首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C Sureau  B Guerra    H Lee 《Journal of virology》1994,68(6):4063-4066
The hepatitis delta virus (HDV) envelope contains the large (L), middle (M), and small (S) surface proteins encoded by coinfecting hepatitis B virus. Although HDV-like particles can be assembled with only the S protein in the envelope, the L protein is essential for infectivity in vitro (C. Sureau, B. Guerra, and R. Lanford, J. Virol. 67:366-372, 1993). Here, we demonstrate that the M protein, previously described as carrying a site for binding to polymerized human albumin, is not necessary for infectivity. HDV-like particles coated with the S plus L or the S plus M plus L proteins are infectious in primary cultures of chimpanzee hepatocytes. We conclude that the S and L proteins serve two essential functions in the HDV replication cycle; the S protein ensures the export of the HDV genome from an infected cell by forming a particle, and the L protein ensures its import into a human hepatocyte.  相似文献   

2.
Jaoudé GA  Sureau C 《Journal of virology》2005,79(16):10460-10466
The infectious particles of hepatitis B virus (HBV) and hepatitis delta virus (HDV) are coated with the large, middle, and small envelope proteins encoded by HBV. While it is clear that the N-terminal pre-S1 domain of the large protein, which is exposed at the virion surface, is implicated in binding to a cellular receptor at viral entry, the role in infectivity of the envelope protein antigenic loop, also exposed to the virion surface and accessible to neutralizing antibodies, remains to be established. In the present study, mutations were created in the antigenic loop of the three envelope proteins, and the resulting mutants were evaluated for their capacity to assist in the maturation and infectivity of HDV. We observed that short internal combined deletions and insertions, affecting residues 109 to 133 in the antigenic loop, were tolerated for secretion of both subviral HBV particles and HDV virions. However, when assayed for infectivity on primary cultures of human hepatocytes or on the recently described HepaRG cell line, virions carrying deletions between residues 118 and 129 were defective. Single amino acid substitutions in this region revealed that Gly-119, Pro-120, Cys-121, Arg-122, and Cys-124 were instrumental in viral entry. These results demonstrate that in addition to a receptor-binding site previously identified in the pre-S1 domain of the L protein, a determinant of infectivity resides in the antigenic loop of HBV envelope proteins.  相似文献   

3.
4.
Hepatitis delta virus (HDV) particles are coated with the large (L), middle (M), and small (S) hepatitis B virus envelope proteins. In the present study, we constructed glycosylation-defective envelope protein mutants and evaluated their capacity to assist in the maturation of infectious HDV in vitro. We observed that the removal of N-linked carbohydrates on the S, M, and L proteins was tolerated for the assembly of subviral hepatitis B virus (HBV) particles but was partially inhibitory for the formation of HDV virions. However, when assayed on primary cultures of human hepatocytes, virions coated with S, M, and L proteins lacking N-linked glycans were infectious. Furthermore, in the absence of M, HDV particles coated with nonglycosylated S and L proteins retained infectivity. These results indicate that carbohydrates on the HBV envelope proteins are not essential for the in vitro infectivity of HDV.  相似文献   

5.
V Bruss 《Journal of virology》1997,71(12):9350-9357
Envelopment of the hepatitis B virus (HBV) nucleocapsid depends on the large envelope protein L, which is expressed as a transmembrane polypeptide at the endoplasmic reticulum membrane. Previous studies demonstrated that the cytosolic exposure of the N-terminal pre-S domain (174 amino acids) of L was required for virion formation. N-terminal truncations of L up to Arg 103 were tolerated. To map sites in the remaining C-terminal part of pre-S important for virion morphogenesis, a series of 11 L mutants with linker substitutions between Asn 98 and Pro 171 was generated. The mutants formed stable proteins and were secreted in transfected cell cultures, probably as components of subviral hepatitis B surface antigen particles. All four constructs with mutations between Asn 98 and Thr 125 were unable to complement in trans the block in virion formation of an L-negative HBV genome in cotransfected HuH7 cells. These mutants had a transdominant negative effect on virus yield in cotransfections with the wild-type HBV genome. In contrast, all seven mutants with substitutions downstream of Ser 124 were able to envelop the nucleocapsid and to secrete HBV. The sequence between Arg 103 and Ser 124 is highly conserved among different HBV isolates and also between HBV and the woodchuck hepatitis virus. Point mutations in this region introducing alanine residues at conserved positions blocked virion formation, in contrast to mutations at nonconserved residues. These results demonstrate that the pre-S sequence between Arg 103 and Ser 124 has an important function in HBV morphogenesis.  相似文献   

