首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protein-binding radioassay for cyclic AMP was modified to detect less than 0.025pmol of the nucleotide. The method was applied to the measurement of cyclic AMP in small numbers of mouse pancreatic islets (as little as 25μg of tissue) by use of barium acetate–H2SO4 for deproteinization. The concentration of cyclic AMP in mouse islets incubated in media containing 3.3 or 20mm-glucose was 0.016pmol/10 islets (approx. 1μm in intracellular water). Glucose concentration (3.3 or 20mm) had no detectable effect on islet concentrations of cyclic AMP with periods of incubation or perifusion ranging from 0.5 to 60min, although insulin release rate was rapidly increased by 20mm-glucose. Caffeine (5mm) or 3-isobutyl-1-methylxanthine (1mm), which are known inhibitors of islet cyclic AMP phosphodiesterase, produced marked and rapid increases in islet cyclic AMP concentration at 3.3 or 20mm-glucose, but only enhanced the insulin release rate at the higher glucose concentration. The role of cyclic AMP in insulin release induced by glucose is discussed.  相似文献   

2.
1. Suspensions of isolated chick jejunal columnar absorptive (brush-border) cells respired on endogenous substrates at a rate 40% higher than that shown by rat brush-border cells. 2. Added d-glucose (5 or 10mm), l-glutamine (2.5mm) and l-glutamate (2.5mm) were the only individual substrates which stimulated respiration by chick cells; l-aspartate (2.5 or 6.7mm), glutamate (6.7mm), glutamine (6.7mm), l-alanine (1 or 10mm), pyruvate (1 or 2mm), l-lactate (5 or 10mm), butyrate (10mm) and oleate (1mm) did not stimulate chick cell respiration; l-asparagine (6.7mm) inhibited slightly; glucose (5mm) stimulated more than did 10mm-glucose. 3. Acetoacetate (10mm) and d-3-hydroxybutyrate (10mm) were rapidly consumed but, in contrast to rat brush-border cells, did not stimulate respiration. 4. Glucose (10mm) was consumed more slowly than 5mm-glucose; the dominant product of glucose metabolism during vigorous respiration was lactate; the proportion of glucose converted to lactate was greater with 10mm- than with 5mm-glucose. 5. Glutamate and aspartate consumption rates decreased, and alanine and glutamine consumption rates increased when their initial concentrations were raised from 2.5 to 6.7 or 10mm. 6. The metabolic fate of glucose was little affected by concomitant metabolism of any one of aspartate, glutamate or glutamine except for an increased production of alanine; the glucose-stimulated respiration rate was unaffected by concomitant metabolism of these individual amino acids. 7. Chick cells produced very little alanine from aspartate and, in contrast to rat cells, likewise produced very little alanine from glutamate or glutamine; in chick cells alanine appeared to be predominantly a product of transmination of pyruvate derived from glucose metabolism. 8. In chick cells, glutamate and glutamine were formed from aspartate (2.5 or 6.7mm); aspartate and glutamine were formed from glutamate (2.5mm) but only aspartate from 6.7mm-glutamate; glutamate was the dominant product formed from glutamine (6.7mm) but aspartate only was formed from 2.5mm-glutamine. 9. Chick brush-border cells can thus both catabolize and synthesize glutamine; glutamine synthesis is always diminished by concomitant metabolism of glucose, presumably by allosteric inhibition of glutamine synthetase by alanine. 10. Proline was formed from glutamine (2.5mm) but not from glutamine (2.5mm)+glucose (5mm) and not from 2.5mm-glutamate; ornithine was formed from glutamine (2.5mm)+glucose (5.0mm) but not from glutamine alone; serine was formed from glutamine (2.5mm)+glucose (5mm) and from these two substrates plus aspartate (2.5mm). 11. Total intracellular adenine nucleotides (22μmol/g dry wt.) remained unchanged during incubation of chick cells with glucose. 12. Intracellular glutathione (0.7–0.8mm) was depleted by 40% during incubation of respiring chick cells without added substrates for 75min at 37°C; partial restoration of the lost glutathione was achieved by incubating cells with l-glutamate+l-cysteine+glycine.  相似文献   

