首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vaĭsman NIa  Zakharov IK 《Genetika》2003,39(12):1625-1629
The net gene mutations are known to cause abnormal pattern of veining in all wing regions except for the first posterior cells. In natural populations of Drosophila melanogaster, the net alleles were identified, which differ in phenotypic expression from standard mutations. The mutants net-extra-analis from a population Belokurikha-2000 have only a single additional vein in the third posterior cell. A line from Chernobyl-1986 population have another nontypical allele netCh86 and shows a lower degree of abnormalities than that usually observed. About 10% of these flies have an additional vein fragment in the first posterior cell. In both males and females of D. simulans population Tashkent-2001, which exhibit netST91 mutation, a net of additional veins is formed as a specific additional fragment in the first posterior cell. The pattern of veining conferred by alleles net-extra-analis and netCh86 is altered to a lesser extent; these alleles are dominant with respect to alleles net2-45 and netST91, which cause more abnormalities. The heterozygotes for alleles netST9 and netCh86 and for Df(2) net62 deletion have an additional fragment in the first posterior cell and show similarly strong deviations from normal wing vein pattern. The natural net alleles correspond, presumably, to different molecular gene defects involved into uncertain local interactions with numerous modifying factors and other genes that specify the wing vein pattern.  相似文献   

2.
Summary We have screened for dominant enhancers and suppressors of the wing phenotype associated with two Delta alleles: Dl 9P39, an amorphic allele, and Dl FE32, an antimorphic allele. The interactions of some of the modifiers with Delta are due to haplo-insufficient expression of the corresponding genes. Although not explicitly shown for the remaining cases, we assume that haploin-sufficiency is also the basis for the relationships of these genes to Delta, since no allele specific interactions were observed. The modifiers found define 22 genes with pleiotropic expression, which can be classified into two groups: genes required for wing vein pattern formation and for neurogenesis, and genes which are not required for neurogenesis. Among the genes of the first group, Hairless and Star were previously known to participate in neural development. One further modifier was found which may correspond to a new neurogenic gene. The second group of genes is larger and includes already known loci, e.g., Plexate, blistered, plexus, etc, as well as other previously unidentified genes, which function during wing morphogenesis. Correspondence to: J.A. Campos-Ortega  相似文献   

3.
4.
Summary Distribution of the enzyme aldehyde oxidase in transformed haltere discs from the homoeotic bithorax series of mutants was investigated by histochemical means. The bithorax (bx) mutant, which transforms the anterior part of the haltere into an alterior with blade, possesses in the haltere disc an aldehyde oxidase staining pattern similar to that of the anterior side of the wing disc. The postbithorax (pbx) mutant, which transforms the posterior haltere into a structure resembling the posterior wing blade, reveals an aldehyde oxidase staining pattern in the haltere disc characteristic of the posterior side of the wing disc pouch. When both (bx 3 (pbx) mutants are present the haltere develops into a metathoracic wing. It is shown here that the transformed haltere disc closely resembles the previously established pattern in the wing disc with respect to aldehyde oxidase distribution. Change in the pattern of aldehyde oxidase in bithorax mutants signals alteration in gene expression which at least for this particular enzyme correlates well with the morphological transformation from haltere to wing. A possible correlation between pattern of enzyme activity and developmental compartmentalization has been discussed.  相似文献   

5.
Cell death and its effect on wing size have been described in some wing mutants of Drosophila hydei. Dead cells in the imaginal discs were localized by Nile-bule and acridine-orange staining. Various Notch (N) alleles, the mutation Costal-nick (Cnk) and the compound N/Cnk show characteristic patterns of cell death in the imaginal wing disc. Some but not all of the structural features of the adult wing can be related to the site of cell death during larval stages. In NAx types, extensive cell death is followed by regenerative growth, invalidating a simple relation between size of the disk and size of the wing. In Nts/Cnk cell death and wing morphology depend on the breeding temperature. From temperature experiments we conclude that cell death starts between day 4 and 5 after egg laying and can be induced by a shift to the restrictive temperature during the critical phase. Patterns of wing incisions and cell death in Nts/Cnk genotypes seem not to be delimited by any of the known compartment boundaries.  相似文献   

