首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stipe lengths of sporophytes of Ecklonia cava Kjellman have been reported to be longer along the southeast than southwest coast of the Izu Peninsula, central Japan. Two bays in this region that have natural populations of E. cava, but with different stipe lengths, were chosen for transplant experiments to examine if stipe length was an environmentally controlled trait. Transplant experiments were carried out in order to determine whether large-type sporophytes of E. cava with long stipes growing in Nabeta Bay (southeast Izu Peninsula, Japan) would turn into small-type sporophytes with short stipes when transplanted to Nakagi Bay (southwest Izu Peninsula). Ten juvenile sporophytes of E. cava (stipe length < 5 cm) were collected from Nabeta Bay (large-type habitat) and transplanted to Nakagi Bay (short-type habitat) in December 1995. As a transplant control, ten juvenile sporophytes of E. cava growing in Nakagi Bay were also transplanted to the same artificial reefs. Growth and survival rates of the sporophytes were monitored monthly for 3 y until December 1998. The transplanted sporophytes showed an increase in their stipe length and diameter from winter to spring, whereas almost no increase was observed from summer to autumn. However, the elongation was greater in Nabeta sporophytes than in Nakagi sporophytes. The primary blade length increased mainly from winter to early spring and decreased largely in autumn. Average primary blade lengths were similar in both Nabeta and Nakagi sporophytes from the end of the first year of transplanting. Although ca. 70% of both Nabeta and Nakagi sporophytes survived during the first 2 y after transplantation, no Nakagi sporophytes and only two Nabeta sporophytes survived to the end of the 3 y study period. Despite transplantation to Nakagi Bay, where short sitpes are naturally present, the sporophytes from Nabeta Bay persisted in having longer stipes, which suggests that stipe length is genetically, rather than environmentally, controlled.  相似文献   

2.
Sporophytes of Ecklonia cava Kjellman (Laminariales, Phaeophyta) were collected seasonally from within 3–4 replicate, 1‐m2 quadrates, haphazardly placed in dense assemblages at 6–9 m depth in Tei, Tosa Bay (southern Japan; water temperature 15–29°C) from 1995 to 1996, and in Nabeta Bay, Shimoda (central Japan; water temperature 13–25°C) from 1996 to 1997. Growth rings were checked for all samples and mean values of each biometric parameter of sporophytes 1‐year‐old and over were compared. The plant length (stipe length + primary blade length) was always shorter in Tei sporophytes (24–52 cm) than Nabeta sporophytes (70–100 cm), the difference being mainly owing to the shorter stipe length in Tei sporophytes (7–14 cm) than in Nabeta sporophytes (54–83 cm). However, the primary blade length was sometimes longer in Tei sporophytes (12–38 cm) than in Nabeta sporophytes (14–21 cm). Stipe diameter, longest bladelet length and primary blade width were mostly less in Tei sporophytes (8.6–12.4 mm, 5.5–7.0 cm and 23.4–38.0 cm, respectively) than Nabeta sporophytes (16.4–20.2 mm, 9.2–12.0 cm and 43.0–52.6 cm, respectively). Nevertheless, the number of bladelets of sporophytes from Tei (15–28) and Nabeta (18–29) were within the same range. At Tei, 32–43% of the sporophytes had wrinkled blades in summer and autumn, whereas wrinkled primary blades or bladelets were not observed in Nabeta sporophytes throughout the experimental period. These morphometric differences of E. cava between the two localities are suggested to be dependent on environmental factors, especially seawater temperature.  相似文献   

