首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have reported previously that in the presence of an osmotic gradient, facilitative glucose transporters (GLUTs) act as a transmembrane pathway for water flow. Here, we find evidence that they also allow water passage in the absence of an osmotic gradient. We applied the linear diffusion technique to measure the diffusional permeability (Pd) of tritiated water (3H-H2O) through plasma membranes of J774 murine macrophage-like cells. Untreated cells had a Pd of 30.9 +/- 1.8 microns/s; the inhibitors of facilitative glucose transport cytochalasin B (10 microM) and phloretin (20 microM) reduced that value to 15.3 +/- 1.8 (50%) and 11.0 +/- 0.7 (62%) microns/s, respectively. In contrast, no significant effect on Pd was observed in cells treated with dihydrocytochalasin B (Pd = 28.4 +/- 1.5 microns/s). PCMBS (3 mM) inhibited glucose uptake by greater than 95%, and 3H-H2O diffusion by approximately 30% (Pd = 22.9 +/- 1.5 microns/s). The combination of cytochalasin B plus pCMBS reduced Pd by about 87% (Pd = 3.9 +/- 0.3 microns/s). Moreover, 1 mM pCMBS did not affect the osmotic water permeability in Xenopus laevis oocytes expressing the brain/erythroid form of facilitative glucose transporters (GLUT1). These results indicate for the first time that about half of the total Pd of J774 cells may be accounted for by water passage across GLUTs. Hence, they highlight the multifunctional properties of these transporters serving as conduits for both water and glucose. Our results also suggest for the first time that pCMBS blocks glucose transport without affecting water permeation through GLUTs. Lastly, because pCMBS decreases the Pd of J774 cells, this suggests the presence in their plasma membranes of another protein(s) exhibiting water channel properties.  相似文献   

2.
S T Tsai  R B Zhang  A S Verkman 《Biochemistry》1991,30(8):2087-2092
Erythrocytes from several mammalian species contain mercurial-sensitive water transporters. By a stopped-flow light scattering technique, osmotic water permeability (Pf) was exceptionally high in rabbit erythrocytes (0.053 +/- 0.002 cm/s) and reversibly inhibited by 98% by p-(chloromercuri)benzenesulfonate (pCMBS). The activation energy (Ea) was 4.6 kcal/mol (15-37 degrees C). pCMBS inhibition was half-maximal at 0.1 mM (60-min incubation); at 1 mM pCMBS, half-maximal inhibition occurred in 8 min. Pf was also inhibited by HgCl2 and pCMB with greater than 90% inhibition in 5 min. There was no inhibition by high concentrations of phloretin, DNDS, cytochalasin B, amiloride, ouabain, furosemide, and several proteases. In defolliculated Xenopus oocytes microinjected with 50 nL of water or unfractionated mRNA (1 mg/mL) from rabbit reticulocytes, oocyte Pf assayed at 10 degrees C after 72-h incubation increased from (4 +/- 1) X 10(-4) cm/s (water injected) to (18 +/- 2) X 10(-4) cm/s (mRNA injected). Pf increased linearly with [mRNA] (0-75 ng/oocyte) and was inhibited slowly and reversibly by pCMBS and immediately by HgCl2 but not by cytochalasin B, phloretin, or DNDS. Ea was 9.6 kcal/mol (water injected) and 2.6 kcal/mol (mRNA injected). These results demonstrate that rabbit erythrocytes have the highest Pf and the greatest percentage inhibition of Pf by mercurials of any mammalian erythrocyte studied. The characteristics of the expressed and native water channels were similar, suggesting that the erythrocyte water channel is a membrane protein suitable for expression cloning.  相似文献   