6.
Summary The aldehyde oxidase staining pattern in wing discs ofDrosophila melanogaster bearing the genotypesap blt /ap blt andap blt andap blt /ap 73n showns changes from the wild-type pattern. Extensive areas of the presumptive dorsal posterior wing blade, which are normally unstained, have enzyme activity in these mutants. In wings of these genotypes, dorsal posterior structures are replaced by dorsal anterior wing structures. A strong correlation has been found between the frequencies of various staining patterns in the discs and the extent of transformation in the cuticular structures of the wing, which is consistent with the idea that aldehyde oxidase activity can be used as an indicator in the wing disc of this transformation. Unlike the homoeotic mutationengrailed, apterous has not been interpreted as a selector gene yet the work reported here shows thatapterous alleles can cause changes resembling those of theengrailed phenotype both in aldehyde oxidase staining behaviour and in the cuticular transformation.  相似文献   

7.
Quantitative complementation tests provide a quick test of the hypothesis that a particular gene contributes to segregating phenotypic variation. A set of wild-type alleles is assayed for variation in their ability to complement the degree of dominance of the quantitative effect of a loss of function allele. Analysis of 15 loci known to be involved in wing patterning in Drosophila melanogaster suggests that the genes decapentaplegic, thickveins, EGFR, argos and hedgehog, each of which are involved in secreted growth factor signaling, may contribute to wing shape variation. The phenotype of one deficiency, Df(2R)Px2, which removes blistered/Plexate, is also highly sensitive to the wild-type genetic background and at intermediate expressivity reveals six ectopic veins. These form in the same locations as a projection of the ancestral pattern of dipteran wing veins onto the D. melanogaster wing. This atavistic phenotype indicates that the wing vein prepatterning mechanism can be conserved in highly derived species, and implies that homoplasic venation patterns may be produced by derepression of vein primordia. Received: 13 March 2000 / Accepted: 13 August 2000  相似文献   

8.
Effects of deficiencies in the engrailed region of Drosophila melanogaster   总被引:3,自引:0,他引:3  
The engrailed gene of Drosophila melanogaster is believed to be involved in control of determination and differentiation of posterior compartments. en1/en1 causes a partial transformation of the posterior compartment of wing and first leg to mirror-image anterior, which prompted the hypothesis that engrailed + is a "selector gene" required for the posterior pathway decision. The incomplete transformation was thought due to residual en+ activity in en1; a deletion of engrailed (en28) was constructed to determine if a complete transformation can occur. en28 is homozygous lethal and cell lethal. en28/en1 survives to adult stage, but causes a weaker transformation than en1/en1, indicating that en1 is not a simple hypomorph. A more distal deletion, en30, survives over en-lethal alleles. Both en30/en1 and en28/en30 survive to adult stage, but do not cause a stronger posterior to anterior transformation than en1/en1; thus this effect may be allele specific. New abnormalities included (1) transformation of the posterior wing blade to haltere, an effect dependent on the bx+ (but not pbx+) pseudoallele of the bithorax complex; (2) abnormal bristle pattern, tarsal fusion, and degenerate posterior claws of all legs. Although these abnormalities are posterior compartment specific, they are not expected of a "selector gene." Thus the function of engrailed may be more complex than originally believed.  相似文献   

9.
New mutant alleles of theadenosine2 locus (ade2; 2–17.7) have been isolated using the eye-color phenotype exhibited by the prototype auxotrophic alleleade2 1 as the screening criterion. The new mutants form a single complementation group, suggesting that they all exhibit purine auxotrophy and defective formylglycineamide ribotide amidotransferase enzyme, likeade2 1. Tests carried out on particular new alleles confirm these suggestions. The new mutants all exhibit more extreme physical defects than the prototype. They have wing abnormalities like mutants defective in pyrimidine biosynthesis and reduced bristles like those defective in protein synthesis; thus they exhibit the combined visible phenotype ofrudimentary wings,rosy eyes, andbobbed bristles. Cytogenetic analysis places the locus in the interband proximal to26B1-2.This work was supported by NSERC Operating Grant A3269 to D.N., an Alberta Heritage Foundation for Medical Research Postdoctoral Fellowship to S.Y.K.T., and National Institute on Aging Grant AG00029 to D.P.  相似文献   