3.
1. The hormonal control of glycogen breakdown was studied in hepatocytes isolated from livers of fed rats. 2. Glucose release was stimulated by [8-arginine]vasopressin (10pm–10nm), oxytocin (1nm–1μm), and angiotensin II (1nm–0.1μm). These responses are all at least as sensitive to hormone as is glucose output in the perfused rat liver. 3. The effect of these three hormones on glucose release was critically dependent on extracellular Ca2+, unlike that of glucagon. Half-maximal restoration of the vasopressin response occurred if 0.3mm-Ca2+ was added back to the incubation medium. 4. Glycogen breakdown was more than sufficient to account for the glucose released into the medium, in the absence or presence of hormones. Lactate release by hepatocytes was not affected by vasopressin, but was inhibited by glucagon. 5. If Ca2+ was omitted from the extracellular medium, vasopressin stimulated glycogenolysis, but not glucose release. 6. The phosphorylase a content of hepatocytes was increased by vasopressin, oxytocin and angiotensin II; minimum effective concentrations were 0.1pm, 0.1nm and 10pm respectively. This response was also dependent on Ca2+. 7. These results demonstrate that hepatocytes can respond to low concentrations of vasopressin and angiotensin II, i.e. these effects are likely to be relevant in the intact animal. The role of extracellular Ca2+ in the effects of these hormones on hepatic glycogenolysis and glucose release is discussed.  相似文献   

4.
Uridine diphosphate (UDP)-glucose 4-epimerase (EC 5.1.3.2) has been purified over 1000-fold from extracts of wheat germ by MnCl2 treatment, (NH4)2SO4 fractionation, Sephadex column chromatography, and adsorption onto and elution from calcium phosphate gel. The enzyme has a pH optimum of 9.0. Km values are 0.1 mm for UDP-d-galactose and 0.2 mm for UDP-d-glucose. NAD is required for activity; Ka = 0.04 mm. NADH is an inhibitor strictly competitive with NAD; Ki = 2 μm. Wheat germ also contains UDP-l-arabinose 4-epimerase (EC 5.1.3.5) and thymidine diphosphate (TDP)-glucose 4-epimerase which are distinct from UDP-glucose 4-epimerase.  相似文献   

5.
The effects of aliphatic 2-oxocarboxylic acids, at concentrations of up to 40mm, on the function of pancreatic islets from ob/ob (obese–hyperglycaemic) mice were investigated. 1. 2-Oxopentanoate, dl-3-methyl-2-oxopentanoate, 4-methyl-2-oxopentanoate and 2-oxohexanoate all induced insulin release by isolated incubated islets and a biphasic insulin-secretory pattern in perfused mouse pancreas. The last two substances were similar in potency to glucose. Pyruvate, 2-oxobutyrate, 3-methyl-2-oxobutyrate and 2-oxo-octanoate did not induce insulin release significantly. 2. 2-Oxocarboxylic acids with significant insulin-secretory potency also induced significant 45Ca uptake by isolated incubated islets. 3. The rates of decarboxylation of [1-14C]pyruvate, 3-methyl-2-oxo[1-14C]butyrate and 4-methyl-2-oxo[1-14C]pentanoate were twice as high as the rates of oxidation of the corresponding U-14C-labelled compounds. However, whereas the rates of metabolism of labelled pyruvate and 3-methyl-2-oxobutyrate steadily increased over the concentration range 1–40mm, those of labelled 4-methyl-2-oxopentanoate and d-[U-14C]glucose levelled off at concentrations above 10mm. 4. Omission of 40CaCl2 from the incubation medium reduced the rate of oxidation of the insulin secretagogue [U-14C]4-methyl-2-oxopentanoate, but left that of the non-(insulin secretagogue) [U-14C]3-methyl-2-oxobutyrate unaffected. 5. Only glucose, and not pyruvate, 3-methyl-2-oxobutyrate and 4-methyl-2-oxopentanoate, significantly inhibited oxidation of endogenous fatty acids. 6. It is suggested that stimulus–secretion coupling and the resulting exocytosis of insulin in pancreatic β-cells may modulate both fuel oxidation and 45Ca uptake.  相似文献   