6.
Hepatitis delta virus (HDV)-associated particles were purified from the serum of an experimentally infected chimpanzee by size chromatography and by density centrifugation. Hepatitis delta antigen (HDAg) was detected after mild detergent treatment at a column elution volume corresponding to 36-nm particles and banded at a density of 1.25 g/ml. The serum had an estimated titer of 10(9) to 10(10) HDV-associated particles and had only a 10-fold excess of hepatitis B surface antigen (HBsAg) not associated with HDAg. Therefore, HDV appears to be much more efficiently packed and secreted than is its helper virus, hepatitis B virus (HBV), which is usually accompanied by a 1,000-fold excess of HBsAg. The protein compositions of the HDAg-containing particles were analyzed by immunoblotting with HDAg-, HBsAg-, and hepatitis B core antigen-specific antisera and monoclonal antibodies to HBV surface gene products. The HBsAg envelope of HDAg contained approximately 95% P24/GP27s, 5% GP33/36s, and 1% P39/GP42s proteins. This protein composition was more similar to that of the 22-nm particles of HBsAg than to that of complete HBV. The significant amount of GP33/36s suggests that the HBsAg component of the HDV-associated particle carries the albumin receptor. Two proteins of 27 and 29 kilodaltons which specifically bound antibody to HDAg but not HBV-specific antibodies were detected in the interior of the 36-nm particle. Since these proteins were structural components of HDAg and were most likely coded for by HDV, they were designated P27d and P29d.  相似文献   

7.
8.
V Bruss  X Lu  R Thomssen    W H Gerlich 《The EMBO journal》1994,13(10):2273-2279
The preS domain at the N-terminus of the large envelope protein (LHBs) of the hepatitis B virus is involved in (i) envelopment of viral nucleocapsids and (ii) binding to the host cell. While the first function suggests a cytosolic location of the preS domain during virion assembly, the function as an attachment site requires its translocation across the lipid bilayer and final exposure on the virion surface. We compared the transmembrane topology of newly synthesized LHBs in the endoplasmic reticulum (ER) membrane with its topology in the envelope of secreted virions. Protease sensitivity and the absence of glycosylation suggest that the entire preS domain of newly synthesized LHBs remains at the cytosolic side of ER vesicles. However, virions secreted from transfected cell cultures or isolated from the blood of persistent virus carriers expose antibody binding sites and proteolytic cleavage sites of the preS domain at their surface in approximately half of the LHBs molecules. Thus, preS domains appear to be transported across the viral lipid barrier by a novel post-translational translocation mechanism to fulfil a dual function in virion assembly and attachment to the host cell.  相似文献   

9.
Jenna S  Sureau C 《Journal of virology》1999,73(4):3351-3358
The carboxyl-terminal domain of the small (S) envelope protein of hepatitis B virus was subjected to mutagenesis to identify sequences important for the envelopment of the nucleocapsid during morphogenesis of hepatitis delta virus (HDV) virions. The mutations consisted of carboxyl-terminal truncations of 4 to 64 amino acid residues and small combined deletions and insertions spanning the entire hydrophobic domain between residues 163 and 224. Truncation of as few as 14 residues partially inhibited glycosylation and secretion of S and prevented assembly or stability of HDV virions. Short internal combined deletions and insertions were tolerated for secretion of subviral particles with the exceptions of those affecting residues 164 to 173 and 219 to 223. However, mutants competent for subviral particle secretion had a reduced capacity for HDV assembly compared to that of the wild type. One exception was a mutant carrying a deletion of residues 214 to 218, which exhibited a twofold increase in HDV assembly (or stability), whereas deletions of residues 179 to 183, 194 to 198, and 199 to 203 were the most inhibitory. Substitutions of single amino acids between residues 194 and 198 demonstrated that HDV assembly deficiency could be assigned to the replacement of the tryptophan residue at position 196. We concluded that assembly of stable HDV particles requires a specific function of the carboxyl terminus of S which is mediated at least in part by Trp-196.  相似文献   

