首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.

Aims

Phosphorus (P) is frequently limiting crop production in agroecosystems. Large progress was achieved in understanding root traits associated with P acquisition efficiency (PAE, i.e. P uptake achieved under low P conditions). Most former studies were performed in controlled environments, and avoided the complexity of soil-root interactions. This may lead to an oversimplification of the root-soil relations. The aim of the present study was, therefore, to identify the dominant root and rhizosphere-related traits determining PAE, in contrasting soil conditions in the field.

Methods

Twenty-three maize hybrids were grown at two contrasting P levels of a long-term P-fertilizer trial in two adjacent soil types: alkaline and neutral. Bulk soil, rhizosphere and root parameters were studied in relation to plant P acquisition.

Results

Soil type had robust effect on PAE. Hybrids’ performance in one soil type was not related to that in the other soil type. In the neutral soil, roots exhibited higher specific root length, higher root/shoot ratio but lower PAE. Best performing hybrids in the neutral soil were characterized by top soil exploration, i.e., greater root surface and topsoil foraging. In contrast, in the alkaline soil, PAE and foraging traits were not correlated, P availability in the rhizosphere was greater than the bulk soil and phosphatase activity was higher, suggesting a ‘mining strategy’ in that case (i.e. traits that facilitate elevated P availability).

Conclusions

These results indicate the key role of environmental factors for roots traits determining high PAE. The study highlights the need to consider soil properties when breeding for high PAE, as various soil types are likely to require different crop ideotypes.
  相似文献   

2.

Objective

To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing.

Results

Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C.

Conclusion

Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.
  相似文献   

3.

Aims

The objectives of this study were to evaluate (1) the fertilizer potential of bone char, (2) the effects of wood biochar on plant-available phosphorus (P), and (3) the role of root-mycorrhizae-biochar interactions in plant P acquisition from a P-fixing soil.

Methods

Incubation and pot experiments were conducted with a P-fixing soil and maize with or without root hairs and arbuscular mycorrhizae (AM) inoculation. Olsen-, resin-P and plant P accumulation were used to estimate P availability from bone char, co-pyrolyzed bone char-wood biochar, and separate bone char and wood biochar additions produced at 60, 350 and 750 °C, and Triple Superphosphate (TSP).

Results

Maize inoculated with AM showed similar P accumulation when fertilized with either 750 °C bone char or TSP. Pyrolyzing bone did not increase extractable P in soil in comparison to unpyrolyzed bone, apart from a 67 % increase in resin-extractable P after additions of bone char pyrolyzed at 350 °C. Despite greater Olsen-P extractability, co-pyrolysis of bone with wood reduced maize P uptake. Wood biochars reduced resin-P from bone char by 14–26 %, whereas oven-dried wood increased resin-P by 23 %.

Conclusions

Bone char is an effective P fertilizer, especially if root-AM interactions are simultaneously considered. Biochar influences plant access to soil P and requires careful management to improve P availability.
  相似文献   

4.

Aims

We assessed and quantified the cumulative impact of 20 years of biomass management on the nature and bioavailability of soil phosphorus (P) accumulated from antecedent fertiliser inputs.

Methods

Soil (0–2.5, 2.5–5, 5–10 cm) and plant samples were taken from replicate plots in a grassland field experiment maintained for 20 years under contrasting plant biomass regimen- biomass retained or removed after mowing. Analyses included dry matter production and P uptake, root biomass, total soil carbon (C), total nitrogen (N), total P, soil P fractionation, and 31P NMR spectroscopy.

Results

Contemporary plant production and P uptake were over 2-fold higher for the biomass retained compared with the biomass removed regimes. Soil C, total P, soluble and labile forms of inorganic and organic soil P were significantly higher under biomass retention than removal.

Conclusions

Reserves of soluble and labile inorganic P in soil were significantly depleted in response to continued long-term removal of P in plant biomass compared to retention. However, this was only sufficient to sustain plant production at half the level observed for the biomass retention after 20 years, which was partly attributed to limited mobilisation of organic P in response to P removal.
  相似文献   

5.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

6.

Aim

Our objectives were to compare effects of root charge properties on Al adsorption by the roots of rice that differed in Al-tolerance, and to examine effects of different nitrogen forms on charge properties of rice roots and Al adsorption.

Methods

Streaming potential and chemical methods were used to measure root zeta potential and investigate Al chemical forms adsorbed on the roots of rice obtained from solution culture experiments.

Results

Rice roots of the Al-sensitive variety Yangdao-6 carried greater negative charge than the Al-tolerant variety Wuyunjing-7, which meant the roots of Yangdao-6 adsorbed more exchangeable and complexed Al. When both rice varieties were grown in NH4 +-containing nutrient solutions, there were less functional groups and lower negative surface charge on their roots, which reduced Al adsorption compared to the rice grown in NO3 ? containing nutrient solutions. The decline in nutrient solution pH due to NH4 + uptake by rice roots was responsible for the reduced numbers of functional groups and the lower negative surface charge on the roots compared to the rice grown in NO3 ? containing solutions.