6.
The mechanism of hexose transport into plasma membrane vesicles isolated from mature sugarbeet leaves (Beta vulgaris L.) was investigated. The initial rate of glucose uptake into the vesicles was stimulated approximately fivefold by imposing a transmembrane pH gradient (ΔpH), alkaline inside, and approximately fourfold by a negative membrane potential (ΔΨ), generated as a K+-diffusion potential, negative inside. The -fold stimulation was directly related to the relative ΔpH or ΔΨ gradient imposed, which were determined by the uptake of acetate or tetraphenylphosphonium, respectively. ΔΨ- and ΔpH-dependent glucose uptake showed saturation kinetics with a Km of 286 micromolar for glucose. Other hexose molecules (e.g. 2-deoxy-d-glucose, 3-O-methyl-d-glucose, and d-mannose) were also accumulated into plasma membrane vesicles in a ΔpH-dependent manner. Inhibition constants of a number of compounds for glucose uptake were determined. Effective inhibitors of glucose uptake included: 3-O-methyl-d-glucose, 5-thio-d-glucose, d-fructose, d-galactose, and d-mannose, but not 1-O-methyl-d-glucose, d- and l-xylose, l-glucose, d-ribose, and l-sorbose. Under all conditions of proton motive force magnitude and glucose and sucrose concentration tested, there was no effect of sucrose on glucose uptake. Thus, hexose transport on the sugarbeet leaf plasma membrane was by a H+-hexose symporter, and the carrier and possibly the energy source were not shared by the plasma membrane H+-sucrose symporter.  相似文献   

7.
Hyperinsulinemia (HI) is elevated plasma insulin at basal glucose. Impaired glucose tolerance is associated with HI, although the exact cause and effect relationship remains poorly defined. We tested the hypothesis that HI can result from an intrinsic response of the β-cell to chronic exposure to excess nutrients, involving a shift in the concentration dependence of glucose-stimulated insulin secretion. INS-1 (832/13) cells were cultured in either a physiological (4 mm) or high (11 mm) glucose concentration with or without concomitant exposure to oleate. Isolated rat islets were also cultured with or without oleate. A clear hypersensitivity to submaximal glucose concentrations was evident in INS-1 cells cultured in excess nutrients such that the 25% of maximal (S0.25) glucose-stimulated insulin secretion was significantly reduced in cells cultured in 11 mm glucose (S0.25 = 3.5 mm) and 4 mm glucose with oleate (S0.25 = 4.5 mm) compared with 4 mm glucose alone (S0.25 = 5.7 mm). The magnitude of the left shift was linearly correlated with intracellular lipid stores in INS-1 cells (r2 = 0.97). We observed no significant differences in the dose responses for glucose stimulation of respiration, NAD(P)H autofluorescence, or Ca2+ responses between left- and right-shifted β-cells. However, a left shift in the sensitivity of exocytosis to Ca2+ was documented in permeabilized INS-1 cells cultured in 11 versus 4 mm glucose (S0.25 = 1.1 and 1.7 μm, respectively). Our results suggest that the sensitivity of exocytosis to triggering is modulated by a lipid component, the levels of which are influenced by the culture nutrient environment.  相似文献   

8.
1. Regulation of the reduction of ferricyanide by the isolated perfused rat liver was studied. 2. The rate of reduction was dependent on the rate of supply of ferricyanide and independent of perfusate oxygen concentration. 3. The effect of pH was also examined; the rate of reduction was optimal at pH 7.4 and was inhibited to a greater extent by pH values below 7.4 than those above 7.4. 4. The effects of substrates on the rate of ferricyanide reduction was assessed. Reductants of the cytosolic and mitochondrial NADH/NAD+ couple were tested. 2-Hydroxybutyrate (10mm), lactate (10mm), glycerol (10mm) and ethanol (10mm) each had no effect. Dihydroxyacetone (10mm) stimulated the rate. 5. Dehydroascorbate (1mm), stimulated the rate of ferricyanide reduction; the stimulation did not appear to be attributable to the production of reduced substances that were excreted to reduce extracellular ferricyanide. 6. The effects of glucagon and cyclic AMP on the rate of ferricyanide reduction were examined. Glucagon inhibited the rate by approx. 30% and half-maximal inhibition occurred at 0.1 nm, corresponding to the concentration at which half-maximal stimulation of glucose release occurred. Cyclic AMP stimulated glucose release but had no significant effect on the rate of ferricyanide reduction. It is concluded that the trans-plasma membrane redox system of liver that reduces extracellular ferricyanide is regulated by glucagon. The rate is also altered by the substrate dihydroxyacetone. The effect of glucagon may be direct as it cannot be mimicked by cyclic AMP and it occurs directly following exposure to the hormone.  相似文献   

