首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The construction of hybrid proteins of PBP1B and PBP3 has been described. One hybrid protein (PBP1B/3) contained the transglycosylase domain of PBP1B and the transpeptidase domain of PBP3. In the other hybrid protein, the putative transglycosylase domain of PBP3 was coupled to the transpeptidase domain of PBP1B (PBP3/1B). The hybrid proteins were localized in the cell envelope in a similar way as the wild-type PBP1B. In vitro isolates of the strains containing the hybrid proteins had a transglycosylase activity intermediate between that of wild-type PBP1B-producing strain and that of a PBP1B overproducer. Analysis with specific antibiotics against PBP1A/1B and PBP3 and mutant analysis in strains containing PBP3/1B revealed no detectable effects in vivo compared with wild-type strains. The same was shown for PBP1B/3 when the experiments were performed in a recA background. The data indicate that the hybrid proteins cannot replace native penicillin-binding proteins. This finding suggests that functional high-molecular-weight penicillin-binding protein specificity is at least in part determined by the unique combination of the two functional domains.  相似文献   

2.
Bacterial cell division requires the coordinated action of cell division proteins and murein (peptidoglycan) synthases. Interactions involving the essential cell division protein FtsN and murein synthases were studied by affinity chromatography with membrane fraction. The murein synthases PBP1A, PBP1B, and PBP3 had an affinity to immobilized FtsN. FtsN and PBP3, but not PBP1A, showed an affinity to immobilized PBP1B. The direct interaction between FtsN and PBP1B was confirmed by pulldown experiments and surface plasmon resonance. The interaction was also detected by bacterial two-hybrid analysis. FtsN and PBP1B could be cross-linked in intact cells of the wild type and in cells depleted of PBP3 or FtsW. FtsN stimulated the in vitro murein synthesis activities of PBP1B. Thus, FtsN could have a role in controlling or modulating the activity of PBP1B during cell division in Escherichia coli.  相似文献   

3.
Staphylococcus aureus is a widespread Gram‐positive opportunistic pathogen, and a methicillin‐resistant form (MRSA) is particularly difficult to treat clinically. We have solved two crystal structures of penicillin‐binding protein (PBP) 3 (PBP3) from MRSA, the apo form and a complex with the β-lactam antibiotic cefotaxime, and used electrospray mass spectrometry to measure its sensitivity to a variety of penicillin derivatives. PBP3 is a class B PBP, possessing an N-terminal non-penicillin‐binding domain, sometimes called a dimerization domain, and a C-terminal transpeptidase domain. The model shows a different orientation of its two domains compared to earlier models of other class B PBPs and a novel, larger N-domain. Consistent with the nomenclature of “dimerization domain”, the N-terminal region forms an apparently tight interaction with a neighboring molecule related by a 2-fold symmetry axis in the crystal structure. This dimer form is predicted to be highly stable in solution by the PISA server, but mass spectrometry and analytical ultracentrifugation provide unequivocal evidence that the protein is a monomer in solution.  相似文献   

4.
The murein (peptidoglycan) sacculus is an essential polymer embedded in the bacterial envelope. The Escherichia coli class B penicillin-binding protein (PBP) 3 is a murein transpeptidase and essential for cell division. In an affinity chromatography experiment, the bifunctional transglycosylase-transpeptidase murein synthase PBP1B was retained by PBP3-sepharose when a membrane fraction of E. coli was applied. The direct protein-protein interaction between purified PBP3 and PBP1B was characterized in vitro by surface plasmon resonance. The interaction was confirmed in vivo employing two different methods: by a bacterial two-hybrid system, and by cross-linking/co-immunoprecipitation. In the bacterial two-hybrid system, a truncated PBP3 comprising the N-terminal 56 amino acids interacted with PBP1B. Both synthases could be cross-linked in vivo in wild-type cells and in cells lacking FtsW or FtsN. PBP1B localized diffusely and in foci at the septation site and also at the side wall. Statistical analysis of the immunofluorescence signals revealed that the localization of PBP1B at the septation site depended on the physical presence of PBP3, but not on the activity of PBP3. These studies have demonstrated, for the first time, a direct interaction between a class B PBP (PBP3) and a class A PBP (PBP1B) in vitro and in vivo, indicating that different murein synthases might act in concert to enlarge the murein sacculus during cell division.  相似文献   

