共查询到20条相似文献,搜索用时 15 毫秒
1.
Kaiye Liu Hao Xu Gang Liu Panfeng Guan Xueyao Zhou Huiru Peng Yingyin Yao Zhongfu Ni Qixin Sun Jinkun Du 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2018,131(4):839-849
Key message
QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat.Abstract
This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3–68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.2.
The database of the world gene pool of wheat was scanned by pedigree and the participation of genetic material from T. timopheevii in the creation of 3088 varieties of common wheat was established. The spatial and temporal dynamics of the propagation of these varieties was studied. Using the analysis of pedigrees, a diversity of T. timopheevii donors was studied. The specificity of donors of the genetic material T. timopheevii for the regions of wheat breeding was established. The main source of resistance genes for most varieties is accession D-357-1 from the Georgian variety-population of Zanduri. This significantly reduces the diversity of the genetic material of T. timopheevii used in wheat breeding. In 369 varieties and 184 lines, the genes for resistance to pathogens from T. timopheevii were identified. The genes of T. timopheevii are distributed mainly in winter varieties, as well as spring varieties sown in autumn. The value of donors as sources of T. timopheevii genes is ambiguous, despite the fact that most of them come from the same D-357-1 accession. The Sr36 gene is most commonly found in the United States, Western Europe, and Australia; it was transferred from the Wisconsin-245 line through Arthur or TP-114-1965a. The Pm6 gene is distributed in Western Europe; it was transferred from the pre-breeding line Wisconsin 245/5*Cappelle-Desprez//Hybrid- 46/Cappelle Desprez. The gene Lr18 is more common in the United States; it was transmitted by the Blueboy or Vogel 5 varieties from the Coker-55-9 line. The extremely limited set of genes for resistance to pathogens from T. timopheevii used in commercial varieties and the specificity of their geographical distribution are possibly associated with the uniqueness of the G subgenome and plasmon in this species, its low potential for plasticity, and tolerance to drought. In addition, the imperfection of the methods of pre-breeding and recombination breeding prevents the elimination in translocation of close linkage of target genes with undesirable ones. 相似文献
3.
Lin Li Minghui Zheng Guangbing Deng Junjun Liang Haili Zhang Zhifen Pan Hai Long Maoqun Yu 《Molecular breeding : new strategies in plant improvement》2016,36(3):23
Drought is one of the major abiotic stresses restricting the yield of wheat (Triticum aestivum L.). Breeding wheat varieties with drought tolerance is an effective and durable way to fight against drought. Here we reported introduction of AtHDG11 into wheat via Agrobacterium-mediated transformation and analyzed the morphological and physiological characteristics of T2 generation transgenic lines under drought stress. With drought treatment for 30 days, transgenic plants showed significantly improved drought tolerance. Compared with controls, the transgenic lines displayed lower stomatal density, lower water loss rate, more proline accumulation and increased activities of catalase and superoxide dismutase. Without irrigation after booting stage, the photosynthetic parameters, such as net photosynthesis rate, water use efficiency and efficiency of excitation energy, were increased in transgenic lines, while transpiration rate was decreased. Moreover, the kernel yield of transgenic lines was also improved under drought condition. Taken together, our data demonstrate that AtHDG11 has great potential in genetic improvement of drought tolerance of wheat. 相似文献
4.
The study is a continuation of investigation of prolamins in brown rust-resistant introgressive lines of common wheat, produced
with participation of Triticum timopheeevi Zhuk. [1]. Two wheat lines with a substitution of the Glu-1 loci of T. timopheevi were identified. Line 684 had high-molecular-weight glutenin subunits encoded by 1Ax, as well as by 1Ay gene, which was silent in commercial lines. It was demonstrated that line 684 could serve as a source of the Glu-A
t
1
locus. Line 186 carried the Glu-B1/Glu-G1 substitution. Comparative analysis of storage proteins from the introgression lines of common wheat Triticum aestivum L. with those from parental forms demonstrated polymorphism among the lines, resulted from natural varietal polymorphism,
and introgression of the Glu-3 and Gli-1 loci from the genome of T. timopheevi. 相似文献
5.