10.
Summary In order to collect information on the mechanism determining the observed increase of wing length phenotypic variability in selected Drosophila lines, reciprocal crosses were made between +/vg and vg/vg flies within each selected population.The results obtained suggest that in our lines the increased phenotypic variability may be produced by maternally inherited agents whose activity seems to be changed according to which of the two alleles, vg or vg +, is present at the vestigial locus.  相似文献   

11.
Summary The ash-1 locus is in the proximal region of the left arm of the third chromosome of Drosophila melanogaster and the ash-2 locus is in the distal region of the right arm of the third chromosome. Mutations at either locus can cause homeotic transformations of the antenna to leg, proboscis to leg and/or antenna, dorsal prothorax to wing, first and third leg to second leg, haltere to wing, and genitalia to leg and/or antenna. Mutations at the ash-1 locus cause, in addition, transformations of the posterior wing and second leg to anterior wing and second leg, respectively. A similar spectrum of transformations is caused by mutations at yet another third chromosome locus, trithorax. One extraordinary aspect of mutations at all three of these loci is that they cause such a wide variety of transformations. For mutations at both of the loci that we have studied the expression of the homeotic phenotype is both disc-autonomous (as shown by injecting mutant discs into metamorphosing larvae) and cell autonomous (as shown by somatic recombination analysis). The original mutations which identified these two loci, although lethal, manifest variable expressivity and incomplete penetrance of the homeotic phenotype suggesting that they are hypomorphic. The phenotype of double mutants which were synthesized by combining different pairs of those original mutations manifest for two of the four pairs a greater degree of expressivity and slightly more penetrance of the homeotic transformations. This mutual enhancement suggests that the products of both loci interact in the same process. A third double mutant expresses a discless phenotype.Additional alleles have been recovered at both the ash-1 and the ash-2 loci. Some of these alleles as homozygotes or transheterozygotes express the wide range of transformations revealed first by double mutants. One of the alleles at the ash-1 locus when homozygous and several transheterozygous pairs can cause either the homeotic transformation of discs or the absence of those discs. The fact that these two defects, absence of specific discs and homeotic transformations of those same discs can be caused by mutations within a single gene suggests that the activity of the product of this gene is essential for normal imaginal disc cell proliferation. Loss of that activity leads to the absence of discs, whereas, reduction of that activity leads to homeotic transformations.  相似文献   

12.
13.
14.
Summary The pattern of aldehyde oxidase (AO) activity was determined in wing discs of Drosophila melanogaster larvae homozygous for the mutants apt 73n, Beaded, and vestigial (vg) in order to determine if reduction in field size in the pouch could be related to alterations of the wild-type AO pattern, as suggested by the Kauffman (1978) hypothesis. The pattern in wild-type discs was resolved into six areas for comparison with mutant discs. vg discs developed at 25° C showed restriction of the pattern into a small area on the anterior side of the disc, and comparison of vg and wild-type prepupal wings allowed positive identification of the AO pattern elements which remained. AO patterns in vg wing discs grown at 27°, 29°, and 31° C were progressively more complete and similar to wild-type, reflecting the reduction in cell death in discs grown at higher temperatures. These results show that cell loss during the third instar in vg development at 25° C is responsible for the alteration of the AO pattern, rather than field size reduction, and that determination of the pattern must take place much earlier than the time of its first appearance during the third larval instar, and before cell death in vg discs begins. Thus mutants acting at earlier stages will be necessary for further tests of the Kauffman hypothesis.  相似文献   

15.
Distribution of the enzyme aldehyde oxidase (AO) within the pouch of the mature wing disc is precise and differential. General locations of compartmental boundaries have been identified by fate mapping and studies of AO distribution. The suspected locations of the boundaries were verified by analyzing the distribution of AO-negative cells within an AO-stained background in gynandromorphs and in X-ray-induced clones of AO-negative cells. The anterior/posterior border appeared slightly anterior to the junction of the AO+ anterior presumptive wing surfaces and AO? posterior wing surfaces. A narrow band of AO+ cells extending proximodistally on both presumptive wing surfaces belongs to the posterior compartment. Two dorsal/ventral (dor./vent.) restrictions were found. The dor./vent. restriction equivalent to the dor./vent. border found in the adult wing was located at the ventral most edge of the AO-stained presumptive wing margin. A second restriction which was less strictly obeyed was found on the dorsal edge of the wing margin. We conclude that the whole presumptive wing margin is part of the dorsal compartment. Within the anterior wing margin an intensively stained oval was also found to be clonally restrictive. Therefore, territories were found within the prospective wing margin for which no such features have been identified in the adult Drosophila melanogaster wing.  相似文献   