3.
Young sporophytes of short-stipe ecotype ofEcklonia cavafrom a warmer locality (Tei, Kochi Pref., southern Japan) and those of long-stipe ecotype from a cooler locality (Nabeta, Shizuoka Pref., central Japan) were transplanted in 1995 to artificial reefs immersed at the habitat of long-stipe ecotype in Nabeta Bay, Shizuoka Pref., central Japan. The characteristics of photosynthesis and respiration of bladelets of the transplanted sporophytes of the two ecotypes were compared in winter and summer 1997; the results were assessed per unit area, per unit chlorophyllacontent and per unit dry weight. In photosynthesis-light curves at 10–29 °C, light saturation occurred at 200–400 mol photon m–2s–1in sporophytes from both Tei and Nabeta. The maximum photosynthetic rate (P max) at 10–29 °C and the light-saturation index (I k) at 25–29 °C in sporophytes from both localities were generally higher in winter than in summer.P maxat 25–29 °C (per unit area and chlorophylla) were higher in sporophytes from Tei than those from Nabeta in both seasons. The optimum temperature for photosynthesis was 25 °C in winter and 27 °C in summer at high light intensities of 100–400 mol photon m–2s–1. However, at lower light intensities of 12.5–50 mol photon m–2s–1, it was 20 °C in winter and 25–27 °C in summer for sporophytes from both locations. Dark respiration increased with temperature rise in the range of 10–29 °C in sporophytes from both locations in summer and winter. The sporophytes transplanted from Tei (warmer area) showed higher photosynthetic activities than those from Nabeta (cooler area) at warmer temperatures even under the same environmental conditions. This indicates that these physiological ecotypes have arisen from genetic differentiation.  相似文献   

4.
Characteristics of photosynthesis and respiration of bladelets were compared between Ecklonia cava Kjellman sporophytes growing in a warmer temperate locality (Tei, Kochi Pref., southern Japan) and in a cooler temperate locality (Nabeta, Shizuoka Pref., central Japan). Photosynthesis and respiration were measured with a differential gas-volumeter (Productmeter). In photosynthesis-light curves at 20°C, the rate of net photosynthesis was almost the same at light intensities lower than 25 μmol m−2 s−1 and the light-saturation occurred at 200–400 μmol m−2s−1 in plants of both localities. The light-saturated net photosynthetic rates were higher in winter and spring than in summer and autumn in both plants. The optimum temperature for net photosynthesis at 400 μmol m−2s−1 was 27°C throughout the year in the Tei plant and 25–27°C in the Nabeta plant. The decrease of net photosynthetic rates in the supraoptimal temperature range up to 29°C was sharper in winter and spring than in summer and autumn in both plants, being smaller in the Tei plant than in the Nabeta plant in all seasons. The dark respiration rate always increased with water temperature rise in both plants. No clear differences were found in the dark respiration rate between Tei and Nabeta plants except that when measured against dry weight, the Tei plant showed a slightly lower rate as compared with the Nabeta plant.  相似文献   

5.
Sporophytes of Ecklonia cava Kjellman (Laminariales, Phaeophyta) with a stipe length of 22–102 cm were collected at 6–9 m depth in Nabeta Bay, Shimoda, central Japan by scuba diving in February (winter) and in August (summer) 1998. Dark respiration of the intact stipe of E. cava was measured at various water temperatures ranging from 15 to 27.5°C in winter and 15–30°C in summer in a closed system by using a dissolved oxygen meter. The stipe respiration was compared on whole stipe, length, surface area, volume, wet weight and dry weight bases. On each basis, the stipe respiration always increased with a rise in water temperature within the temperature range investigated. The stipes showed similar respiration rates on each basis of length, surface area, volume, wet weight and dry weight at each temperature, irrespective of the stipe length. The mean respiration rates in winter (at 15–27.5°C) were: length, 16.7–32.5 μL O2 cm?1 h?1; surface area, 3.2–6.2 μL O2 cm?2 h?1; volume, 7.6–15.0 μL O2 cm?3 h?1; wet weight, 6.2–12.2 μL O2 g (wet weight)?1 h?1; and dry weight, 43.8–88.0 μL O2 g (dry weight)?1 h?1. Those for summer (at 15–30°C) were: length, 17.1–32.0 μL O2 cm?1 h?1; surface area, 3.6–6.8 μL O2 cm?2 h?1; volume, 9.7–18.7 μL O2 cm?3 h?1; wet weight, 7.6–14.6 μL O2 g (wet weight)?1 h?1; and dry weight, 49.4–95.8 μL O2 g (dry weight)?1 h?1. This is the first report of the intact stipe respiration of E. cava at various temperatures.  相似文献   