Conclusions

Integrated root surface charge, as expressed by zeta potential, played an important role in Al adsorption by the roots of rice with different Al-tolerance.
  相似文献   

7.

Aims

Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability.

Methods

Four barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured.

Results

Barley-legume intercrops had 10–70% greater P accumulation and 0–40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments.

Conclusions

Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P.
  相似文献   

8.
9.

Aims

Glucose-6-phosphate dehydrogenase (G6PDH) has been reported to be involved in resistance to various environmental stresses. However, the role of G6PDH in aluminum (Al) toxicity remains unclear.

Methods

Physiological and biochemical methods together with histochemical analysis were used to investigate the participation of G6PDH in Al-induced inhibition of root growth.

Results

Exposure to high Al concentration caused a significant increase in the activities of total and cytosolic G6PDH in roots of soybean. Al-induced inhibition of root growth and oxidative stress were alleviated by a G6PDH inhibitor. Reactive oxygen species (ROS) accumulation in Al-treated root apexes could be abolished by a NADPH oxidase inhibitor. Furthermore, treatment with a G6PDH inhibitor reduced NADPH content and NADPH oxidase activity in Al-treated root apexes. Further investigation demonstrates that nitric oxide (NO) mediates Al-induced increase in cytosolic G6PDH activity by modulating the expression of genes encoding cytosolic G6PDH. In addition, nitrate reductase pathway is mainly responsible for Al-induced NO production in root apexes.

Conclusions

These results indicate that NADPH produced by NO-modulated cytosolic G6PDH in root apexes is responsible for ROS accumulation mediated by NADPH oxidase under Al stress, subsequently suffering from oxidative stress and thus causing the inhibition of root elongation.
  相似文献   

10.

Background and aims

In Malawi, strategies are being sought to boost maize production through improvements in soil fertility. This study assessed the impact of intercropping maize (Zea mays) with pigeon pea (Cajanus cajan) in Lixisols of Malawi on yield, biological N fixation, soil aggregation, and P forms within soil aggregates.

Methods

Maize and pigeon pea were grown intercropped in pots, with varying degrees of root interaction in order to understand the relative importance of biochemical versus physical rhizospheric interactions. Following harvest, soils were separated into aggregate fractions using wet-sieving, and the nutrient content of all fractions was assessed.

Results

The proportion of macroaggregates and microaggregates increased by 52 and 111%, respectively, in the intercropping treatment compared to sole maize, which significantly increased organic P storage in the microaggregates of intercropped compared to sole maize (84 versus 29 mg P kg?1, respectively). Biologically fixed N increased from 89% in the sole pigeon pea to 96% in the intercropped system.

Conclusions

Intercropping maize with pigeon pea can have a significant and positive impact on soil structure as well as nutrient storage in these high P-sorbing soils. This is caused primarily by physical root contact and to a lesser degree by biochemical activities.
  相似文献   

11.

Background

Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at acquiring this growth-limiting resource. Carboxylates are released during a period of only a few days from ephemeral cluster roots. Despite the cluster-root strategy being superior for P acquisition in such environments, these species coexist with a wide range of mycorrhizal species, raising questions about the mechanisms contributing to their coexistence.

Scope

We surmise that the coexistence of mycorrhizal and non-mycorrhizal strategies is primarily accounted for by a combination of belowground mechanisms, namely (i) facilitation of P acquisition by mycorrhizal plants from neighbouring cluster-rooted plants, and (ii) interactions between roots, pathogens and mycorrhizal fungi, which enhance the plants’ defence against pathogens. Facilitation of nutrient acquisition by cluster-rooted plants involves carboxylate exudation, making more P available for both themselves and their mycorrhizal neighbours. Belowground nutrient exchanges between carboxylate-exuding plants and mycorrhizal N2-fixing plants appear likely, but require further experimental testing to determine their nutritional and ecological relevance. Anatomical studies of roots of cluster-rooted Proteaceae species show that they do not form a complete suberised exodermis.

Conclusions

The absence of an exodermis may well be important to rapidly release carboxylates, but likely lowers root structural defences against pathogens, particularly oomycetes. Conversely, roots of mycorrhizal plants may not be as effective at acquiring P when P availability is very low, but they are better defended against pathogens, and this superior defence likely involves mycorrhizal fungi. Taken together, we are beginning to understand how an exceptionally large number of plant species and P-acquisition strategies coexist on the most severely P-impoverished soils.
  相似文献   

12.