10.
Awe K  Lambert C  Prange R 《FEBS letters》2008,582(21-22):3179-3184
The hepatitis B virus L protein forms a dual topology in the endoplasmic reticulum (ER) via a process involving cotranslational membrane integration and subsequent posttranslational translocation of its preS subdomain. Here, we show that preS posttranslocation depends on the action of the ER chaperone BiP. To modulate the in vivo BiP activity, we designed an approach based on overexpressing its positive and negative regulators, ER-localized DnaJ-domain containing protein 4 (ERdj4) and BiP-associated protein (BAP), respectively. The feasibility of this approach was confirmed by demonstrating that BAP, but not ERdj4, destabilizes the L/BiP complex. Overexpressing BAP or ERdj4 inhibits preS posttranslocation as does the reduction of ATP levels. These results hint to a new role of BiP in guiding posttranslational polypeptide import into the mammalian ER.  相似文献   

11.
The outer membrane of the hepatitis B virus consists of host lipid and the hepatitis B virus major (p25, gp28), middle (gp33, gp36), and large (p39, gp42) envelope polypeptides. These polypeptides are encoded by a large open reading frame that contains three in-phase translation start codons and a shared termination signal. The influence of the large envelope polypeptide on the secretion of hepatitis B surface antigen (HBsAg) subviral particles in transgenic mice was examined. The major polypeptide is the dominant structural component of the HBsAg particles, which are readily secreted into the blood. A relative increase in production of the large envelope polypeptide compared with that of the major envelope polypeptide led to profound reduction of the HBsAg concentration in serum as a result of accumulation of both envelope polypeptides in a relatively insoluble compartment within the cell. We conclude that inhibition of HBsAg secretion is related to a hitherto unknown property of the pre-S-containing domain of the large envelope polypeptide.  相似文献   

12.
The early events of hepatitis B virus (HBV) infection remain unclear. In 2006, Stoeckl et al. proposed a new entry mechanism involving a translocation motif (TLM) present in the pre-S2 domain of envelope proteins (L. Stoeckl, A. Funk, A. Kopitzki, B. Brandenburg, S. Oess, H. Will, H. Sirma, and E. Hildt, Proc. Natl. Acad. Sci. USA 103:6730-6734, 2006). After receptor binding and internalization into the endosomal compartment, this motif would allow the translocation of HBV particles through the endosomal membrane into the cytosol. In this study we have used two different mutated viruses containing a truncated TLM and showed their ability to infect human hepatocytes in primary culture, thus demonstrating the dispensability of the TLM for HBV infectivity.  相似文献   

13.
We have developed a new nonoverlapping infectious viral genome (NO-SV40) in order to facilitate structure-based analysis of the simian virus 40 (SV40) life cycle. We first tested the role of cysteine residues in the formation of infectious virions by individually mutating the seven cysteines in the major capsid protein, Vp1. All seven cysteine mutants-C9A, C49A, C87A, C104A, C207S, C254A, and C267L-retained viability. In the crystal structure of SV40, disulfide bridges are formed between certain Cys104 residues on neighboring pentamers. However, our results show that none of these disulfide bonds are required for virion infectivity in culture. We also introduced five different mutations into Cys254, the most strictly conserved cysteine across the polyomavirus family. We found that C254L, C254S, C254G, C254Q, and C254R mutants all showed greatly reduced (around 100,000-fold) plaque-forming ability. These mutants had no apparent defect in viral DNA replication. Mutant Vp1's, as well as wild-type Vp2/3, were mostly localized in the nucleus. Further analysis of the C254L mutant revealed that the mutant Vp1 was able to form pentamers in vitro. DNase I-resistant virion-like particles were present in NO-SV40-C254L-transfected cell lysate, but at about 1/18 the amount in wild-type-transfected lysate. An examination of the three-dimensional structure reveals that Cys254 is buried near the surface of Vp1, so that it cannot form disulfide bonds, and is not involved in intrapentamer interactions, consistent with the normal pentamer formation by the C254L mutant. It is, however, located at a critical junction between three pentamers, on a conserved loop (G2H) that packs against the dual interpentamer Ca(2+)-binding sites and the invading C-terminal helix of an adjacent pentamer. The substitution by the larger side chains is predicted to cause a localized shift in the G2H loop, which may disrupt Ca(2+) ion coordination and the packing of the invading helix, consistent with the defect in virion assembly. Our experimental system thus allows dissection of structure-function relationships during the distinct steps of the SV40 life cycle.  相似文献   