6.
Photosynthetic rates were compared between Ecklonia cava bladelets with and without zoosporangial sori sampled from the subtidal zone (about 5 m deep) in Nabeta Bay, Shimoda, Japan. Photosynthetic rates of bladelets were lower in the sorus portion than in the non-sorus portion on the basis of area, dry weight and chlorophyll a. Respiration rates were higher in the sorus portion than in the non-sorus portion on the basis of area and chlorophyll a, whereas they were almost the same on a dry weight basis. The differences were mainly due to a large difference in dry weight per unit bladelet area between the sorus and the non-sorus portion. Light compensation points were higher in the sorus portion than in the non-sorus portion.  相似文献   

7.
Monthly growth and reproduction of Undaria pinnatifida sporophytes were examined over a period of 5 months in a cultivation farm in Korea. A total of 11 characters of Undaria were measured to determine a reliable morphological character representing its growth and reproduction. Plant weight of Undaria sporophytes increased steadily over the experimental period, but it increased in four different ways. Undaria pinnatifida increased body weight by growth in length and width (October–early December), and by growth in width with the thickening of blade and stipe when sporophytes began to be fertile (December–January). In the middle of January, growth in length and width had almost stopped with the maturation of Undaria sporophytes. Finally, the weight of Undaria increased again by growth in width at the end of February. Present results indicate that Undaria sporophytes increase body weight by growth in length and width at different times, and the relationship between reproduction and vegetative growth is exclusive. Plant weight was positively correlated and fitted well with stipe width and blade width. The blade of Undaria was very thin (ca. 254 μm) and breakable by wave action, but its stipe was strong and relatively thick (ca. 8.7 mm). Furthermore, the fertility of U. pinnatifida was fitted better with stipe width than blade width. Thus, we suggest that the stipe width is the most feasible character with which to estimate the growth and reproduction of U. pinnatifida sporophytes in the cultivation farm.  相似文献   

8.
Undaria pinnatifida sporophytes, originating from the same strain, were cultured at the commercial cultivation site exposed to wave action and the uncultivated site protected from water action of Okirai Bay, Northeast Japan, from January to April 2007; simultaneously, water flow velocity, water temperature, salinity, NO3 + NO2, and chlorophyll a were monitored to investigate the effect of water environment on their growth and morphology. Water temperature and salinity fluctuated within the optimal range for their growth whereas water flow velocity at the cultivation site was greatly fast compared with that at the uncultivated site. Successive chlorophyll a increases synchronized with NO3 + NO2 decreases were observed only at the uncultivated site for over a month; indicating developments of phytoplankton blooms and their nutrient consumption under the low-flow condition. Meanwhile, blade growth rate of cultured sporophytes was higher at the cultivation site than at the uncultivated site. Their thallus size expressed by six morphological characters (blade length, stipe length, blade wet weight, stipe wet weight, blade width, and undivided blade width) at the cultivation site became large in comparison with that at the uncultivated site. Their three morphological correlations (correlations between blade length and thallus length; blade wet weight and thallus wet weight; and undivided blade width and blade width) differed between the sites. They produced a thick and flat blade at the cultivation site but formed a thin and wrinkled blade at the uncultivated site. These results show the significant impact of water flow velocity on their growth and morphology.  相似文献   

9.
In northern Japan, massive production of high-quality specimens of the kelp Undaria pinnatifida prior to the traditional harvest season is strongly needed to meet commercial demand. To address this need, we tested the effects of controlled thinning by cutting small plants on the growth and maturation of sporophytes cultivated in Matsushima Bay, northern Japan. In early December 2009, the stocking densities of cultivated kelps were thinned to 10 and 5 plants per 4 cm thread section in two experimental groups. In contrast, no thinning was conducted during cultivation until March 2010 in the control group (about 16–20 plants per 4 cm thread section). Morphological features, photosynthesis, and carbon and nitrogen contents were compared among the three groups. Compared to kelps of control group, total length, stipe width, the length and width of sporophyll, and dry weights of blade and sporophyll showed significantly higher values in kelps of the two experimental groups. However, stipe length of kelps of control group was significantly greater than those of the two experimental groups. The photosynthetic rates and nitrogen contents of kelps of the two experimental groups were significantly greater than those of the control from January to March. No significant differences occurred in all these parameters between kelps of the two experimental groups. Based on these results, the growth and maturation of U. pinnatifida sporophytes can be promoted greatly by experimental thinning, and this will improve production of high-quality specimens of kelps and increase economic returns before the traditional harvest season.  相似文献   