Jian Ma Puyang Ding Peng Qin Ya-Xi Liu Quan Xie Guangdeng Chen Wei Li Qiantao Jiang Guoyue Chen Xiu-Jin Lan Yu-Ming Wei Chunji Liu You-Liang Zheng 《Plant Growth Regulation》2017,82(2):281-291
OsGW7 (also known as OsGL7) is homologous to the Arabidopsis thaliana gene that encodes LONGIFOLIA protein, which regulates cell elongation, and is involved in regulating grain length in rice. However, our knowledge on its ortholog in wheat, TaGW7, is limited. In this study, we identified and mapped TaGW7 in wheat, characterized its nucleotide and protein structures, predicted the cis-elements of its promoter, and analysed its expression patterns. The GW7 orthologs in barley (HvGW7), rice (OsGW7), and Brachypodium distachyon (BdGW7) were also identified for comparative analyses. TaGW7 mapped onto the short arms of group 2 chromosomes (2AS, 2BS, and 2DS). Multiple alignments indicated GW7 possesses five exons and four introns in all but two of the species analysed. An exon–intron junction composed of introns 3–4 and exons 4–5 was highly conserved. GW7 has a conserved domain (DUF 4378) and two neighbouring low complexity regions. GW7 was mainly expressed in wheat spikes and stems, in barley seedling crowns, and in rice anthers and embryo-sacs during early development. Drought and heat significantly increased and decreased GW7 expression in wheat, respectively. In barley, GW7 was significantly down-regulated in paleae and awns but up-regulated in seeds under drought treatment and down-regulated under Fusarium and stem rust inoculation. In rice, OsGW7 expression differed significantly under drought treatments. Collectively, these results provide insights into GW7 structure and expression in wheat, barley and rice. The GW7 sequence structure and expression data are the foundation for manipulating GW7 and uncovering its roles in plants. 相似文献
6.
Supriya Kumari Vandana Jaiswal Vinod Kumar Mishra Rajneesh Paliwal Harindra Singh Balyan Pushpendra Kumar Gupta 《Physiology and Molecular Biology of Plants》2018,24(5):909-920
Grain traits are important agronomic attributes with the market value as well as milling yield of bread wheat. In the present study, quantitative trait loci (QTL) regulating grain traits in wheat were identified. Data for grain area size (GAS), grain width (GWid), factor form density (FFD), grain length-width ratio (GLWR), thousand grain weight (TGW), grain perimeter length (GPL) and grain length (GL) were recorded on a recombinant inbred line derived from the cross of NW1014?×?HUW468 at Meerut and Varanasi locations. A linkage map of 55 simple sequence repeat markers for 8 wheat chromosomes was used for QTL analysis by Composite interval mapping. Eighteen QTLs distributed on 8 chromosomes were identified for seven grain traits. Of these, five QTLs for GLWR were found on chromosomes 1A, 6A, 2B, and 7B, three QTLs for GPL were located on chromosomes 4A, 5A and 7B and three QTLs for GAS were mapped on 5D and 7D. Two QTLs were identified on chromosomes 4A and 5A for GL and two QTLs for GWid were identified on chromosomes 7D and 6A. Similarly, two QTLs for FFD were found on chromosomes 1A and 5D. A solitary QTL for TGW was identified on chromosome 2B. For several traits, QTLs were also co-localized on chromosomes 2B, 4A, 5A, 6A, 5D, 7B and 7D. The QTLs detected in the present study may be validated for specific crosses and then used for marker-assisted selection to improve grain quality in bread wheat. 相似文献
7.
Abu Hena Mostafa Kamal Ki-Hyun Kim Kwang-Hyun Shin Hyung-Seok Seo Hisashi Tsujimoto Hwa-Young Heo Jong-Soon Choi Chul-Soo Park Sun-Hee Woo 《Journal of Plant Biology》2009,52(6):533-542
Glutenin is a major determinant of baking performance and viscoelasticity, which are responsible for high-quality bread with
a light porous crumb structure of a well-leavened loaf. We analyzed the diversity of glutenin genes from six wheat cultivars
(Korean cvs. Keumgang and Jinpum, Chinese cvs. China-108 and Yeonnon-78, and Japanese cvs. Norin-61 and Kantou-107). Glutenins
contain two types of isoforms such as high molecular weight glutenin subunit (HMW-GS) and low molecular weight glutenin subunit
(LMW-GS). Glutenin fractions were extracted from wheat endosperm using Osborne solubility method. A total of 217 protein spots
were separated on two-dimensional gel electrophoresis with isoelectric focusing (wide range of pH 3–10). The proteins spots
were subjected to tryptic digestion and identified by matrix assisted laser desorption/ionization–time of flight mass spectrometry.
HMW-GS (43 isoforms) and LMW-GS (seven isoforms) are directly responsible for producing high-quality bread and noodles. Likewise,
all the seed storage proteins are digested to provide nutrients for the embryo during seed germination and seedling growth.
