首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heterologous regulation of the epidermal growth factor (EGF) receptor by platelet-derived growth factor (PDGF) was studied in FS4 human skin fibroblasts. The addition of PDGF to FS4 cells inhibited high affinity binding of 125I-EGF and stimulated phosphorylation of the EGF receptor. Phosphopeptide analysis by high performance liquid chromatography revealed that PDGF treatment of cells increased phosphorylation at several distinct sites of the EGF receptor. However, PDGF did not stimulate phosphorylation of threonine 654, a residue previously shown to be phosphorylated when protein kinase C is activated. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) also stimulated phosphorylation of the same peptides from the EGF receptor as PDGF, and, in addition, induced phosphorylation of threonine 654. TPA inhibited both high and low affinity 125I-EGF binding by these cells. PDGF treatment of cells had no effect on EGF-dependent, tyrosine-specific autophosphorylation of the receptor, whereas TPA treatment was inhibitory. TPA, but not PDGF, stimulated phosphorylation of a Mr = 80,000 protein, known to be a substrate for protein kinase C, even though PDGF appeared to mediate breakdown of phosphoinositides. These data suggest that regulation of EGF receptor function by PDGF and TPA are distinct in these cells, even though some elements of regulation are shared. The results differ from those previously reported for a human lung fibroblast isolate, indicating that cell type-specific differences may exist in metabolism of the EGF receptor.  相似文献   

2.
The tumor promoter phorbol ester (TPA) modulates the binding affinity and the mitogenic capacity of the epidermal growth factor (EGF) receptor. Moreover, TPA-induced kinase C phosphorylation occurs mainly on Thr-654 of the EGF receptor, suggesting that the phosphorylation state of this residue regulates ligand-binding affinity and kinase activity of the EGF receptor. To examine the role of this residue, we prepared a Tyr-654 EGF receptor cDNA construct by in vitro site-directed mutagenesis. Like the wild-type receptor, the mutant receptor exhibited typical high- and low-affinity binding sites when expressed on the surface of NIH 3T3 cells. Moreover, TPA regulated the affinity of both wild-type and mutant receptors and stimulated receptor phosphorylation of serine and threonine residues other than Thr-654. The addition of TPA to NIH 3T3 cells expressing a wild-type human EGF receptor blocked the mitogenic capacity of EGF. However, this inhibition did not occur in cells expressing the Tyr-654 EGF receptor mutant. In the latter cells, EGF was able to stimulate DNA synthesis even in the presence of inhibitory concentrations of TPA. While phosphorylation of sites other than Thr-654 may regulate ligand-binding affinity, the phosphorylation of Thr-654 by kinase C appears to provide a negative control mechanism for EGF-induced mitogenesis in mouse NIH 3T3 fibroblasts.  相似文献   

3.
Platelet-derived growth factor (PDGF) causes an acute decrease in the high affinity binding of epidermal growth factor (EGF) to cell surface receptors and an increase in the phosphorylation state of the EGF receptor at threonine654. The hypothesis that PDGF action to regulate the EGF receptor is mediated by the activation of protein kinase C and the subsequent phosphorylation of EGF receptor threonine654 was tested. The human receptors for PDGF and EGF were expressed in Chinese hamster ovary cells that lack expression of endogenous receptors for these growth factors. The heterologous regulation of the EGF receptor by PDGF was reconstituted in cells expressing [Thr654]EGF receptors or [Ala654]EGF receptors. PDGF action was also observed in phorbol ester down-regulated cells that lack detectable protein kinase C activity. Together these data indicate that neither protein kinase C nor the phosphorylation of EGF receptor threonine654 is required for the regulation of the apparent affinity of the EGF receptor by PDGF.  相似文献   