14.
The large (L) envelope protein of the hepatitis B virus (HBV) has the peculiar capacity to form two transmembrane topologies via an as yet uncharacterized process of partial post-translational translocation of its pre-S domain across membranes. In view of a current model that predicts an HBV-specific channel generated during virion envelope assembly to enable pre-S translocation, we have examined parameters influencing L topogenesis by using protease protection analysis of wild-type and mutant L proteins synthesized in transfected cells. We demonstrate that contrary to expectation, all determinants, thought to be responsible for channel formation, are dispensable for pre-S reorientation. In particular, we observed that this process does not require (i) the helper function of the HBV S (small) and M (middle) envelope proteins, (ii) covalent dimer formation of envelope chains, or (iii) either of the three amphipathic transmembrane segments of L. Rather, the most hydrophobic transmembrane segment 2 of L was identified as a vital topogenic determinant, essential and sufficient for post-translational pre-S translocation. Cell fractionation studies revealed that pre-S refolding and thus the dual topology of L is established at the endoplasmic reticulum (ER) membrane rather than at a post-ER compartment as originally supposed. Together our data provide evidence to suggest that the topological reorientation of L is facilitated by a host cell transmembrane transport machinery such as the ER translocon.  相似文献   

15.
16.
The matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) forms an inner coat directly underneath the lipid envelope of the virion. The outer surface of the lipid envelope surrounding the capsid is coated by the viral Env glycoproteins. We report here that the HIV-1 capsid-Env glycoprotein association is very sensitive to minor alterations in the MA protein. The results indicate that most of the MA domain of the Gag precursor, except for its carboxy terminus, is essential for this association. Viral particles produced by proviruses with small missense or deletion mutations in the region coding for the amino-terminal 100 amino acids of the MA protein lacked both the surface glycoprotein gp120 and the transmembrane glycoprotein gp41, indicating a defect at the level of Env glycoprotein incorporation. Alterations at the carboxy terminus of the MA domain had no significant effect on the levels of particle-associated Env glycoprotein or on virus replication. The presence of HIV-1 MA protein sequences was sufficient for the stable association of HIV-1 Env glycoprotein with hybrid particles that contain the capsid (CA) and nucleocapsid (NC) proteins of visna virus. The association of HIV-1 Env glycoprotein with the hybrid particles was dependent upon the presence of the HIV-1 MA protein domain, as HIV-1 Env glycoprotein was not efficiently recruited into virus particles when coexpressed with authentic visna virus Gag proteins.  相似文献   

17.
The small hepatitis B virus surface antigen (S-HBsAg) is capable of driving the assembly and secretion of hepatitis delta virus (HDV) particles by interacting with the HDV ribonucleoprotein (RNP). Previously, a specific domain of the S-HBsAg protein carboxyl terminus, including a tryptophan residue at position 196 (W196), was proven essential for HDV maturation (S. Jenna and C. Sureau, J. Virol. 73: 3351-3358, 1999). Mutation of W196 to phenylalanine (W196F) was permissive for HBV subviral particle (SVP) secretion but deleterious to HDV virion assembly. Here, the W196F S-HBsAg deficiency was assigned to a loss of its ability for interaction with the large HDV antigen (L-HDAg), a major component of the RNP. Because the overall S-HBsAg carboxyl terminus is particularly rich in tryptophan, an amino acid frequently involved in protein-protein interactions, site-directed mutagenesis was conducted to investigate the function of the S-HBsAg Trp-rich domain in HDV assembly. Single substitutions of tryptophan between positions 163 and 201 with alanine or phenylalanine were tolerated for SVP secretion, but those affecting W196, W199, and W201 were detrimental for HDV assembly. This was proven to result from a reduced capacity of the mutants for interaction with L-HDAg. In addition, a W196S S-HBsAg mutant, which has been described in HBV strains that arose in a few cases of lamivudine-treated HBV-infected patients, was deficient for HDV assembly as a consequence of its impaired capacity for interacting with L-HDAg. Interestingly, the fact that even the most conservative substitution of phenylalanine for tryptophan at positions 196, 199, or 201 was sufficient to ablate interaction of S-HBsAg with L-HDAg suggests that W196, W199, and W201 are located at a binding interface that is central to HDV maturation.  相似文献   