We identified the diverse glutenin subunits in wheat cultivars and compared the gluten isoforms among different wheat cultivars
according to quality. This work gives an insight on the quality improvement in wheat crop. 相似文献
8.
Andreas Börner Manuela Nagel Monika Agacka-Mołdoch Peter Ulrich Gierke Michael Oberforster Theresa Albrecht Volker Mohler 《Journal of applied genetics》2018,59(1):35-42
Pre-harvest sprouting (PHS) and seed longevity (SL) are complex biological processes of major importance for agricultural production. In the present study, a recombinant inbred line (RIL) population derived from a cross between the German winter wheat (Triticum aestivum L.) cultivars History and Rubens was used to identify genetic factors controlling these two physiological seed traits. A falling number (FN) test was employed to evaluate PHS, while SL was measured using a germination test (and the speed of germination) after controlled deterioration. FN of the population was assessed in four environments; SL traits were measured in one environment. Four major quantitative trait loci (QTL) for FN were detected on chromosomes 4D, 5A, 5D, and 7B, whereas for SL traits, a major QTL was found on chromosome 1A. The FN QTL on chromosome 4D that coincided with the position of the dwarfing gene Rht-D1b only had effects in environments that were free of PHS. The remaining three QTL for FN were mostly pronounced under conditions conducive to PHS. The QTL on the long arm of chromosome 7B corresponded to the major gene locus controlling late maturity α-amylase (LMA) in wheat. The severity of the LMA phenotype became truly apparent under sprouting conditions. The position on the long arm of chromosome 1A of the QTL for SL points to a new QTL for this important regenerative seed trait. 相似文献
9.
Zhehao Chen Mengting Li Ye Yuan Jiangqin Hu Yanjun Yang Jiliang Pang Lilin Wang 《Plant Cell, Tissue and Organ Culture》2017,131(1):107-118
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation. 相似文献
10.
11.
S. Achtar M. Y. Moualla A. Kalhout M. S. Röder N. MirAli 《Russian Journal of Genetics》2010,46(11):1320-1326
Genetic diversity among 49 wheat varieties (37 durum and 12 bread wheat) was assayed using 32 microsatellites representing
34 loci covering almost the whole wheat genome. The polymorphic information content (PIC) across the tested loci ranged from
0 to 0.88 with average values of 0.57 and 0.65 for durum and bread wheat respectively. B-genome had the highest mean number
of alleles (10.91) followed by A genome (8.3) whereas D genome had the lowest number (4.73). The correlation between PIC and
allele number was significant in all genome groups accounting for 0.87, 074 and 0.84 for A, B and D genomes respectively,
and over all genomes, the correlation was higher in tetraploid (0.8) than in hexaploid wheat varieties (0.5). The cluster
analysis discriminated all varieties and clearly divided the two ploidy levels into two separate clusters that reflect the
differences in genetic diversity within each cluster. This study demonstrates that microsatellites markers have unique advantages
compared to other molecular and biochemical fingerprinting techniques in revealing the genetic diversity in Syrian wheat varieties
that is crucial for wheat improvement. 相似文献
12.
Milka D. Brdar Marija M. Kraljević-Balalić Borislav Đ. Kobiljski 《Central European Journal of Biology》2008,3(1):75-82
Final grain dry weight, a component of yield in wheat, is dependent on the duration and the rate of grain filling. The purpose
of the study was to compare the grain filling patterns between common wheat, (Triticum aestivum L.), and durum wheat, (Triticum turgidum L. var. durum), and investigate relationships among grain filling parameters, yield components and the yield itself. The most important
variables in differentiating among grain filling curves were final grain dry weight (W) for common wheat genotypes and grain
filling rate (R) for durum wheat genotypes; however, in all cases the sets of variables important in differentiating among
grain filling curves were extended to either two or all three parameters. Furthermore, in one out of three environmental conditions
and for both groups of genotypes, the most important parameter in the set was grain filling duration (T). It indicates significant
impact of environmental conditions on dry matter accumulation and the mutual effect of grain filling duration and its rate
on the final grain dry weight. The medium early anthesis date could be associated with further grain weight and yield improvements
in wheat. Grain filling of earlier genotypes occurs in more temperate environments, which provides enough time for gradual
grain fill and avoids the extremes of temperature and the stress of dry conditions. 相似文献
13.