Aim

To investigate the effects of biochar on biological and chemical phosphorus (P) processes and identify potential interactive effects between P fertilizer and biochar on P bioavailability in the rhizosphere of maize.

Methods

We conducted a pot-experiment with maize in a sandy loam soil with two fertilizer levels (0 and 100 mg P kg ?1) and three biochars produced from soft wood (SW), rice husk (RH) and oil seed rape (OSR). Sequential P fractionation was performed on biochar, bulk soil, and rhizosphere soil samples. Acid and alkaline phosphatase activity and root exudates of citrate, glucose, fructose, and sucrose in the rhizosphere were determined.

Results

RH and OSR increased readily available soil P, whereas SW had no effect. However, over time available P from the biochars moved to less available P pools (Al-P and Fe-P). There were no interactive effects between P fertilizer and biochar on P bioavailability. Exudates of glucose and fructose were strongly affected by especially RH, whereas sucrose was mostly affected by P fertilizer. Alkaline phosphatase activity was positively correlated with pH, and citrate was positively correlated with readily available P.

Conclusion

Biochar effects on biological and chemical P processes in the rhizosphere are driven by biochar properties.
  相似文献   

13.

Background and aims

Measures of phosphorus (P) in roots recovered from soil underestimate total P accumulation below-ground by crop species since they do not account for P in unrecovered (e.g., fine) root materials. 33P-labelling of plant root systems may allow more accurate estimation of below-ground P input by plants.

Methods

Using a stem wick-feeding technique 33P-labelled phosphoric acid was fed in situ to canola (Brassica napus) and lupin (Lupinus angustifolius) grown in sand or loam soils in sealed pots.

Results

Recovery of 33P was 93 % in the plant-soil system and 7 % was sorbed to the wick. Significantly more 33P was allocated below-ground than to shoots for both species with 59–90 % of 33P measured in recovered roots plus bulk and rhizosphere soil. 33P in recovered roots was higher in canola than lupin regardless of soil type. The proportion of 33P detected in soil was greater for lupin than canola grown in sand and loam (37 and 73 % lupin, 20 and 23 % canola, respectively). Estimated total below-ground P accumulation by both species was at least twice that of recovered root P and was a greater proportion of total plant P for lupin than canola.

Conclusion

Labelling roots using 33P via stem feeding can empower quantitative estimates of total below-ground plant P and root dry matter accumulation which can improve our understanding of P distribution in soil-plant systems.
  相似文献   

14.

Aims

Plants interact by modifying soil conditions in plant-soil feedback processes. Foliar endophytes of grasses exert multiple effects on host rhizosphere with potential consequences on plant-soil feedback. Here, we hypothesize that the grass-endophyte symbiosis impairs soil symbiotic potential, and in turn influences legume performance and nitrogen acquisition.

Methods

Soil was conditioned in pots, growing Lolium multiflorum with or without the fungal endophyte Epichloë and with or without arbuscular mycorrhizal fungi (AMF). Then, Trifolium repens grew in all types of conditioned soils with high or low rhizobia availability.

Results

Endophyte soil conditioning reduced AMF spores number and rhizobial nodules (?27 % and ?38 %, respectively). Seedling survival was lower in endophyte-conditioned soil and higher in mycorrhizal soils (?27 % and +24 %, respectively). High rhizobia-availability allowed greater growth and nitrogen acquisition, independent of soil conditioning. Low rhizobia-availability allowed both effects only in endophyte-conditioned soil.

Conclusion

Endophyte-induced changes in soil (i) hindered symbiotic potential by reducing AMF spore availability or rhizobia nodulation, (ii) impaired legume survival irrespective of belowground symbionts presence, but (iii) mimicked rhizobia effects, enhancing growth and nitrogen fixation in poorly nodulated plants. Our results show that shoot and root symbionts can be interactively involved in interspecific plant-soil feedback.
  相似文献   

15.

Introduction

Although it is still at a very early stage compared to its mass spectrometry (MS) counterpart, proton nuclear magnetic resonance (NMR) lipidomics is worth being investigated as an original and complementary solution for lipidomics. Dedicated sample preparation protocols and adapted data acquisition methods have to be developed to set up an NMR lipidomics workflow; in particular, the considerable overlap observed for lipid signals on 1D spectra may hamper its applicability.

Objectives

The study describes the development of a complete proton NMR lipidomics workflow for application to serum fingerprinting. It includes the assessment of fast 2D NMR strategies, which, besides reducing signal overlap by spreading the signals along a second dimension, offer compatibility with the high-throughput requirements of food quality characterization.

Method

The robustness of the developed sample preparation protocol is assessed in terms of repeatability and ability to provide informative fingerprints; further, different NMR acquisition schemes—including classical 1D, fast 2D based on non-uniform sampling or ultrafast schemes—are evaluated and compared. Finally, as a proof of concept, the developed workflow is applied to characterize lipid profiles disruption in serum from β-agonists diet fed pigs.

