterobacteriaceae. The O-antigen structure is determined by genes generally located in the rfb gene cluster. We cloned the rfb gene cluster from an E. coli O111 strain (M92), and the clone expressed O antigen in both E. coli K-12 and a K-12 strain deleted for rfb. Lipopolysaccharide analysis showed that the O antigen produced by strains containing the cloned DNA is polymerized. The chain length of O antigen was affected by a region outside of rfb but linked to it and present on some of the plasmids containing rfb. The rfb region of M92 was analysed and compared, by DNA hybridization, with that of strains with related O antigens. The possible evolution of the rfb genes in these O antigen groups is discussed.  相似文献   

15.
16.
Expression of the Bacillus subtilis gene coding for SspC, a small, acid-soluble protein, caused both killing and mutation in a number of Escherichia coli B and K-12 strains. SspC was previously shown to bind E. coli DNA in vivo, and in vitro this protein binds DNA and converts it into an A-like conformation. Analysis of revertants of nonsense mutations showed that SspC caused single-base changes, and a greater proportion of these were at A-T base pairs. Mutation in the recA gene abolished the induction of mutations upon synthesis of SspC, but the killing was only slightly greater than in RecA+ cells. Mutations in the umuC and umuD genes eliminated most of the mutagenic effect of SspC but not the killing, while the lexA mutation increased mutagenesis but did not appreciably affect the killing. Since there was neither killing nor mutation of E. coli after synthesis of a mutant SspC which does not bind DNA, it appears likely that the binding of wild-type SspC to DNA, with the attendant conformational change, was responsible for the killing and mutation. A strain containing the B. subtilis gene that is constitutive for the RecA protein at 42 degrees C showed a lower frequency of mutation when that temperature was used to induce the RecA protein than when the temperature was 30 degrees C, where the RecA level is low, suggesting that at the elevated temperature the high RecA level could be inhibiting binding of the B. subtilis protein to DNA.  相似文献   

17.
Escherichia coli K-12 converts L-fucose to dihydroxyacetone phosphate (C-1 to C-3) and L-lactaldehyde (C-4 to C-6) by a pathway specified by the fuc regulon. Aerobically, L-lactaldehyde serves as a carbon and energy source by the action of an aldehyde dehydrogenase of broad specificity; the product, L-lactate, is then converted to pyruvate. Anaerobically, L-lactaldehyde serves as an electron acceptor to regenerate NAD from NADH by the action of an oxidoreductase; the reduced product, L-12-propanediol, is excreted. A strain selected for growth on L-galactose (a structural analog of L-fucose) acquired a broadened inducer specificity because of an altered fucR gene encoding the activator protein for the fuc regulon (Y. Zhu and E. C. C. Lin, J. Mol. Evol. 23:259-266, 1986). In this study, a second mutation that abolished aldehyde dehydrogenase activity was discovered. The L-fucose pathway converts L-galactose to dihydroxyacetone phosphate and L-glyceraldehyde. Aldehyde dehydrogenase then converts L-glyceraldehyde to L-glycerate, which is toxic. Loss of the dehydrogenase averts the toxicity during growth on L-galactose, but reduces by one-half the aerobic growth yield on L-fucose. When mutant cells induced in the L-fucose system were incubated with radioactive L-fucose, accumulation of radioactivity occurred if the substrate was labeled at C-1 but not if it was labeled C-6. Complete aerobic utilization of carbons 4 through 6 of L-fucose depends not only on an adequate activity of aldehyde dehydrogenase to trap L-lactaldehyde as its anionic acid but also on the lack of L-1,2-propanediol oxidoreductase activity, which converts L-lactaldehyde to a readily excreted alcohol.  相似文献   