3.
A pressure probe technique and an osmotic swelling assay were used to compare water transport properties between growing and non-growing tissues of leaf three of barley. The epidermis was analysed in planta by pressure probe, whereas (predominantly) mesophyll protoplasts were analysed by osmotic swelling. Hydraulic conductivity (Lp) and, by implication, water permeability (Pf) of epidermal cells was 31% higher in the leaf elongation zone (Lp=0.5+/-0.2 microm s-1 MPa-1; Pf=65+/-25 microm s-1; means+/-SD of n=17 cells) than in the, non-growing, emerged leaf zone (Lp=0.4+/-0.1 microm s-1 MPa-1; Pf=50+/-15 microm s-1; n=24; P<0.05). Similarly, water permeability of mesophyll protoplasts was by 55% higher in the elongation compared with emerged leaf zone (Pf=13+/-1 microm s-1 compared with 8+/-1 microm s-1; n=57 and 36 protoplasts, respectively; P<0.01). Within the leaf elongation zone, a small population of larger-sized protoplasts could be distinguished. These protoplasts, which originated most likely from parenchymateous bundle sheath or midrib parenchyma cells, had a three-fold higher water permeability (P<0.001) as mesophyll protoplasts. The effect on Lp and Pf of known aquaporin inhibitors was tested with the pressure probe (Au+, Ag+, Hg2+, phloretin) and the osmotic swelling assay (phloretin). Only phloretin, when applied to protoplasts in the swelling assay caused an average decrease in Pf, but the effect varied between isolations. Technical approaches and cell-type and growth-specific differences in water transport properties are discussed.  相似文献   

4.
Although the transport properties of human erythrocyte water channels have been well characterized, the identity of the protein(s) mediating water flow remains unclear. Recent evidence that glucose carriers can conduct water raised the possibility that the glucose carrier, which is abundant in human erythrocytes, is the water channel. To test this possibility, water permeabilities and glucose fluxes were measured in large unilamellar vesicles (LUV) containing human erythrocyte lipid alone (lipid LUV), reconstituted purified human erythrocyte glucose carrier (Glut1 LUV), or reconstituted glucose carrier in the presence of other human erythrocyte ghost proteins (ghost LUV). In glucose and ghost LUV, glucose carriers were present at 25% of the density of native erythrocytes, were oriented randomly in the bilayer, and exhibited characteristic inhibition of glucose flux when exposed to cytochalasin B. Osmotic water permeability (Pf, in centimeters per second; n = 4) averaged 0.0012 +/- 0.00033 in lipid LUV, 0.0032 +/- 0.0015 in Glut1 LUV, and 0.006 +/- 0.0014 in ghost LUV. Activation energies of water flow for the three preparations ranged between 10 and 13 kcal/mol; p-(chloromercuri)benzenesulfonate (pCMBS), an organic mercurial inhibitor of erythrocyte water channels, and cytochalasin B did not alter Pf. These results indicate that reconstitution of glucose carriers at high density increases water permeability but does not result in water channel activity. However, because the turnover number of reconstituted carriers is reduced from that of native carriers, experiments were also performed on erythrocyte ghosts with intact water channel function. In ghosts, Pf averaged 0.038 +/- 0.013 (n = 9), while the activation energy for water flow averaged 3.0 +/- 0.3 kcal/mol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A surface fluorescence method was developed to measure transalveolar transport of water, protons, and solutes in intact perfused lungs. Lungs from c57 mice were removed and perfused via the pulmonary artery (approximately 2 ml/min). The airspace was filled via the trachea with physiological saline containing a membrane-impermeant fluorescent indicator (FITC-dextran or aminonapthalene trisulfonic acid, ANTS). Because fluorescence is detected only near the lung surface due to light absorption by lung tissue, the surface fluorescence signal is directly proportional to indicator concentration. Confocal microscopy confirmed that the fluorescence signal arises from fluorophores in alveoli just beneath the pleural surface. Osmotic water permeability (Pf) was measured from the time course of intraalveolar FITC-dextran fluorescence in response to changes in perfusate osmolality. Transalveolar Pf was 0.017 +/- 0.001 cm/s at 23 degrees C, independent of the solute used to induce osmosis (sucrose, NaCl, urea), independent of osmotic gradient size and direction, weakly temperature dependent (Arrhenius activation energy 5.3 kcal/mol) and inhibited by HgCl2. Pf was not affected by cAMP activation but was decreased by 43% in lung exposed to hyperoxia for 5 d. Diffusional water permeability (Pd) and Pf were measured in the same lung from intraalveolar ANTS fluorescence, which increased by 1.8-fold upon addition of 50% D2O to the perfusate, Pd was 1.3 x 10(-5) cm/s at 23 degrees C. Transalveolar proton transport was measured from FITC-dextran fluorescence upon switching perfusate pH between 7.4 and 5.6; alveolar pH half-equilibrated in 1.9 and 1.0 min without and with HCO3-, respectively. These results indicate high transalveolar water permeability in mouse lung, implicating the involvement of molecular water channels, and establish a quantitative surface fluorescence method to measure water and solute permeabilities in intact lung.  相似文献   