9.
Enzymes of glucose metabolism in normal mouse pancreatic islets   总被引:14,自引:14,他引:0       下载免费PDF全文
1. Glucose-phosphorylating and glucose 6-phosphatase activities, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NADP+-linked isocitrate dehydrogenase, `malic' enzyme and pyruvate carboxylase were assayed in homogenates of normal mouse islets. 2. Two glucose-phosphorylating activities were detected; the major activity had Km 0.075mm for glucose and was inhibited by glucose 6-phosphate (non-competitive with glucose) and mannoheptulose (competitive with glucose). The other (minor) activity had a high Km for glucose (mean value 16mm) and was apparently not inhibited by glucose 6-phosphate. 3. Glucose 6-phosphatase activity was present in amounts comparable with the total glucose-phosphorylating activity, with Km 1mm for glucose 6-phosphate. Glucose was an inhibitor and the inhibition showed mixed kinetics. No inhibition of glucose 6-phosphate hydrolysis was observed with mannose, citrate or tolbutamide. The inhibition by glucose was not reversed by mannoheptulose. 4. 6-Phosphogluconate dehydrogenase had Km values of 2.5 and 21μm for NADP+ and 6-phosphogluconate respectively. 5. Glucose 6-phosphate dehydrogenase had Km values of 4 and 22μm for NADP+ and glucose 6-phosphate. The Km for glucose 6-phosphate was considerably below the intra-islet concentration of glucose 6-phosphate at physiological extracellular glucose concentrations. The enzyme had no apparent requirement for cations. Of a number of possible modifiers of glucose 6-phosphate dehydrogenase, only NADPH was inhibitory. The inhibition by NADPH was competitive with NADP+ and apparently mixed with respect to glucose 6-phosphate. 6. NADP+–isocitrate dehydrogenase was present but the islet homogenate contained little, if any, `malic' enzyme. The presence of pyruvate carboxylase was also demonstrated. 7. The results obtained are discussed with reference to glucose phosphorylation and glucose 6-phosphate oxidation in the intact mouse islet, and the possible nature of the β-cell glucoreceptor mechanism.  相似文献   

10.
d-Glucose catabolism of a phosphofructokinase-deficient yeast Rhodotorula gracilis has been studied. By using d-glucose specifically 14C-labelled at different positions and measuring the distribution of the label in various fractions of cell metabolism, the following results were found. 1. The pentose phosphate pathway, being the main pathway of d-glucose catabolism, simultaneously converts glucose molecules into pentose phosphates oxidatively by using two NADP-linked dehydrogenases and via the non-oxidative transketolase–transaldolase pathway. 2. From the correlation of the 14CO2 liberation and the d-glucose consumption and from the fact that the pentose phosphate moiety in nucleic acids is almost equally labelled from d-[1-14C]- and d-[6-14C]-glucose, it is concluded that of the glucose utilized about 80% undergoes transformation via the non-oxidative pentose phosphate pathway. Only about 20% of glucose is directly decarboxylated to pentose phosphate. 3. For further degradation it is postulated that the pentose phosphates are split into C2 fragments and glyceraldehyde 3-phosphates. 4. All three loci of oxidative decarboxylation appear to be effective in Rh. gracilis, the oxidative part of the pentose phosphate pathway, the decarboxylation of pyruvate in the later part of the glycolytic pathway as well as the oxidation in the tricarboxylic acid cycle. 5. d-Glucose molecules taken up are only partially oxidized to CO2: about four-fifths of each glucose molecule metabolized is incorporated into cell constituents. 6. The quantitative interrelations of the fluxes of d-glucose subunits along the catabolic pathways have been estimated and are discussed.  相似文献   