10.
Recently, withering of farmed juvenile sporophytes of the kelp Undaria pinnatifida (Harvey) Suringar has led to reduced production of this species in northern Japan, possibly because of the high water temperature and low nutrient concentration in cultivation areas. This problem may be solved by introducing parental plants with greater tolerance to high temperature and low nutrient conditions. We examined the combined effects of various temperatures (15, 20, 24, and 27 °C) and nutrient availabilities (seawater enriched with 25 % PESI medium and non-enriched seawater) on the growth and survival of cultivated juvenile sporophytes (1–2 cm) collected from Matsushima Bay, Miyagi Prefecture in northern Japan and Naruto, Tokushima Prefecture in southern Japan. The relative growth rates of juvenile sporophytes from both locations were significantly greater at 15 and 20 °C than at 24 and 27 °C. The juvenile sporophytes cultured in enriched medium had significantly higher relative growth rates than those cultivated in non-enriched seawater. Dead juveniles were observed in non-enriched seawater at all temperatures and the survival percentage decreased with increasing seawater temperatures. Compared to the juvenile sporophytes from Matsushima Bay, those from Naruto showed greater tolerance to high temperature even under the low nutrient condition. These results suggest that the withering of juvenile sporophytes is caused by the combined effects of low nutrient availability and high temperature. A potential solution to this problem is to introduce ecotypes with greater tolerance to high temperature and low nutrient conditions from a warmer region of Japan.  相似文献   

11.
The kelp Undaria pinnatifida has a widespread latitudinal range in Japan, with populations exposed to very different temperature regimes. To test the hypothesis that U. pinnatifida exhibits genetic differentiation in its temperature response, juvenile sporophytes from a warmer location (Naruto, southern Japan) and two colder locations (Okirai Bay and Matsushima Bay, northern Japan) were collected and transplanted to long lines, cultivated under the environmental conditions in Matsushima Bay. These plants were bred using successive self-crossing methods for three generations and the characteristics of photosynthesis, growth, survival, and nitrogen contents of the third-generation juvenile sporophytes (2–3 cm) then were measured and compared. The plants from Naruto showed significantly higher photosynthetic activities and respiration than those from the northern populations at warmer temperatures of 20–35°C. The juvenile sporophytes from all three locations had similar growth rates below 18°C, but significant differences were observed at 18–24°C. The optimum temperatures for growth were 14–16°C in plants that originated from Okirai Bay and Matsushima Bay and 18°C in plants that originated from Naruto. These results reflected the differences in latitude. Dead plants were observed at high temperatures of 22 and 24°C in the northern population plants, whereas no plants from Naruto died. Juvenile sporophytes from Naruto exhibited the greatest capacity to accumulate high nitrogen reserves. These results suggest that the differences in high-temperature tolerance in juvenile U. pinnatifida sporophytes from geographically separated populations are due to genetic differentiation rather than phenotypic plasticity.  相似文献   

12.
Notoya  Masahiro  Aruga  Yusho 《Hydrobiologia》1990,204(1):241-246
Ecklonia stolonifera is distributed along the coast facing the Sea of Japan. The size of various parts of the shoot (blade length and width and stipe length and diameter) and the age were determined at Ooma, Aomori Prefecture. The smaller the holdfast, the higher the percentage of one-year-old shoots. Holdfasts 10 cm in diameter seemed to be three years old, whereas holdfasts 40 cm in diameter seemed to be five or more years old. Zoosporangial sori were observed on blades three or more years old. Ecklonia stolonifera holdfast diameter expands only vegetatively by stoloniferous rhizoids. Zoospores, formed on shoots three or more years old, serve for the formation of new populations.  相似文献   