Results

Our results show the ability of the workflow to discriminate efficiently sample groups based on their lipidic profile, while using fast 2D NMR methods in an automated acquisition framework.

Conclusion

This work demonstrates the potential of fast multidimensional 1H NMR—suited with an appropriate sample preparation—for lipidomics fingerprinting as well as its applicability to address chemical food safety issues.
  相似文献   

16.

Objectives

The purpose of this study was to develop a facile and efficient method to enhance the stability and activity of lactoperoxidase (LPO) by using its immobilization on graphene oxide nanosheets (GO-NS).

Methods

Following the LPO purification from bovine whey, it was immobilized onto functionalized GO-NS using glutaraldehyde as cross-linker. Kinetic properties and stability of free and immobilized LPO were investigated.

Results

LPO was purified 59.13 fold with a specific activity of 5.78 U/mg protein. The successful immobilization of LPO on functionalized GO-NS was confirmed by using dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FT-IR). The overall results showed that the stability of the immobilized LPO was considerably improved compared to free LPO. Apparent Km and Vmax of LPO also indicated that the immobilized enzyme had greater affinity to the substrate than the native enzyme.

Conclusions

Graphene oxide nanosheets are effective means for immobilization of LPO.
  相似文献   

17.

Aims

Forests induce a mechanical reinforcement of soil, generally quantified in terms of additional root cohesion (c r ), which decreases due to root decay after felling. The aim of this work is providing new field data on soil reinforcement by roots after trees cutting.

Methods

The present work investigated c r decay in a mixed Silver Fir-Norway Spruce (Abies alba Mill. Picea abies (L.) Karst.) stand in the Italian Alps over a period of 3 years after felling by monitoring the two c r driving variables: root tensile resistance and root density.

Results

Results showed that a significant difference in root resistance occurred only 3 years after felling, whereas the decrease in the number of roots was significant in the second year. The degradation process was more rapid in shallower layers and for thinner roots, as a consequence of the pattern of biological activity rate. The reduction of c r after felling was, for a reference profile depth of 70 cm, 55 % in the first 2 years and another 16 % in the third year.

Conclusions

The findings of this study, providing new data on the decrease of c r after felling, can be introduced into geotechnical models allowing a better estimation of the stability of forest hillslopes.
  相似文献   

18.

Introduction

Concerning NMR-based metabolomics, 1D spectra processing often requires an expert eye for disentangling the intertwined peaks.

Objectives

The objective of NMRProcFlow is to assist the expert in this task in the best way without requirement of programming skills.

Methods

NMRProcFlow was developed to be a graphical and interactive 1D NMR (1H & 13C) spectra processing tool.

Results

NMRProcFlow (http://nmrprocflow.org), dedicated to metabolic fingerprinting and targeted metabolomics, covers all spectra processing steps including baseline correction, chemical shift calibration and alignment.

Conclusion

Biologists and NMR spectroscopists can easily interact and develop synergies by visualizing the NMR spectra along with their corresponding experimental-factor levels, thus setting a bridge between experimental design and subsequent statistical analyses.
  相似文献   

19.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

20.

Introduction

Root-mediated changes in soil organic matter (SOM) decomposition, termed rhizosphere priming effects (RPE), play crucial roles in the global carbon (C) cycle, but their mechanisms and field relevance remain ambiguous. We hypothesize that nitrogen (N) shortages may intensify SOM decomposition in the rhizosphere because of increase of fine roots and rhizodeposition.

Methods

RPE and their dependence on N-fertilization were studied using a C3-to-C4 vegetation change. N-fertilized and unfertilized soil cores, with and without maize, were incubated in the field for 50 days. Soil CO2 efflux was measured, partitioned for SOM- and root-derived CO2, and RPE was calculated. Plant biomass, microbial biomass C (MBC) and N (MBN), and enzyme activities (β-1,4-glucosidase; N-acetylglucosaminidase; L-leucine aminopeptidase) were analyzed.

Results

Roots enhanced SOM mineralization by 35 % and 126 % with and without N, respectively. This was accompanied by higher specific root-derived CO2 in unfertilized soils. MBC, MBN and enzyme activities increased in planted soils, indicating microbial activation, causing positive RPE. N-fertilization had minor effects on MBC and MBN, but it reduced β-1,4-glucosidase and L-leucine aminopeptidase activities under maize through lower root-exudation. In contrast, N-acetylglucosaminidase activity increased with N-fertilization in planted and unplanted soils.

Conclusions

This study showed the field relevance of RPE and confirmed that, despite higher root biomass, N availability reduces RPE by lowering root and microbial activity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号