11.
1. The aerobic transport of d-glucose and d-galactose in rabbit kidney tissue at 25° was studied. 2. In slices forming glucose from added substrates an accumulation of glucose against its concentration gradient was found. The apparent ratio of intracellular ([S]i) and extracellular ([S]o) glucose concentrations was increased by 0·4mm-phlorrhizin and 0·3mm-ouabain. 3. Slices and isolated renal tubules actively accumulated glucose from the saline; the apparent [S]i/[S]o fell below 1·0 only at [S]o higher than 0·5mm. 4. The rate of glucose oxidation by slices was characterized by the following parameters: Km 1·16mm; Vmax. 4·5μmoles/g. wet wt./hr. 5. The active accumulation of glucose from the saline was decreased by 0·1mm-2,4-dinitrophenol, 0·4mm-phlorrhizin and by the absence of external Na+. 6. The kinetic parameters of galactose entry into the cells were: Km 1·5mm; Vmax 10μmoles/g. wet wt./hr. 7. The efflux kinetics from slices indicated two intracellular compartments for d-galactose. The galactose efflux was greatly diminished at 0°, was inhibited by 0·4mm-phlorrhizin, but was insensitive to ouabain. 8. The following mechanism of glucose and galactose transport in renal tubular cells is suggested: (a) at the tubular membrane, these sugars are actively transported into the cells by a metabolically- and Na+-dependent phlorrhizin-sensitive mechanism; (b) at the basal cell membrane, these sugars are transported in accordance with their concentration gradient by a phlorrhizin-sensitive Na+-independent facilitated diffusion. The steady-state intracellular sugar concentration is determined by the kinetic parameters of active entry, passive outflow and intracellular utilization.  相似文献   

12.
Uptake of monosaccharides by guinea-pig cerebral-cortex slices   总被引:1,自引:1,他引:0       下载免费PDF全文
By the use of 1mm-iodoacetate to inhibit glycolysis in guinea-pig cerebral tissue slices, the kinetics of the uptake of monosaccharides on transfer of tissue from 0° to 37° were studied. d-Ribose, d-galactose, d-mannose, l-sorbose, and d-fructose showed diffusion kinetics, whereas 2-deoxy-d-glucose, d-glucose, d-arabinose and d-xylose showed saturation kinetics.  相似文献   

13.
1. The kinetic properties of the soluble and particulate hexokinases from rat heart have been investigated. 2. For both forms of the enzyme, the Km for glucose was 45μm and the Km for ATP 0·5mm. Glucose 6-phosphate was a non-competitive inhibitor with respect to glucose (Ki 0·16mm for the soluble and 0·33mm for the particulate enzyme) and a mixed inhibitor with respect to ATP (Ki 80μm for the soluble and 40μm for the particulate enzyme). ADP and AMP were competitive inhibitors with respect to ATP (Ki for ADP was 0·68mm for the soluble and 0·60mm for the particulate enzyme; Ki for AMP was 0·37mm for the soluble and 0·16mm for the particulate enzyme). Pi reversed glucose 6-phosphate inhibition with both forms at 10mm but not at 2mm, with glucose 6-phosphate concentrations of 0·3mm or less for the soluble and 1mm or less for the particulate enzyme. 3. The total activity of hexokinase in normal hearts and in hearts from alloxan-diabetic rats was 21·5μmoles of glucose phosphorylated/min./g. dry wt. of ventricle at 25°. The temperature coefficient Q10 between 22° and 38·5° was 1·93; the ratio of the soluble to the particulate enzyme was 3:7. 4. The kinetic data have been used to predict rates of glucose phosphorylation in the perfused heart at saturating concentrations of glucose from measured concentrations of ATP, glucose 6-phosphate, ADP and AMP. These have been compared with the rates of glucose phosphorylation measured with precision in a small-volume recirculation perfusion apparatus, which is described. The correlation between predicted and measured rates was highly significant and their ratio was 1·07. 5. These findings are consistent with the control of glucose phosphorylation in the perfused heart by glucose 6-phosphate concentration, subject to certain assumptions that are discussed in detail.  相似文献   