13.
Drifting Macrocystis pyrifera (L.) C. Agardh sporophytes have long been viewed as the primary long‐distance dispersal vector; yet, few data exist that support the ability of reproductive viable sporophytes to actually travel the presumed hundreds to thousands of kilometers. This study addressed the reproductive longevity of experimental and naturally occurring M. pyrifera drifters. Temporal variability in sporophyte size and reproduction was estimated for experimental drifting sporophytes that were tethered to surface buoys and compared with attached plants (controls). Reproductive viability was also studied for beach‐cast drifters (BCD), and naturally drifting sporophytes observed during field surveys in Monterey Bay. Detached drifting sporophytes were tracked with radio transmitters to follow drifter trajectories and to measure drifting speed. Experimental drifters (ED) experienced a 74% reduction in frond length after 35 days, a 76% reduction in average frond number after 70 days, and a reduction in average sorus area by 83% after 28 days. Although zoospore production was reduced following detachment, sporophytes remained fertile with high zoospore germination success as long as sori were present (125 days). Zoospore production and germination success for natural and BCD was similar to ED. The average displacement of radio‐tagged drifters was 7.12 km·day?1, suggesting that a sporophyte adrift for 125 days disperses viable propagules (zoospores) over 890 km (±363). Dispersal of propagules is important for population restoration, distribution, and genetic diversity. Such dispersal distances are long enough to connect potentially all Northern Hemisphere Macrocystis populations across a generational timescale and may facilitate inter‐hemispheric gene flow.  相似文献   

14.
A new species of Avrainvillea was found on the South Pacific island of Rotuma, Fiji. Avrainvillea rotumensis sp. nov. occurs 1.5-3.0 m deep in a high energy current area of the Hoféa Passage, one of the few openings in the fringing reef that surrounds the island. The distinctive peltate growth habit of A. rotumensis is unique for the genus and facilitates quick and accurate field identification. The peltate blade (7–9 cm in diameter at maturity) is unusually thick (34 mm) tapering toward a short (up to 6 cm in length), thick (1.5-2.0 cm in diameter) stipe.  相似文献   

15.
The distributions of Laminaria saccharina and the long and short stipe forms of L. groenlandica about Vancouver Island were correlated with temperature, salinity, and water motion. The 2 forms of L. groenlandica were absent from areas of high temperature and low salinity. The long stipe form was restricted to areas of heavy surf and the short stipe form to areas of moderate surf. L. saccharina was absent from areas subjected to surf. These observations were subjected to laboratory and field tests involving gametophytes and sporophytes of both species. The distributions of the 2 forms of L. groenlandica can be explained on the basis of temperature and salinity distributions: both forms require low temperature and high salinity for survival. L. saccharina has a wide range of tolerance to temperature and salinity; surf appears to be the controlling agent.  相似文献   

16.
Seaweed beds play a key role in providing essential habitats and energy to coastal areas, with enhancements in productivity and biodiversity and benefits to human societies. However, the spatial extent of seaweed beds around Japan has decreased due to coastal reclamation, water quality changes, rising water temperatures, and heavy grazing by herbivores. Using monthly mean sea surface temperature (SST) data from 1960 to 2099 and SST‐based indices, we quantitatively evaluated the effects of warming seawater on the spatial extent of suitable versus unsuitable habitats for temperate seaweed Ecklonia cava, which is predominantly found in southern Japanese waters. SST data were generated using the most recent multiple climate projection models and emission scenarios (the Representative Concentration Pathways or RCPs) used in the Coupled Model Intercomparison Project phase 5 (CMIP5). In addition, grazing by Siganus fuscescens, an herbivorous fish, was evaluated under the four RCP simulations. Our results suggest that continued warming may drive a poleward shift in the distribution of E. cava, with large differences depending on the climate scenario. For the lowest emission scenario (RCP2.6), most existing E. cava populations would not be impacted by seawater warming directly but would be adversely affected by intensified year‐round grazing. For the highest emission scenario (RCP8.5), previously suitable habitats throughout coastal Japan would become untenable for E. cava by the 2090s, due to both high‐temperature stress and intensified grazing. Our projections highlight the importance of not only mitigating regional warming due to climate change, but also protecting E. cava from herbivores to conserve suitable habitats on the Japanese coast.  相似文献   