6.
Targeting of water channels in renal epithelia may involve trafficking of clathrin-coated vesicles. We have isolated and measured the osmotic water permeability (Pf) of purified clathrin-coated vesicles from bovine kidney cortex and inner medulla, and bovine brain, a tissue not expected to contain "water channels." Brain-coated vesicles had a diameter of 80 nm in negatively stained preparations. Pf was measured by a stopped-flow light scattering technique. In brain-coated vesicles, water transport was functionally homogeneous with a low Pf of 0.0016 +/- 0.0001 cm/s (seven preparations, 23 degrees C). Pf was independent of osmotic gradient size (25-300 mOsm), not inhibited by mercurials, and not altered by removal of the clathrin coat. The activation energy (Ea) for Pf was high (11 +/- 1 kcal/mol less than 34 degrees C, 17 +/- 2 kcal/mol greater than 34 degrees C). Therefore, water channels are absent from brain-coated vesicles. In contrast, there were two functional populations of vesicles in coated vesicle preparations from both kidney cortex and medulla. One population of vesicles had low water permeability and no water channels, whereas a second population had high Pf (0.02 cm/s, 21 degrees C) that was inhibited by HgCl2, and low Ea (2-3 kcal/mol). The fraction of vesicles with high Pf was 52 +/- 3% (S.D., n = 3, cortical vesicles) and 26 +/- 3% (medullary vesicles). These results provide evidence that functional water channels are not present in clathrin-coated vesicles from the brain, whereas they are found in a population of coated vesicles from kidney cortex and medulla, tissues in which water channels are recycled between the plasma membrane, and an intracellular compartment.  相似文献   

7.
The existence and identity of protein water transporters in biological membranes has been uncertain. Osmotic water permeability (Pf) was measured in defolliculated Xenopus oocytes microinjected with water or mRNA from kidney cortex, kidney papilla, reticulocyte, brain, and muscle. Pf was measured by quantitative image analysis from the time course of oocyte swelling in response to an osmotic gradient. When assayed at 10 degrees C, Pf in water-injected oocytes increased from (3.6 +/- 0.9) x 10(-4) cm/s (S.D., n = 16) to 74 x 10(-4) cm/s with addition of amphotericin B, showing absence of unstirred layers. At 48-72 h after injection of 50 ng of unfractionated mRNA, Pf (in cm/s x 10(-4] was: 4.0 +/- 1.5 (rabbit brain, n = 15), 4.2 +/- 1.8 (rabbit muscle, n = 10), 18.4 +/- 6.3 (rabbit reticulocyte, n = 20), 16.1 +/- 5.6 (rat renal papilla, n = 24), 12.9 +/- 6.3 (rat renal cortex, n = 20), 14.4 +/- 6.1 (rabbit renal papilla, n = 15), and 11.8 +/- 3.4 (rabbit renal cortex, n = 8). In oocytes injected with mRNA from rat renal papilla, Pf was inhibited reversibly by 0.3 mM HgCl2 (4.1 +/- 1.6, n = 10); expressed water channels from kidney and red cell had activation energies of less than 4 kcal/mol. These results show functional oocyte expression of water channels from red cell, kidney proximal tubule (cortex), and the vasopressin-sensitive kidney collecting tubule (papilla), indicating that water channels are proteins, and providing an approach for the expression cloning of water channels.  相似文献   