14.
1. 0.5mm-Palmitate stimulated incorporation of [U-14C]glucose into glyceride glycerol and fatty acids in normal fat cells in a manner dependent upon the glucose concentration. 2. In the presence of insulin the incorporation of 5mm-glucose into glyceride fatty acids was increased by concentrations of palmitate, adrenaline and 6-N-2′-O-dibutyryladenosine 3′:5′-cyclic monophosphate up to 0.5mm, 0.5μm and 0.5mm respectively. Higher concentrations of these agents produced progressive decreases in the rate of glucose incorporation into fatty acids. 3. The effects of palmitate and lipolytic agents upon the measured parameters of glucose utilization were similar, suggesting that the effects of lipolytic agents are mediated through increased concentrations of free fatty acids. 4. In fat cells from 24h-starved rats, maximal stimulation of glucose incorporation into fatty acids was achieved with 0.25mm-palmitate. Higher concentrations of palmitate were inhibitory. In fat cells from 72h-starved rats, palmitate only stimulated glucose incorporation into fatty acids at high concentrations of palmitate (1mm and above). 5. The ability of fat cells to incorporate glucose into glyceride glycerol in the presence of palmitate decreased with increasing periods of starvation. 6. It is suggested that low concentrations of free fatty acids stimulate fatty acid synthesis from glucose by increasing the utilization of ATP and cytoplasmic NADH for esterification of these free fatty acids. When esterification of free fatty acids does not keep pace with their provision, inhibition of fatty acid synthesis occurs. Provision of free fatty acids far in excess of the esterification capacity of the cells leads to uncoupling of oxidative phosphorylation and a secondary stimulation of fatty acid synthesis from glucose.  相似文献   

15.
The transport of some sugars at the antiluminal face of renal cells was studied using teased tubules of flounder (Pseudopleuronectes americanus). The analytical procedure allowed the determination of both free and total (free plus phosphorylated) tissue sugars. The inulin space of the preparation was 0.333 ± 0.017 kg/kg wet wt (7 animals, 33 analyses). The nonmetabolizable α-methyl-D-glucoside entered the cells by a carrier-mediated (phloridzin-sensitive), ouabain-insensitive process. The steady-state tissue/medium ratio was systematically below that for diffusion equilibrium. D-Glucose was a poor inhibitor of α-methyl-glucoside transport, D-galactose was ineffective. The phloridzin-sensitive transport processes of 2-deoxy-D-glucose,D-galactose,and 2-deoxy-D-galactose were associated with considerable phosphorylation. Kinetic evidence suggested that these sugars were transported in free form and subsequently were phosphorylated. 2-Deoxy-D-glucose accumulated in the cells against a slight concentration gradient. This transport was greatly inhibited by D-glucose, whereas α-methyl-glucoside and also D-galactose and its 2-deoxy-derivative were ineffective. D-Galactose and 2-deoxy-D-galactose mutually competed for transport; D-glucose, 2-deoxy-D-glucose, and α-methyl-D-glucoside were ineffective. Studies using various sugars as inhibitors suggest the presence of three carrier-mediated pathways of sugar transport at the antiluminal cell face of the flounder renal tubule: the pathway of α-methyl-D-glucoside (not shared by D-glucose); the pathway commonly shared by 2-deoxy-D-glucose and D-glucose; the pathway shared by D-galactose and 2-deoxy-D-galactose.  相似文献   

16.
Several weakly transported sugars were tested for transport by the Na+-dependent sugar carrier with slices of everted hamster intestinal tissue. Sugars were assumed to be transported by this carrier if the accumulation was diminished in the absence of Na+ and in the presence of the competitive inhibitor 1,5-anhydro-d-glucitol. The extent of accumulation was correlated with the number of hydroxyl groups in the d-gluco configuration if the ring oxygen was placed in the normal d-glucose position. 5-Thio-d-glucose, with a sulphur atom in the ring, was transported at about the same rate as d-glucose and had a similar Ki for d-galactose transport, but myoinositol was poorly accumulated. It is suggested that there is no hydrogen bonding at the ring oxygen atom, but that the oxygen atom is found at this position as a result of steric constraints. No sugar without a hydroxyl group in the d-gluco position at C-2 of the sugar, including d-mannose, 2-deoxy-d-glucose, 2-chloro-2-deoxy-d-glucose and 2-deoxy-2-fluoro-d-glucose, was transported by the Na+-dependent carrier, but these sugars and l-fucose weakly and competitively inhibit the Na+-dependent accumulation of l-glucose into slices of everted hamster intestinal tissue. It is concluded that the bond between the carrier and C-2 of the sugar may be covalent, and a possible mechanism for active intestinal transport is proposed.  相似文献   