Bolibok H Gruszczyńska A Hromada-Judycka A Rakoczy-Trojanowska M 《Cellular & molecular biology letters》2007,12(4):523-535
This study was conducted in order to identify quantitative trait loci (QTLs) for the in vitro culture response of winter rye (Secale cereale L.) immature embryos and immature inflorescences. A genetic linkage map comprising 67 SSRs, 9 ISSRs, 13 SAMPLs, 7 RAPDs,
2 SCARs and one EST marker was created based on the analyses of 102 recombinant inbred lines from the cross between lines
L318 (which has a good response in tissue cultures) and L9 (which is unable to regenerate plants from somatic tissues and
anthers). The map spans 979.2 cM, and the average distance between markers is 9.9 cM. Two characteristics were evaluated:
callus induction (CI) and somatic embryogenesis ability (SE). They were expressed as the percentage of immature embryos/inflorescences
producing callus (designated ECI/ICI) and the percentage of explants producing somatic embryos (ESE/ISE). All the analysed
traits showed continuous variation in the mapping population but a non-normal frequency distribution. We identified nine putative
QTLs controlling the tissue culture response of rye, explaining up to 41.6% of the total phenotypic variation: two QTLs for
ECI — eci-1, eci-2; 4 for ESE — ece-1, ese-2, ese-3, ese-4; 2 for ICI — ici-1, ici2; and 1 for ISE — ise-1. They were detected on chromosomes 1R, 4R, 5R, 6R and 7R. 相似文献
14.
Kristin Simons Zewdie Abate Shiaoman Chao Wenjun Zhang Matt Rouse Yue Jin Elias Elias Jorge Dubcovsky 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,122(3):649-658
Wheat stem rust caused by Puccinia graminis f. sp. tritici, can cause significant yield losses. To combat the disease, breeders have deployed resistance genes both individually and
in combinations to increase resistance durability. A new race, TTKSK (Ug99), identified in Uganda in 1999 is virulent on most
of the resistance genes currently deployed, and is rapidly spreading to other regions of the world. It is therefore important
to identify, map, and deploy resistance genes that are still effective against TTKSK. One of these resistance genes, Sr13, was previously assigned to the long arm of chromosome 6A, but its precise map location was not known. In this study, the
genome location of Sr13 was determined in four tetraploid wheat (T. turgidum ssp. durum) mapping populations involving the TTKSK resistant varieties Kronos, Kofa, Medora and Sceptre. Our results showed that resistance
was linked to common molecular markers in all four populations, suggesting that these durum lines carry the same resistance
gene. Based on its chromosome location and infection types against different races of stem rust, this gene is postulated to
be Sr13. Sr13 was mapped within a 1.2–2.8 cM interval (depending on the mapping population) between EST markers CD926040 and BE471213, which corresponds to a 285-kb region in rice chromosome 2, and a 3.1-Mb region in Brachypodium chromosome 3. These maps will be the foundation for developing high-density maps, identifying diagnostic markers, and positional
cloning of Sr13. 相似文献
15.
F. Chen H.-X. Xu F.-Y. Zhang X.-C. Xia Z.-H. He D.-W. Wang Z.-D. Dong K.-H. Zhan X.-Y. Cheng D.-Q. Cui 《Molecular breeding : new strategies in plant improvement》2011,28(2):153-161
The puroindoline genes (Pina and Pinb) are the functional components of the common or bread wheat (Triticum aestivum L.) grain hardness locus that are responsible for kernel texture. In this study, four puroindoline b-2 variants were physically mapped using nulli-tetrosomic lines of bread wheat cultivar Chinese Spring and substitution lines
of durum wheat (Triticum turgidum L.) cultivar Langdon. Results indicated that Pinb-2v1 was on 7D of Chinese Spring, Pinb-2v2 on 7B of Chinese Spring, Pinb-2v3 on 7B of Chinese Spring and Langdon, and Pinb-2v4 on 7A of Chinese Spring and Langdon. A new puroindoline b-2 variant, designated Pinb-2v5, was identified at the puroindoline b-2 locus of durum wheat cultivar Langdon, with a difference of only five single nucelotide polymorphisms compared with Pinb-2v4. Sequencing results indicated that, in comparison with the Pinb-2v3 sequence (AM99733 and GQ496618 with one base-pair modification of G to T at 6th position, designated Pinb-2v3a) in bread wheat cultivar Witchta, the coding region of Pinb-2v3 in 12 durum wheat cultivars had a single nucleotide change from T to C at the 311th position, resulting in a corresponding
amino acid change from valine to alanine at the 104th position. This new allele was designated Pinb-2v3b. The study of puroindoline b-2 gene polymorphism in CIMMYT and Italian durum wheat germplasm and discovery of a novel puroindoline b-2 variant could provide useful information for further understanding the molecular and genetic basis of kernel hardness and
illustrating gene duplication events in wheat. 相似文献
16.