17.
A previously unknown species of kelp was collected on Kagamil Island, Aleutian Islands. The species can be easily distinguished from any known laminarialean alga: the erect sporophytic thallus is composed of a thin lanceolate blade attaining ~2 m in height and ~0.50 m in width, without midrib, and the edge of the blade at the transition zone is thickened to form a V‐shape; the stipe is solid and flattened, slightly translucent, attaining ~1 m in length; the holdfast is semidiscoidal and up to 0.15 m in diameter. Anatomically, the blade has the typical trumpet‐shaped hyphae characteristic of the Chordaceae and derived foliose laminarialean species (i.e., Alariaceae/Laminariaceae/Lessoniaceae). No hair pits or mucilaginous structures were observed on the blade or stipe. No fertile sporophytes were collected, but abundant juvenile sporophytes were observed in the field. In the molecular phylogenetic analyses using chloroplast rbcL gene, nuclear ITS1‐5.8S‐ITS2 rDNA, and mitochondria nad6 DNA sequences, the new species (Aureophycus aleuticus gen. et sp. nov.) showed a closer relationship with Alariaceae of conventional taxonomy, or the “Group 1” clade of Lane et al. (2006) including Alaria and related taxa than with other groups, although the species was not clearly included in the group. Aureophycus may be a key species in elucidating the evolution of the Alariaceae within the Laminariales. Because of the lack of information on reproductive organs and insufficient resolution of the molecular analyses, we refrain from assigning the new species to a family, but we place the new species in a new genus in the Laminariales.  相似文献   

18.
Marine forests are the main primary producer in coastal waters, supplying food to fish and shellfish as well as providing their spawning and growing sites. It is important to conserve marine forest in order to protect coastal marine environments. A “Marine Block” comprised of steelmaking slag particles combined by CaCO3 has several merits: (1) solidification of CO2, (2) stability and safety, (3) porous materials covered with CaCO3, (4) harmony with the seabed environment, (5) recycling of iron by-products, and (6) the ability to be mass produced in coastal ironworks. The objectives of this study were to observe the algal succession, the growth of Ecklonia cava and other attached organisms on Marine Blocks and concrete blocks compared to natural seaweed beds. In November 2001, five 1 m3 Marine Blocks and five 1 m3 concrete blocks were installed close to E. cava beds around the coastal frontage of Jogashima at the mouth of Tokyo Bay. Scuba-diving observations were continued until April 2006. In the field, a large number of seaweed and animal species were observed on the Marine Blocks, and it was found that the speed of succession, the plant length and the wet weight of E. cava were greater on Marine Blocks than on concrete blocks. The main advantages of Marine Blocks are considered to be the recycling of steelmaking slag, the absorption and solidification of atmospheric CO2, and the conservation of coastal environments.  相似文献   

19.
Laboratory and field experiments were done hi Still-water Cove, Carmel Bay, California, and Monterey Harbor, California, to determine the effect of photosynthetically active radiation (PAR) on the shallow (upper) limit of giant kelp, Macrocystis pyrifera (L.) C. Agardh. At shallow depths, M. pyrifera did not recruit or grow to macroscopic size from gametophytes or embryonic sporophytes transplanted to vertical buoy lines; sharp decreases in PAR with depth coincided with observed recruitment and sporophyte distributions. Shade manipulations indicated that settlement of M. pyrifera zoospores was decreased, but not prohibited, by high PAR. Postsettlement stages (gametophytes and embryonic sporophytes), however, survived only under shade. These results suggest that high PAR can inhibit the recruitment of M. pyrifera to shallow water by killing its postsettlement stages; whether or not ultraviolet (UV) radiation also inhibits recruitment was not tested. In either case, however, it appears that high irradiance (PAR and/or UV) regulates the shallow limit of M. pyrifera prior to temperature and desiccation stresses inherent to intertidal regions. In an additional experiment, recruitment or growth of transplanted gametophytes or embryonic sporophytes of Macrocystis integrifolia Bory also did not occur at shallow depths, suggesting that this shallow water species accesses high irradiance regions via a method other than sexual reproduction.  相似文献   

20.
Callus formation in Ecklonia cava Kjellman (Laminariales,Phaeophyta)   总被引:1,自引:1,他引:0  
Kawashima  Yukio  Tokuda  Hiroshi 《Hydrobiologia》1990,(1):375-380
Explants from stipes and meristems of Ecklonia cava were incubated on six media under several culture conditions. Both stipe and meristem explants developed calluses three to six weeks after inoculation onto all media except AS PC-1. Calluses developed on stipe explants but did not develop on meristem explants at a temperature of 23 °C. Temperatures from 8 to 13 °C were favorable for callus development. Callus development on meristem explants required light but callus development on stipe explants did not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号