18.
Chai N  Gudima S  Chang J  Taylor J 《Journal of virology》2007,81(10):4912-4918
Hepatitis B virus (HBV) replication produces three envelope proteins (L, M, and S) that have a common C terminus. L, the largest, contains a domain, pre-S1, not present on M. Similarly M contains a domain, pre-S2, not present on S. The pre-S1 region has important functions in the HBV life cycle. Thus, as an approach to studying these roles, the pre-S1 and/or pre-S2 sequences of HBV (serotype adw2, genotype A) were expressed as N-terminal fusions to the Fc domain of a rabbit immunoglobulin G chain. Such proteins, known as immunoadhesins (IA), were highly expressed following transfection of cultured cells and, when the pre-S1 region was present, >80% were secreted. The IA were myristoylated at a glycine penultimate to the N terminus, although mutation studies showed that this modification was not needed for secretion. As few as 30 amino acids from the N terminus of pre-S1 were both necessary and sufficient to drive secretion of IA. Even expression of pre-S1 plus pre-S2, in the absence of an immunoglobulin chain, led to efficient secretion. Overall, these studies demonstrate an unexpected ability of the N terminus of pre-S1 to promote protein secretion. In addition, some of these secreted IA, at nanomolar concentrations, inhibited infection of primary human hepatocytes either by hepatitis delta virus (HDV), a subviral agent that uses HBV envelope proteins, or HBV. These IA have potential to be part of antiviral therapies against chronic HDV and HBV, and may help understand the attachment and entry mechanisms used by these important human pathogens.  相似文献   

19.
Mutations in the S region of the hepatitis B virus (HBV) envelope gene are associated with immune escape, occult infection, and resistance to therapy. We previously identified naturally occurring mutations in the S gene that alter HBV virion secretion. Here we used transcomplementation assay to confirm that the I110M, G119E, and R169P mutations in the S domain of viral envelope proteins impair virion secretion and that an M133T mutation rescues virion secretion of the I110M and G119E mutants. The G119E mutation impaired detection of secreted hepatitis B surface antigen (HBsAg), suggesting immune escape. The R169P mutant protein is defective in HBsAg secretion as well and has a dominant negative effect when it is coexpressed with wild-type envelope proteins. Although the S domain is present in all three envelope proteins, the I110M, G119E, and R169P mutations impair virion secretion through the small envelope protein. Conversely, coexpression of just the small envelope protein of the M133T mutant could rescue virion secretion. The M133T mutation could also overcome the secretion defect caused by the G145R immune-escape mutation or mutation at N146, the site of N-linked glycosylation. In fact, the M133T mutation creates a novel N-linked glycosylation site ((131)NST(133)). Destroying this site by N131Q/T mutation or preventing glycosylation by tunicamycin treatment of transfected cells abrogated the effect of the M133T mutation. Our findings demonstrate that N-linked glycosylation of HBV envelope proteins is critical for virion secretion and that the secretion defect caused by mutations in the S protein can be rescued by an extra glycosylation site.  相似文献   

20.
The small envelope protein of hepatitis B virus is the major component of the viral coat and is also secreted from cells as a 20-nm subviral particle, even in the absence of other viral proteins. Such empty envelope particles are composed of approximately 100 copies of this polypeptide and host-derived lipids and are stabilized by extensive intermolecular disulfide cross-linking. To study the contribution of disulfide bonds to assembly and secretion of the viral envelope, single and multiple mutants involving all 14 cysteines in HepG2 and COS-7 cells were analyzed. Of the six cysteines located outside the region carrying the surface antigen, Cys-48, Cys-65, and Cys-69 were each found to be essential for secretion of 20-nm particles, whereas Cys-76, Cys-90, and Cys-221 were dispensable. By introduction of an additional cysteine substituting serine 58, the yield of secreted particles was increased. Of four mutants involving the eight cysteines located in the antigenic region, only the double mutant lacking Cys-121 and Cys-124 was secreted with wild-type efficiency. Secretion-competent envelope proteins were intracellularly retained by secretion-deficient cysteine mutants. According to alkylation studies, both intracellular and secreted envelope proteins contained free sulfhydryl groups. Disulfide-linked oligomers were studied by gel electrophoresis under nonreducing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号