8.
Transport of water between the capillary and airspace compartments in lung encounters serial barriers: the alveolar epithelium, interstitium, and capillary endothelium. We previously reported a pleural surface fluorescence method to measure net capillary-to-airspace water transport. To measure the osmotic water permeability across the microvascular endothelial barrier in intact lung, the airspace was filled with a water-immiscible fluorocarbon. The capillaries were perfused via the pulmonary artery with solutions of specified osmolalites containing a high-molecular-weight fluorescent dextran. An increase in perfusate osmolality produced a prompt decrease in surface fluorescence due to dye dilution in the capillaries, followed by a slower return to initial fluorescence as capillary and lung interstitial osmolality equilibrate. A mathematical model was developed to determine the osmotic water permeability coefficient (Pf) of lung microvessels from the time course of pleural surface fluorescence. As predicted, the magnitude of the prompt change in surface fluorescence increased with decreased pulmonary artery perfusion rate and increased osmotic gradient size. With raffinose used to induce the osmotic gradient, Pf was 0.03 cm/s at 23 degrees C and was reduced 54% by 0.5 mM HgCl2. Temperature dependence measurements gave an Arrhenius activation energy (Ea) of 5.4 kcal/mol (12-37 degrees C). The apparent Pf induced by the smaller osmolytes mannitol and glycine was 0.021 and 0.011 cm/s (23 degrees C). Immunoblot analysis showed approximately 1.4 x 10(12) aquaporin-1 water channels/cm2 of capillary surface, which accounted quantitatively for the high Pf. These results establish a novel method for measuring osmotically driven water permeability across microvessels in intact lung. The high Pf, low Ea, and mercurial inhibition indicate the involvement of molecular water channels in water transport across the lung endothelium.  相似文献   

9.
The apical membrane of mammalian proximal tubule undergoes rapid membrane cycling by exocytosis and endocytosis. Osmotic water and ATP- driven proton transport were measured in endocytic vesicles from rabbit and rat proximal tubule apical membrane labeled in vivo with the fluid phase marker fluorescein-dextran. Osmotic water permeability (Pf) was determined from the time course of fluorescein-dextran fluorescence after exposure of endosomes to an inward osmotic gradient in a stopped- flow apparatus. Pf was 0.009 (rabbit) and 0.029 cm/s (rat) (23 degrees C) and independent of osmotic gradient size. Pf in rabbit endosomes was inhibited reversibly by HgCl2 (KI = 0.2 mM) and had an activation energy of 6.4 +/- 0.5 kcal/mol (15-35 degrees C). Endosomal proton ATPase activity was measured from the time course of internal pH, measured by fluorescein-dextran fluorescence, after the addition of external ATP. Endosomes contained an ATP-driven proton pump that was sensitive to N-ethylmaleimide and insensitive to vanadate and oligomycin. In response to saturating [ATP] the pump acidified the endosomal compartment at a rate of 0.17 (rat) and 0.029 pH unit/s (rabbit); at an external pH of 7.4, the steady-state pH was 6.4 (rat) and 6.5 (rabbit). To examine whether water channels and the proton ATPase were present in the same endosome, the time course of fluorescein-dextran fluorescence was measured in response to an osmotic gradient in the presence and absence of ATP. ATP did not alter endosome Pf, but decreased the amplitude of the fluorescence signal by 43 +/- 3% (rabbit) and 47 +/- 4% (rat).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The water permeability of human red blood cells has been monitored by nuclear magnetic resonance (NMR) following exposure to inhibitors of various transport processes across their membranes. No significant inhibition of water diffusion could be detected after the treatment of red blood cells with the anion exchange transport inhibitor dihydro-4,4'-diisothiocyano-stilbene-2,2'-disulfonate (H2DIDS) or the glucose transport inhibitors diallyl-diethyl-stilbestrol (DADES), cytochalasin B, or 30 mM iodoacetamide. It is for the first time that the effects of glucose transport inhibitors has been studied in detail by the NMR approach. A special case proved to be phloretin, an inhibitor of anion, nonelectrolyte and glucose permeability. A small but statistically significant inhibition of water permeability (around 12% at 20 degrees C) was induced by exposure to 2 mM phloretin (for 60 min at 37 degrees C); after a pretreatment of cells with 12 mM N-ethylmaleimide (NEM), for 60 min at 37 degrees C, the degree of inhibition induced by phloretin increased (becoming 17% at 20 degrees C). None of the inhibitors prevented or potentiated the strong inhibitory effect on water diffusion of a mercurial, p-chloromercuribenzene sulfonate (PCMBS). No increase in the activation energy of water diffusion occurred by treatment with the reagents used (exception the effect of PCMBS). The present results clarify some conflicting reports concerning the effects on water permeability of inhibitors of various transport processes in red blood cells and indicate that in addition to the drastic inhibition induced by mercurials other reagents may also have inhibitory effects.  相似文献   