17.
A soluble enzyme system from suspension cultures of Acer pseudoplatanus L. converts d-glucose 6-phosphate to myoinositol. A Mg2+-dependent phosphatase, present in the crude extract, hydrolyzes the product of the cyclization, myoinositol monophosphate, to free myoinositol. Further purification of the enzyme system by precipitation with (NH4)2SO4 followed by diethylaminoethyl cellulose chromatography eliminates the phosphatase and makes it necessary to add alkaline phosphatase to the reaction mixture in order to assay for free myoinositol. Gel filtration on Sephadex G-200 increases the specific activity of the cycloaldolase to 8.8 × 10−4 units per milligram protein (1 unit = 1 micromole of myoinositol formed per minute). The cycloaldolase has an absolute requirement for nicotinamide adenine dinucleotide and a maximum activity at pH 8 with 0.1 mm nicotinamide adenine dinucleotide. The reaction rate is linear for 2.5 hours when d-glucose 6-phosphate is below 4 mm and has a Km of 1.77 mm. The diethylaminoethyl cellulose-purified enzyme is stable for 6 to 8 weeks in the frozen state.  相似文献   

18.
1. The ability of tricarboxylic acid-cycle metabolites to influence the physiological performance of the perfused anaerobic rat heart was investigated. Energy expenditure/h [(beats/min)×60×systolic pressure/g of protein] for various anoxic conditions compared with oxygenated control hearts were: 5mm-glucose, 4.5%; 20mm- or 40mm-glucose, 10%; 20mm-glucose plus fumerate+malate+glutamate, 29%; 20mm-glucose plus oxaloacetate and α-oxoglutarate, 31%. 2. The energy expenditure/lactate production ratio was increased by the tricarboxylic acid-cycle metabolites, indicating that alterations in anaerobic physiological performance did not result from changes in glycolysis. 3. Analysis of tissue constituents provided further indication of an enhanced energy status for fumarate+malate+glutamate- and oxaloacetate+α-oxoglutarate-perfused hearts; tissue concentrations of both glycogen and ATP were higher than in the 20mm-glucose-perfused groups. 4. A marked increase in the accumulation of succinate in tissues perfused with oxaloacetate+α-oxoglutarate or fumarate+malate+glutamate provided further evidence that these metabolites were stimulating mitochondrial energy production under anoxia. 5. These studies indicate that mitochondrial ATP production can be stimulated in an isolated mammalian tissue perfused under anaerobiosis with a resulting enhancement of cell function.  相似文献   

19.
Tris-disrupted and intact brush border membrane preparations from mucosa of hamster jejunum were capable of preferentially binding actively transported D-glucose in a similar manner. Density gradient centrifugation of the Tris-disrupted brush borders indicated that D-glucose was bound to a fraction containing the cores or inner material of the microvilli. The properties of this binding were examined with the Tris-disrupted brush border preparation. Actively transported sugars competitively inhibited preferential D-glucose binding, whereas no effect was observed with nonactively transported sugars. Neither actively nor nonactively transported amino acids affected D-glucose binding. D-Glucosamine, which is not actively transported, was inhibitory to preferential D-glucose binding as well as to the active transport of D-glucose by everted sacs of hamster jejunum. No inhibitory effect was observed with the same concentration of D-galactosamine. Preferential D-glucose binding was also inhibited by sulfhydryl-reacting compounds, Ca2+, and Li+ ions. On the other hand, Mg2+ was shown to be stimulatory and Na+, NH4 +, and K+ had no effect on this phenomenon. The results of these experiments suggest that preferential D-glucose binding to brush borders is related to the initial step in active sugar transport by the small intestine.  相似文献   

20.
1. The influence of cations on the active transport into cells of rat-brain-cortex slices of l-histidine, an amino acid that is not metabolized by this tissue, has been studied. 2. Like other amino acids, l-histidine accumulated in the cells in the presence of glucose in concentrations up to over double that in the incubation medium. 3. The active transport of l-histidine was highest in a medium containing Ca2+ (3mm). The addition of K+ (27mm) led to a marked decrease in the intracellular concentration of l-histidine, though the oxygen uptake of the slices was higher. 4. The active l-histidine transport was inhibited by NH4+. The inhibitory effect increased with the NH4+ concentration, being about 25% at 8mm, 65% at 20mm, and 90% at 27 and 50mm. The oxygen uptake of the brain slices was depressed by only 25% by the highest NH4+ concentration used, and less by lower concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号