5.
All proteins of Escherichia coli that covalently bind penicillin have been cloned except for the penicillin-binding protein (PBP) 1C. For a detailed understanding of the mode of action of beta-lactam antibiotics, cloning of the gene encoding PBP1C was of major importance. Therefore, the structural gene was identified in the E. coli genomic lambda library of Kohara and subcloned, and PBP1C was characterized biochemically. PBP1C is a close homologue to the bifunctional transpeptidases/transglycosylases PBP1A and PBP1B and likewise shows murein polymerizing activity, which can be blocked by the transglycosylase inhibitor moenomycin. Covalently linked to activated Sepharose, PBP1C specifically retained PBP1B and the transpeptidases PBP2 and -3 in addition to the murein hydrolase MltA. The specific interaction with these proteins suggests that PBP1C is assembled into a multienzyme complex consisting of both murein polymerases and hydrolases. Overexpression of PBP1C does not support growth of a PBP1A(ts)/PBP1B double mutant at the restrictive temperature, and PBP1C does not bind to the same variety of penicillin derivatives as PBPs 1A and 1B. Deletion of PBP1C resulted in an altered mode of murein synthesis. It is suggested that PBP1C functions in vivo as a transglycosylase only.  相似文献   

6.
Penicillin-binding protein 1B (PBP1B) of Escherichia coli is a bifunctional murein synthase containing both a transpeptidase domain and a transglycosylase domain. The protein is present in three forms (alpha, beta, and gamma) which differ in the length of their N-terminal cytoplasmic region. Expression plasmids allowing the production of native PBP1B or of PBP1B variants with an inactive transpeptidase or transglycosylase domain or both were constructed. The inactive domains contained a single amino acid exchange in an essential active-site residue. Overproduction of the inactive PBP1B variants, but not of the active proteins, caused lysis of wild-type cells. The cells became tolerant to lysis by inactive PBP1B at a pH of 5.0, which is similar to the known tolerance for penicillin-induced lysis under acid pH conditions. Lysis was also reduced in mutant strains lacking several murein hydrolases. In particular, a strain devoid of activity of all known lytic transglycosylases was virtually tolerant, indicating that mainly the lytic transglycosylases are responsible for the observed lysis effect. A possible structural interaction between PBP1B and murein hydrolases in vivo by the formation of a multienzyme complex is discussed.  相似文献   

7.
Analysis of the functional role of penicillin-binding protein 1B (PBP1B) of Escherichia coli led us to find a new mutation able to suppress thermosensitive growth of the pbpB2158(Ts) mutant strain, which harbors a thermosensitive PBP3 protein only in the presence of a ponB+ background. The mutation, originally isolated in a strain with a high dosage of PBP1B, could also suppress the pbpB(Ts) phenotype when a single copy of the ponB gene was introduced. These results clearly give further support to the implication of PPB1B in the septation process in Escherichia coli.  相似文献   

8.
We prepared monoclonal antibodies against penicillin-binding protein 1B (PBP 1B) of Escherichia coli to study the membrane topology, spatial organization, and enzyme activities of this protein. The majority of the antibodies derived with PBP 1B as the immunogen reacted against the carboxy terminus. To obtain monoclonal antibodies recognizing other epitopes, we used PBP 1B lacking the immunodominant carboxy-terminal 65 amino acids as the immunogen. Eighteen monoclonal antibodies directed against membrane-bound PBP 1B were isolated and characterized. The epitopes recognized by those monoclonal antibodies were located with various truncated forms of PBP 1B. We could distinguish four different epitope areas located on different parts of the molecule. Interestingly, we could not isolate monoclonal antibodies against the amino terminus, although they were specifically selected for. This is attributed to its predicted extreme hydrophilicity and flexibility, which could make the amino terminus very sensitive to proteolytic degradation. All antibodies reacted against native PBP 1B in a dot-blot immunobinding assay. One monoclonal antibody also recognized PBP 1B in a completely sodium dodecyl sulfate-denatured form. This suggests that all the other monoclonal antibodies recognize conformational epitopes. These properties make the monoclonal antibodies suitable tools for further studies.  相似文献   

9.
The coding region for the mature form of TEM beta-lactamase was fused to random positions within the coding region of the penicillin-binding protein 1B (PBP 1B) gene and the nucleotide sequences across the fusion junctions of 100 in-frame fusions were determined. All fusion proteins that contained at least the NH2-terminal 94 residues of PBP 1B provided individual cells of E. coli with substantial levels of ampicillin resistance, suggesting that the beta-lactamase moiety had been translocated to the periplasm. Fusion proteins that contained less than or equal to 63 residues of PBP 1B possessed beta-lactamase activity, but could not protect single cells of E. coli from ampicillin, indicating that the beta-lactamase moiety of these fusion proteins remained in the cytoplasm. The beta-lactamase fusion approach suggested a model for the organization of PBP 1B in which the protein is embedded in the cytoplasmic membrane by a single hydrophobic transmembrane segment (residues 64-87), with a short NH2-terminal domain (residues 1-63), and the remainder of the polypeptide (residues 88-844) exposed on the periplasmic side of the cytoplasmic membrane. The proposed model for the organization of PBP 1B was supported by experiments which showed that the protein was completely digested by proteinase K added from the periplasmic side of the cytoplasmic membrane but was only slightly reduced in size by protease attack from the cytoplasmic side of the membrane.  相似文献   