11.
Previous work from our laboratory supports an important role for aquaporins (AQPs), a family of water channel proteins, in bile secretion by hepatocytes. To further define the pathways and molecular mechanisms for water movement across hepatocytes, we directly assessed osmotic water permeability (Pf) and activation energy (Ea) in highly purified, rat hepatocytes basolateral membrane vesicles (BLMV) and canalicular membrane (CMV) vesicles by measuring scattered light intensity using stopped-flow spectrophotometry. The time course of scattered light for BLMV and CMV fit well to a single-exponential function. In BLMV, Pf was 108 +/- 4 mum.s-1 (25 degrees C) with an Ea of 7.7 kcal/mol; in CMV, Pf was 86 +/- 5 mum.s-1 (25 degrees C) with an Ea of 8.0 kcal/mol. The AQP blocker, dimethyl sulfoxide, significantly inhibited the Pf of both basolateral (81 +/- 4 mum.s-1; -25%) and canalicular (59 +/- 4 mum.s-1; -30%) membrane vesicles. When CMV were isolated from hepatocytes treated with dibutyryl cAMP, a double-exponential fit was needed, implying two functionally different vesicle populations; one population had Pf and Ea values similar to those of CMV from untreated hepatocytes, but the other population had a very high Pf (655 +/- 135 mum.s-1, 25 degrees C) and very low Ea (2.8 kcal/mol). Dimethyl sulfoxide completely inhibited the high Pf value in this second vesicle population. In contrast, Pf and Ea of BLMV were unaltered by cAMP treatment of hepatocytes. Our results are consistent with the presence of both lipid- and AQP-mediated pathways for basolateral and canalicular water movement across the hepatocyte plasma membrane barrier. Our data also suggest that the hepatocyte canalicular membrane domain is rate-limiting for transcellular water transport and that this domain becomes more permeable to water when hepatocytes are exposed to a choleretic agonist, presumably by insertion of AQP molecules. These data suggest a molecular mechanism for the efficient coupling of osmotically active solutes and water transport during canalicular bile formation.  相似文献   

12.
On the basis of evidence derived mostly from human erythrocytes, it has been suggested that water traverses cell membranes through membrane-spanning proteins such as the anion channel or the glucose transporter acting as water pores. However, specific inhibitors of such permeation processes have not been found to block water transport, and hence a precise identification of the water route has not been possible so far. We have investigated this issue by characterizing the osmotic flows across a fluid-transporting epithelium, the rabbit corneal endothelium. The rate of such flows was monitored continuously as a function of time. We confirmed prior findings of an inhibition by PCMBS on osmotic water flow, and lack of inhibition by DTNB and DIDS. On the other hand, we have found for the first time that several blockers of glucose facilitated diffusion, namely, phloretin (2 mM), phloridzin (2 mM), diallyldiethylstilbestrol (0.1 mM), cytochalasin B (20 micrograms/ml), and ethylidene-D-glucose (200 mM), all clearly inhibit osmotic flow. Our evidence is consistent with the hypothesis that both water and glucose may traverse these cell membranes through the same channel-like pathway contained in the glucose transporter membrane-spanning protein.  相似文献   