17.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes. 相似文献
18.
Gileung Lee Kang-Ie Lee Yunjoo Lee Backki Kim Dongryung Lee Jeonghwan Seo Su Jang Joong Hyoun Chin Hee-Jong Koh 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2018,131(7):1469-1480
Key message
The split-hull phenotype caused by reduced lemma width and low lignin content is under control of SPH encoding a type-2 13-lipoxygenase and contributes to high dehulling efficiency.Abstract
Rice hulls consist of two bract-like structures, the lemma and palea. The hull is an important organ that helps to protect seeds from environmental stress, determines seed shape, and ensures grain filling. Achieving optimal hull size and morphology is beneficial for seed development. We characterized the split-hull (sph) mutant in rice, which exhibits hull splitting in the interlocking part between lemma and palea and/or the folded part of the lemma during the grain filling stage. Morphological and chemical analysis revealed that reduction in the width of the lemma and lignin content of the hull in the sph mutant might be the cause of hull splitting. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive gene, sph (Os04g0447100), which encodes a type-2 13-lipoxygenase. SPH knockout and knockdown transgenic plants displayed the same split-hull phenotype as in the mutant. The sph mutant showed significantly higher linoleic and linolenic acid (substrates of lipoxygenase) contents in spikelets compared to the wild type. It is probably due to the genetic defect of SPH and subsequent decrease in lipoxygenase activity. In dehulling experiment, the sph mutant showed high dehulling efficiency even by a weak tearing force in a dehulling machine. Collectively, the results provide a basis for understanding of the functional role of lipoxygenase in structure and maintenance of hulls, and would facilitate breeding of easy-dehulling rice.19.
Silvina Larran Analía Perelló María Rosa Simón Virginia Moreno 《World journal of microbiology & biotechnology》2007,23(4):565-572
In order to study the species composition of endophytes from wheat healthy plants in Buenos Aires Province (Argentina) and
to determine their infection frequencies from leaves, stems, glumes and grains, wheat plants were collected from five cultivars
at five growth stages from crop emergence to harvest. A total of 1,750 plant segments (leaves, stems, glumes and grains) were
processed from the five wheat cultivars at five growth stages, and 722 isolates of endophytic fungi recovered were identified
as 30 fungal genera. Alternaria alternata, Cladosporium herbarum, Epicoccum nigrum, Cryptococcus sp., Rhodotorula rubra, Penicillium sp. and Fusarium graminearum were the fungi that showed the highest colonization frequency (CF%) in all the tissues and organs analysed. The number of
taxa isolated was greater in the leaves than those in the other organs analysed. 相似文献
20.
Karolina Krystkowiak Monika Langner Tadeusz Adamski Bolesław P. Salmanowicz Zygmunt Kaczmarek Paweł Krajewski Maria Surma 《Journal of applied genetics》2017,58(1):37-48
The quality of wheat depends on a large complex of genes and environmental factors. The objective of this study was to identify quantitative trait loci controlling technological quality traits and their stability across environments, and to assess the impact of interaction between alleles at loci Glu-1 and Glu-3 on grain quality. DH lines were evaluated in field experiments over a period of 4 years, and genotyped using simple sequence repeat markers. Lines were analysed for grain yield (GY), thousand grain weight (TGW), protein content (PC), starch content (SC), wet gluten content (WG), Zeleny sedimentation value (ZS), alveograph parameter W (APW), hectolitre weight (HW), and grain hardness (GH). A number of QTLs for these traits were identified in all chromosome groups. The Glu-D1 locus influenced TGW, PC, SC, WG, ZS, APW, GH, while locus Glu-B1 affected only PC, ZS, and WG. Most important marker-trait associations were found on chromosomes 1D and 5D. Significant effects of interaction between Glu-1 and Glu-3 loci on technological properties were recorded, and in all types of this interaction positive effects of Glu-D1 locus on grain quality were observed, whereas effects of Glu-B1 locus depended on alleles at Glu-3 loci. Effects of Glu-A3 and Glu-D3 loci per se were not significant, while their interaction with alleles present at other loci encoding HMW and LMW were important. These results indicate that selection of wheat genotypes with predicted good bread-making properties should be based on the allelic composition both in Glu-1 and Glu-3 loci, and confirm the predominant effect of Glu-D1d allele on technological properties of wheat grains. 相似文献