16.
It has recently been suggested that the wildtype alleles of homeotic genes are responsible for controlling the development of compartments. Because the mutation engrailed gives the posterior wing compartment anterior characteristics, it can be regarded as such a homeotic gene. Our experiments confirm the role of the engrailed gene in development of the posterior wing compartment, results which strongly support and extend the compartment hypothesis.Clonal analysis reveals that the state of the engrailed gene is immaterial to the entire anterior compartment, and crucial to the normal development of the posterior compartment, where it controls the pattern of veins and bristles. The presence of a straight and precisely positioned compartment border is dependent on the activity of the engrailed gene until late in development. We suggest that this is due to the gene's effects on cell affinities of the posterior compartment.The engrailed mutation increases the size and changes the shape of the posterior compartment. engrailed clones cause local wing enlargement only if they are dorsal and include the posterior margin of the wing. Wildtype cells outside the clone contribute to this change of shape. This result suggests that the postero-dorsal margin is primarily responsible for the control of shape, and that the ventral compartment is, to some extent, modeled on the dorsal.  相似文献   

17.
The apterous (ap) mutant in Drosophila melanogaster exhibits phenotypes of wing deficiency, precocious adult death, and nonvitellogenic oocyte development. The latter phenotype previously has been shown to result from juvenile hormone (JH) deficiency in the adult stage. To explore the relationship between the hormone deficiency and the other phenotypes, the expression of each phenotype was measured in five alleles of ap (including a new, chemically-induced allele, ap77f) as wing length, survival five days after eclosion, and initiation and progress of vitellogenic oocyte development. No correlation could be found between severity of wing phenotype and that of precocious adult death or nonvitellogenesis. However, the latter phenotypes were correlated in both ap homozygotes and allelic heterozygotes, since adults that survive have wild-type vitellogenesis, and those fated for precocious death fail to develop vitellogenic oocytes. These results indicate that no relationship exists between wing and JH deficiencies, but that precocious adult death is related to hormone deficiency — probably through pleiotropy, rather than through causality.  相似文献   

18.
19.
The recessive X-linked mutation erect wing (ewg), in Drosophila melanogaster, was characterized as a flightless behavioral mutant which specifically lacked the dorsal longitudinal flight muscles [1]. This mutation was mapped distal to the X chromosomal locus yellow, and further to the cytological segment 1 A 1 to 1 B2-3 [2]. Several lethal complementation groups have been mapped to this interval [3]. Our complementation tests show that ewg is allelic to one lethal complementation group in the region 1 A 1 to 1 B2-3. A further analysis of ewg and several lethal alleles isolated at this locus was undertaken in the present investigation. Most of the lethal alleles at this locus lead to a late embryonic or early larval lethal phase, indicating that the ewg+ gene product is necessary for the development of more than just the dorsal longitudinal flight muscles. Intragenic complementation was observed for some of the ewg lethal alleles. Genetic mosaics with ewg lethal alleles showed that mutant cell clones in cuticular structures are viable. Mosaic analysis is consistent with a mesodermal defect associated with the locus.  相似文献   

20.
Artificial selection was carried out for over 45 generations to enhance and suppress expression of the mutation hairy on the Drosophila melanogaster wing. Whole chromosome mapping of X‐linked and autosomal modifiers of sense organ number displayed regional differences in magnitude and direction of their effects. Regional specificity of modifier effects was also seen in some interchromosomal interactions. Scanning electron microscopy allowed precise measurement of sense organ size and position along the L3 longitudinal wing vein. Sense organ size varied in a predictable fashion along the proximal–distal axis, and the dorsal pattern differed from the ventral pattern. The high and low selection lines differed most in the proximal portion of the L3 vein. Extra sense organs in the High line were often associated with vein fragments at locations predicted from ancestral vein patterns. Thus, regional specificity of polygenic or quantitative trait locus modifier effects was identified in several different parts of the wing. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号