13.
During postnatal maturation, there is an increase in renal brush border membrane vesicle (BBMV) osmotic water permeability and a parallel increase in aquaporin-1 (AQP1) protein abundance. The mechanisms responsible for these changes remain unknown. Because serum glucocorticoid levels rise postnatally and have previously been linked to other maturational changes in renal function, we examined the effects of glucocorticoids on osmotic (Pf) and diffusional (P(DW)) water permeability and AQP1 protein abundance of renal BBMV. Neonatal rabbits were treated with dexamethasone (10 microg/100 g) for three days and compared with control neonates and adults. Pf and P(DW) were measured at 20 degrees C with a stopped-flow apparatus using light-scattering and aminonaphthalene trisulfonic acid (ANTS) fluorescence, respectively. Pf was significantly higher in BBMV from dexamethasone-treated neonates compared with vehicle-treated neonates, but remained lower than in BBMV from adults (P<0.05). P(DW) in dexamethasone and vehicle-treated neonatal BBMV was lower than in adult BBMV. Pf/P(DW) ratio increased from neonate (5.1+/-0.3) to dexamethasone (7.0+/-0.1) and adult BBMV (6.3+/-0.1). AQP1 expression was increased by dexamethasone treatment to adult levels. Membrane fluidity, which is inversely related to generalized polarization (GP) of steady-state laurdan fluorescence, was significantly higher in neonatal BBMV than both dexamethasone and adult BBMV (GP: neonate 0.285+/-0.002, dexamethasone treatment 0.302+/-0.006, and adult 0.300+/-0.005; P<0.05). These combined results show that dexamethasone-treatment during days 4-7 of life increases BBMV water permeability despite a decrease in membrane fluidity. This occurs by increasing channel-mediated water transport, as reflected in an increase in AQP1 protein abundance and a higher Pf/P(DW) ratio. This mimics the maturational changes and suggests a physiological role for glucocorticoids in maturation of proximal tubule water transport.  相似文献   

14.
Transtrophectodermal 3-0-methyl glucose (3-0MG) transport in the rabbit blastocyst at Days 6 and 7 post coitum was investigated to understand better how the trophectoderm can regulate inner cell mass growth by controlling substrate availability. 3-0MG rapidly traversed the trophectoderm and displayed saturation kinetics (Km = 4.3 +/- 0.5 mM, Vmax = 79 +/- 3.8 nmol.cm-2). The flux of 3-0MG was inhibited nearly 95% by 10(-4) M-phloretin, and only 15% by 10(-4) M-phlorizin. Furthermore, 3-0MG influx was inhibited by cytochalasin B (5 microM) and was unaffected by removal of sodium. The transport system had a high specificity for 2-deoxy-D-glucose and glucose, and a very low specificity for fructose and 4-alpha-methyl glucoside. Western blots probed with a polyclonal antibody to the human erythrocyte glucose transport protein and also with a polyclonal antibody to the C-terminus of the glucose transport protein of the rat brain revealed a broad band with a molecular weight of 55,000. Using immuno-gold labelling techniques, Na(+)-independent glucose transporters were localized to both the apical and basolateral borders of the trophectodermal cell. These results suggest that the mechanism in the trophectoderm responsible for transport of glucose is similar to other sodium-independent glucose transport systems. In addition, 3-0MG influx was unaffected by short-term incubation with progesterone, the progesterone antagonist mifepristone (RU-486), PGF-2 alpha, PGE-2, insulin, or cAMP. Day-7 p.c. embryos also transported hexoses by a similar system because the influx rate and the phlorizin/phloretin sensitivity were the same as in the Day-6 p.c. embryo.  相似文献   

15.
Target analysis studies of red cell water and urea transport   总被引:1,自引:0,他引:1  
Radiation inactivation was used to determine the nature and molecular weight of water and urea transporters in the human red cell. Red cells were frozen to -50 degrees C in a cryoprotectant solution, irradiated with 1.5 MeV electrons, thawed, washed and assayed for osmotic water and urea permeability by stopped-flow light scattering. The freezing and thawing process did not affect the rates of water or urea transport or the inhibitory potency of p-chloromercuribenzenesulfonate (pCMBS) on water transport and of phloretin on urea transport. Red cell urea transport inactivated with radiation (0-4 Mrad) with a single target size of 469 +/- 36 kDa. 40 microM phloretin inhibited urea flux by approx. 50% at each radiation dose, indicating that urea transporters surviving radiation were inhibitable. Water transport did not inactivate with radiation; however, the inhibitory potency of 2.5 mM pCMBS decreased from 86 +/- 1% to 4 +/- 9% over a 0-2 Mrad dose range. These studies suggest that red cell water transport either required one or more low-molecular-weight proteins, or is lipid-mediated, and that the pCMBS-binding site which regulates water flow inactivates with radiation. These results also suggest that red cell urea transport is mediated by a specific, high-molecular-weight protein. These results do not support the hypothesis that a band 3 dimer (190 kDa) mediates red cell osmotic water and urea transport.  相似文献   