10.
Analysis of Escherichia coli pbpA(Ts) or rodA(Ts) strains defective for penicillin-binding protein (PBP) 1A or PBP 1B indicated that the activity of PBP 2 is essential to prevent cell lysis in PBP 1B(-) strains and suggested that PBP 2 is active or activatable in rodA(Ts) mutants under restrictive conditions.  相似文献   

11.
The penicillin-binding protein (PBP) 1A is a major murein (peptidoglycan) synthase in Escherichia coli. The murein synthesis activity of PBP1A was studied in vitro with radioactive lipid II substrate. PBP1A produced murein glycan strands by transglycosylation and formed peptide cross-links by transpeptidation. Time course experiments revealed that PBP1A, unlike PBP1B, required the presence of polymerized glycan strands carrying monomeric peptides for cross-linking activity. PBP1A was capable of attaching nascent murein synthesized from radioactive lipid II to nonlabeled murein sacculi. The attachment of the new material occurred by transpeptidation reactions in which monomeric triand tetrapeptides in the sacculi were the acceptors.  相似文献   

12.
利用双功能试剂N-琥珀酰亚胺-3(2-二硫吡啶)丙酸酯(SPDP)作交联剂,合成了尿激酶(UK)-抗人交联纤维蛋白降解物D-二聚体单抗(MA-HID1)化学偶合体(UKMA-HID1),并用苯甲脒-Sepharose6B及人交联纤维蛋白降解物D-二聚体-Sepharose4B亲和柱纯化,获得偶合体产物.SDS-PAGE呈现一条带,其分子量约为200000.纤维蛋白平板法测活结果显示,偶合体中酶比活为53000IU/mg尿激酶蛋白,与偶联前的54300IU/mg蛋白相仿.ELISA测试显示,偶合体对人交联纤维蛋白降解物D-二聚体有免疫反应性,并且与偶联前的抗D-二聚体单抗对此抗原的反应性相当  相似文献   

13.
The coding region for the mature form of TEM β–lactamase was fused to random positions within the coding region of the penicillin–binding protein 1B (PBP 1B) gene and the nucleotide sequences across the fusion junctions of 100 in–frame fusions were determined. All fusion proteins that contained at least the NH2–terminal 94 residues of PBP 1B provided individual cells of E. coli with substantial levels of ampicillin resistance, suggesting that the β–lactamase moiety had been translocated to the periplasm. Fusion proteins that contained ≤ 63 residues of PBP 1B possessed β–lactamase activity, but could not protect single cells of E. coli from ampicillin, indicating that the 3–lactamase moiety of these fusion proteins remained in the cytoplasm. The β–lactamase fusion approach suggested a model for the organization of PBP 1B in which the protein is embedded in the cytoplasmic membrane by a single hydrophobic trans–membrane segment (residues 64–87), with a short NH2–terminal domain (residues 1–63), and the remainder of the polypeptide (residues 68–844) exposed on the periplasmic side of the cytoplasmic membrane. The proposed model for the organization of PBP 1B was supported by experiments which showed that the protein was completely digested by proteinase K added from the periplasmic side of the cytoplasmic membrane but was only slightly reduced in size by protease attack from the cytoplasmic side of the membrane.  相似文献   

14.
We have analyzed the location of the epitope areas of the four monoclonal antibody groups against penicillin-binding protein 1B (PBP 1B; T. den Blaauwen, F. B. Wientjes, A. H. J. Kolk, B. G. Spratt, and N. Nanninga, J. Bacteriol. 171:1393-1401). They could be specified by studying monoclonal antibody binding patterns to amino- and carboxy-terminal truncated PBP 1B molecules. Monoclonal antibodies against conformational epitopes, with the exception of one epitope area, did not recognize PBP 1B molecules that had not been translocated across the membrane. Apparently, translocation is required for PBP 1B to fully obtain its native conformation.  相似文献   