18.
1. All the porcine pancreas enzymes tested, regardless of their pI's were adsorbed on Amberlite CG-50 (a weakly acidic cation exchange resin) at pH 4, where the ion-exchange group (carboxyl group) is not dissociated. The adsorption is hardly influenced by ionic strength. 2. At pH 4, the adsorbed enzymes were partially eluted by organic solvents such as 50% propanol. 3. The adsorbed enzymes were effectively eluted by increasing the pH from 4 to 6. Trypsin (pI 10.5) was eluted before carboxypeptidase A (pI 4.5 AND 5.3) WITH 0.5 M acetate buffer, whereas the former enzyme was eluted after the latter enzyme with 0.2 M 3,3-dimethyl glutarate buffer. However, with either buffer, the elution order of enzymes was not always the same as the order of the pI's. 4. By a single Amberlite CG-50 column chromatography of porcine pancreas extracts, kallikrein, carboxypeptidase B, deoxyribonuclease, carboxypeptidase A, and trypsin were purified 100-fold, 16-fmately 13%. The purification procedures included treatment with protamine, ammonium sulfate fractionation, treatment with acid, DE-32 cellulose column chromatography, gel filtration on Sephadex G-100, preparative polyacrylamide gel electrophoresis, and affinity chromatography on 5' AMP-Sepharose 4B. The last procedure, affinity chromatography on 5' AMP-Sepharose 4B, was useful for the removal of other dehydrogenases. The enzyme which was homogeneous, as shown by polyacrylamide gel electrophoresis, had a molecular weight of about 92,000. The optimum pH was at 10.0 and isoelectric point at 5.2. The enzyme accepted both L-fucose and D-arabinose as substrate, but was specific for NAD+ as coenzyme. Km values were 0.15 mM, 1.4 mM, and 0.07 mM for L-fucose, D-arabinose, and NAD+, respectively. A single enzyme catalyzed the oxidation of L-fucose and D-arabinose, which had the same configurations of hydroxyl groups from C-2 to C-4. The reaction products obtained with L-fucose as substrate were L-fucono-lactone and L-fuconic acid. The L-fucono-lactone was an immediate product of oxidation and was hydrolyzed to L-fuconic acid spontaneously. This reaction was irreversible. Therefore, it is likely that L-fucose dehydrogenase is involved in the initial step of the catabolic pathway of L-fucose in rabbit liver.  相似文献   

19.
Abstract We have identified a new locus required for mediating the binding of type 1 piliated Escherichia coli cells to guinea pig erythrocytes. This locus, pilE , was discovered after restrition site mutagenesis of a cloned segment of DNA containing the chromosomal pil region from a clinical strain of E. coli. pilE Mutants failed to agglutinate guinea pig erythrocytes but expressed pili were morphologically and antigenically indistinguishable from the parental ( pilE +) strain. Construction of a chromosomal pilE mutation in E. coli K-12 was accomplished by introducing a restriction fragment containing a pilE lesion into the chromosome of a recBC sbcB host strain. Mutations in pilE could be complimented in trans by the addition of a cloned segment of DNA containing the parental pilE locus. Lesions in any of the genes required for pilus assembly also produced a hemagglutination minus phenotype suggesting that both the product(s) specified by the pilE locus and pili were required for hemagglutination. Hemagglutination experiments using partially purified pili also supported this suggestion.  相似文献   

20.
Y M Chen  Z Lu    E C Lin 《Journal of bacteriology》1989,171(11):6097-6105
L-1,2-Propanediol is an irretrievable end product of L-fucose fermentation by Escherichia coli. Selection for increased aerobic growth rate on propanediol results in the escalation of basal synthesis of the NAD+-linked oxidoreductase encoded by fucO, a member of the fuc regulon for the utilization of L-fucose. In general, when fucO becomes constitutively expressed, two other simultaneous changes occur: the fucA gene encoding fuculose-1-phosphate aldolase becomes constitutively expressed and the fucPIK operon encoding fucose permease, fucose isomerase, and fuculose kinase becomes noninducible. In the present study, we show that fucO and fucA form an operon which is divergently transcribed from the adjacent fucPIK operon. In propanediol-positive and fucose-negative mutants the cis-controlling region shared by the operons fucAO and fucPIK is lengthened by 1.2 kilobases. DNA hybridization identified the insertion element to be IS5. This element, always oriented in the same direction with the left end (the BglII end) proximal to fucA, apparently causes constitutive expression of fucAO and noninducibility of fucPIK. The DNA of the fucAO operon and a part of the adjacent fucP was sequenced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号