16.
The pre-steady-state kinetics of the vasopressin-induced increase in collecting tubule osmotic water permeability (Pf) has been measured by a new fluorescence technique. Isolated cortical collecting tubules (CCT) from rabbit kidney were perfused with physiological buffers containing the impermeant fluorophores fluorescein sulfonate (FS) and pyrenetetrasulfonic acid (PTSA). Tubules were subject to a 120 mOsm bath-to-lumen osmotic gradient in the presence and absence of 250 microU/ml vasopressin. The magnitude of transepithelial volume flow was determined from the self-quenching of FS, or from the ratio of PTSA/FS fluorescence, measured at 380 nm excitation and 420 +/- 10 nm (PTSA) and greater than 530 nm (FS) emission wavelengths. Pf was calculated from the magnitude of transepithelial volume flow, lumen and bath osmolarities, lumen perfusion rate, and tubule geometry. The instrument response time for a change in bath osmolality was less than 3 s. At 37 degrees C, CCT Pf was (in units of cm/s x 10(4] 13 +/- 2 (mean +/- SE, 16 tubules) before, and 227 +/- 10 after addition of vasopressin to the bath. CCT Pf began to increase in 23 +/- 3 s after vasopressin addition and was half-maximal after 186 +/- 20 s. At 23 degrees C, Pf was 9 +/- 1 (seven tubules) before, and 189 +/- 12 after vasopressin addition. Pf began to increase in 40 +/- 4 s and was half-maximal after 195 +/- 35 s. After vasopressin removal from the bath, Pf decreased to its baseline value with a half-time of 14 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The regulation of transepithelial water permeability in toad urinary bladder is believed to involve a cycling of endocytic vesicles containing water transporters between an intracellular compartment and the cell luminal membrane. Endocytic vesicles arising from luminal membrane were labeled selectively in the intact toad bladder with the impermeant fluid-phase markers 6-carboxyfluorescein (6CF) or fluorescein-dextran. A microsomal preparation containing labeled endocytic vesicles was prepared by cell scraping, homogenization, and differential centrifugation. Osmotic water permeability was measured by a stopped-flow fluorescence technique in which microsomes containing 50 mM mannitol, 5 mM K phosphate, pH 8.5 were subject to a 60-mM inwardly directed gradient of sucrose; the time course of endosome volume, representing osmotic water transport, was inferred from the time course of fluorescence self-quenching. Endocytic vesicles were prepared from toad bladders with hypoosmotic lumen solution treated with (group A) or without (group B) serosal vasopressin at 23 degrees C, and bladders in which endocytosis was inhibited by treatment with vasopressin at 0-2 degrees C (group C), or with vasopressin plus sodium azide at 23 degrees C (group D). Stopped-flow results in all four groups showed a slow rate of 6CF fluorescence decrease (time constants 1.0-1.7 s for exponential fit) indicating a component of nonendocytic 6CF entrapment into sealed vesicles. However, in vesicles from group A only, there was a very rapid 6CF fluorescence decrease (time constant 9.6 +/- 0.2 ms, SEM, 18 separate preparations) with an osmotic water permeability coefficient (Pf) of greater than 0.1 cm/s (18 degrees C) and activation energy of 3.9 +/- 0.8 kcal/mol (16 kJ/mol). Pf was inhibited reversibly by greater than 60% by 1 mM HgCl2. The rapid fluorescence decrease was absent in vesicles in groups B, C, and D. These results demonstrate the presence of functional water transporters in vasopressin-induced endocytic vesicles from toad bladder, supporting the hypothesis that water channels are cycled to and from the luminal membrane and providing a functional marker for the vasopressin-sensitive water channel. The calculated Pf in the vasopressin-induced endocytic vesicles is the highest Pf reported for any biological or artificial membrane.  相似文献   