15.
Abstract An internal fragment from each of the penicillinebinding protein (PBP) 1A, 2B and 2X genes of Streptococcus pneumoniae , which included the region encoding the active-site serine residue, was replaced by a fragment encoding spectinomycin resistance. The resulting constructs were tested for their ability to transform S. pneumoniae strain R6 to spectinomycin resistance. Spectinomycin-resistant transformants could not be obtained using either the inactivated PBP 2X or 2B genes, suggesting that deletion of either of these genes was a lethal event, but they were readily obtained using the inactivated PBP 1A gene. Analysis using the polymerase chain reaction confirmed that the latter transformants had replaced their chromosomal copy of the PBP 1A gene with the inactivated copy of the gene. Deletion of the PBP 1A gene was therefore tolerated under laboratory conditions and appeared to have little effect on growth or susceptibility to benzylpenicillin.  相似文献   

16.
PBP1B is a major bifunctional murein (peptidoglycan) synthase catalyzing transglycosylation and transpeptidation reactions in Escherichia coli. PBP1B has been shown to form dimers in vivo. The K(D) value for PBP1B dimerization was determined by surface plasmon resonance. The effect of the dimerization of PBP1B on its activities was studied with a newly developed in vitro murein synthesis assay with radioactively labeled lipid II precursor as substrate. Under conditions at which PBP1B dimerizes, the enzyme synthesized murein with long glycan strands (>25 disaccharide units) and with almost 50% of the peptides being part of cross-links. PBP1B was also capable of synthesizing trimeric muropeptide structures. Tri-, tetra-, and pentapeptide compounds could serve as acceptors in the PBP1B-catalyzed transpeptidation reaction.  相似文献   

17.
The coding sequence of the Haemophilus influenzae ORF I gene was amplified by PCR and cloned into different Escherichia coli expression vectors. The ORF I-encoded protein was approximately 90 kDa and bound 3H-benzyl-penicillin and 125I-cephradine. This high-molecular-weight penicillin-binding protein (PBP) was also shown to possess transglycosylase activity, indicating that the ORF I product is a bifunctional PBP. The ORF I protein was capable of maintaining the viability of E. coli delta ponA ponB::spcr cells in transcomplementation experiments, establishing the functional relevance of the significant amino acid homology seen between E. coli PBP 1A and 1B and the H. influenzae ORF I product. In addition, the physiological functioning of the H. influenzae ORF I (PBP 1A) product in a heterologous species established the ability of the enzyme not only to recognize the E. coli substrate but also to interact with heterologous cell division proteins. The affinity of the ORF I product for 3H-benzylpenicillin and 125I-cephradine, the MIC of beta-lactams for E. coli delta ponA ponB::spcr expressing the ORF I gene, and the amino acid alignment of the PBP 1 family of high-molecular-weight PBPs group the ORF I protein into the PBP 1A family of high-molecular-weight PBPs.  相似文献   

18.
A fragment from the ponB region of the Escherichia coli chromosome comprising the promoterless sequence encoding penicillin-binding protein 1B (PBP 1B) has been cloned in a broad-host-range expression vector under the control of the kanamycin resistance gene promoter present in the vector. The hybrid plasmid (pJP3) was used to transform appropriate strains of Salmonella typhimurium, Pseudomonas putida, and Pseudomonas aeruginosa. In all instances, the coding sequence was expressed in the heterologous hosts, yielding a product with electrophoretic mobility, protease accessibility, membrane location, and beta-lactam-binding properties identical to those of native PBP 1B in E. coli. These results indicated that PBP 1B of E. coli is compatible with the cytoplasmic membrane environment of unrelated bacterial species and support the idea that interspecific transfer of mutated alleles of genes coding for PBPs could potentially be an efficient spreading mechanism for intrinsic resistance to beta-lactams.  相似文献   

19.
The expression of a pheromone‐binding protein (PBP) and a general odorant‐binding protein (GOBP) in Sesamia nonagrioides (Lef.) (Lepidoptera: Noctuidae) was studied. Lymantria dispar's PBP1 antibody yielded an immunoreactive band with an apparent MW of approximately 14.8 kDa, present specifically in the antennae of both sexes, with males having approximately three‐fold the quantity found in females. Furthermore, Manduca sexta's odorant‐binding protein‐2 (GOBP2) antibody recognized a band at approximately 14.5 kDa in the antennae of both sexes. Levels of both proteins were compared between scotophase and photophase periods in insects that were raised under L16:D8 or under constant light. The level of GOPB2 was significantly lower in both sexes during photophase and continuous light; whereas the level of the PBP was significantly lower in females’ antennae, in males’ antennae it remained at the same level as that found during the scotophase.  相似文献   

20.
Bacillus subtilis penicillin-binding protein PBP1 has been implicated in cell division. We show here that a PBP1 knockout strain is affected in the formation of the asymmetric sporulation septum and that green fluorescent protein-PBP1 localizes to the sporulation septum. Localization of PBP1 to the vegetative septum is dependent on various cell division proteins. This study proves that PBP1 forms part of the B. subtilis cell division machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号