18.
The glucose transport across the bovine retinal pigment epithelium (RPE) was studied in a modified Ussing chamber. Unidirectional fluxes were recorded with radioactive tracers L-[14C]-glucose (LG) and 3-O-methyl-D-[3H]-glucose (MDG). There was no significant difference between the unidirectional MDG fluxes (retina to choroid, and choroid to retina directions) with or without ouabain. The effects of two glucose transporter inhibitors, phloretin and cytochalasin B, on the glucose fluxes from choroid to retina cells were also investigated. The MDG flux was found to be inhibited by 45.5% by phloretin (10(-4) M) and 87.4% by cytochalasin B (10(-4) M). These inhibitory characteristics resembled the facilitated diffusion mode of glucose transport. The glucose transporter protein in the plasma membrane of RPE was located by means of photolabeling [3H]-cytochalasin B. The labeled plasma membrane enriched fraction was analysed by SDS-PAGE. The glucose transporter of bovine RPE was found to have a molecular weight range of 46-53 kDa. The molecular weight range of this transporter protein agreed with those of facilitated glucose transporters in other tissues indicating a molecular similarity between them. The results indicated that the glucose transport across the RPE is via passive facilitated diffusion.  相似文献   

19.
Glucose inhibitable cytochalasin B binding to erythrocyte membranes has been used as a marker of the glucose transporter. Glucose transport and cytochalasin B binding in rabbit erythrocytes differ from those activities found in human erythrocytes. We evaluated the uptake of 3-0-methylglucose and found similar Km (4.81 +/- 1.20 mM (SEM) and 6.59 +/- 0.72 mM) though significantly different Vmax (5.2 +/- 0.7 nM . min-1/10(9) cells and 234 +/- 13 nM X min -1/10(9) cells, p less than 0.001) for rabbit and human erythrocytes, respectively. Equilibrium binding of cytochalasin B to human erythrocyte membranes demonstrates a high affinity cytochalasin B binding site (Kd 38.6 +/- 22.7 nM) which is displaced by glucose. No comparable glucose inhibitable cytochalasin B site exists for rabbit erythrocyte membranes. Photoaffinity labeling of cytochalasin B confirms the presence of a glucose inhibitable cytochalasin B binding site in human, but not rabbit erythrocyte membranes. Cytochalasin B binding is a useful method in the identification of the glucose transporter in human cells, but the technique may be less useful in other species.  相似文献   

20.
Signals that regulate GLUT4 translocation   总被引:7,自引:0,他引:7  
We have shown that there is a maturational increase in osmotic water permeability (Pf) of rabbit renal brush border membrane vesicles (BBMV). The purpose of the present study was to further investigate the changes in proximal tubule water transport that occur during postnatal development. Diffusional water permeability (PDW) has not been measured directly in adult or neonatal BBMV. We validated the method described by Ye and Verkman (Simultaneous optical measurement of osmotic and diffusional water permeability in cells and liposomes. Biochemistry 28:824-829, 1989) to measure PDW in red cell ghosts and liposomes, to examine the maturational changes in PDW in BBMV. This method utilizes the sensitivity of 8-aminonaphtalene-1,3,6-trisulfonic acid (ANTS) fluorescence to the D2O-H2O content of the solvent. ANTS-loaded neonatal (11 days old) and adult BBMV were rapidly mixed with two volumes of isoosmotic D2O solution using a stopped-flow apparatus at 5 degrees -37 degrees C. PDW was lower in neonatal than adult BBMV at 5 degrees (3.77 +/- 0.34 vs. 5.35 +/- 0.43 mm/sec, respectively, p<0.05) and 20 degrees C (7.03 +/- 0.40 vs. 9.04 +/- 0.25 mm/sec, respectively, p<0.001), but was not different at 30 degrees and 37 degrees C. The activation energy (Ea) was higher in neonatal than in adult BBMV (9.29 +/- 0.56 kcal/mol vs. 6.46 +/- 0.56 kcal/mol, p<0.001). In adult BBMV, PDW was inhibited by 0.5 mM HgCl2 by 46.6 +/- 3.6%, while it was not affected in neonatal BBMV (p<0.001). The results indicate that PDW can be measured in rabbit renal BBMV. There are significant changes in water transport across the apical membrane during postnatal development, consistent with a maturational increase in channel-mediated water transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号