4.
We have tested the hypothesis that the mechanism of platelet-derived growth factor (PDGF) and phorbol diester action to decrease the apparent affinity of the epidermal growth factor (EGF) receptor is the phosphorylation of the EGF receptor at the Ca2+/phospholipid-dependent protein kinase (protein kinase C) phosphorylation site, threonine 654. Protein kinase C-deficient cells were prepared by prolonged incubation of human fibroblasts with phorbol diester. Addition of phorbol diesters to these cells fails to regulate EGF receptor affinity or threonine 654 phosphorylation. In contrast, PDGF treatment of both control and protein kinase C-deficient fibroblasts causes a decrease in the apparent affinity of the EGF receptor and an increase in threonine 654 phosphorylation. Thus, the ability of PDGF or phorbol diester to modulate EGF receptor affinity occurs only when threonine 654 phosphorylation is increased. The stoichiometry of threonine 654 phosphorylation associated with a 50% decrease in the binding of 125I-EGF to high affinity sites was 0.15 versus 0.3 mol of phosphate per mole of EGF receptor when 32P-labeled fibroblasts are treated with PDGF or phorbol diester, respectively. It is concluded that EGF receptor phosphorylation at threonine 654 can be regulated by PDGF independently of protein kinase C, substoichiometric phosphorylation of the total EGF receptor pool at threonine 654 is caused by maximally effective concentrations of PDGF, and different extents of phosphorylation of EGF receptors at threonine 654 are observed for maximally effective concentrations of PDGF and phorbol diester, respectively. The data are consistent with the hypothesis that a specific subpopulation of EGF receptors that exhibit high affinity for EGF are regulated by threonine 654 phosphorylation.  相似文献   

5.
To test the functional consequence of phosphorylation of the EGF receptor at Thr 654 by protein kinase C, the normal Thr 654 human EGF receptor cDNA or a mutant encoding an Ala 654 were expressed in heterologous cells. In cell lines expressing both the Thr 654 and Ala 654 receptors, functional cell-surface Thr 654 receptors were reduced or were totally lost, but were not degraded, following activation of protein kinase C by phorbol esters (TPA), whereas Ala 654 receptors were unaffected. These data suggest that protein kinase C regulates ligand-independent receptor binding and internalization via phosphorylation of Thr 654 of the EGF holoreceptor. Because EGF induces internalization and degradation of the Ala 654 EGF receptor, at least two independent mechanisms can serve to signal loss of functional EGF receptors.  相似文献   

6.
Treatment of cells with tumor-promoting phorbol diesters, which causes activation of protein kinase C, leads to phosphorylation of the epidermal growth factor (EGF) receptor at threonine-654. Addition of phorbol diesters to intact cells causes inhibition of the EGF-induced tyrosine-protein kinase activity of the EGF receptor and it has been suggested that this effect of phorbol diesters is mediated by the phosphorylation of the receptor by protein kinase C. We measured the activity of protein kinase C in A431 cells by determining the incorporation of [32P]phosphate into peptides containing threonine-654 obtained by trypsin digestion of EGF receptors. After 3 h of exposure to serum-free medium, A431 cells had no detectable protein kinase C activity. Addition of EGF to these cells resulted in [32P] incorporation into threonine-654 as well as into tyrosine residues. This indicates that EGF promotes the activation of protein kinase C in A431 cells. The phosphorylation of threonine-654 induced by EGF was maximal after only 5 min of EGF addition and the [32P] incorporation into threonine-654 reached 50% of the [32P] in a tyrosine-containing peptide. This indicates that a significant percentage of the total EGF receptors are phosphorylated by protein kinase C. A variety of external stimuli activate Na+/H+ exchange, including EGF, phorbol diesters, and hypertonicity. To ascertain whether activation of protein kinase C is an intracellular common effector of all of these systems, we measured the activity of protein kinase C after exposure of A431 cells to hyperosmotic conditions and observed no effect on phosphorylation of threonine-654, therefore, activation of Na+/H+ exchange by hypertonic medium is independent of protein kinase C activity. Since stimulation of protein kinase C by phorbol diesters results in a decrease in EGF receptor activity, the stimulation of protein kinase C activity by addition of EGF to A431 cells contributes to a feedback mechanism which results in the attenuation of EGF receptor function.  相似文献   

7.
Vitamin K-3 or 12-O-tetradecanoylphorbol 13-acetate (TPA) reduced the binding of epidermal growth factor (EGF) to its receptor by more than 90% in human foreskin fibroblasts. After the equilibration of fibroblasts with [32P]orthophosphate, vitamin K-3 or TPA markedly increased the amount of 32P found in the receptor; the increase was principally due to serine and threonine phosphorylation. By the use of two-dimensional tryptic phosphopeptide mapping, using a synthetic phosphopeptide as a standard, threonine-654 was identified as one of the residues whose phosphorylation state was elevated by vitamin K-3 or TPA. Because of the large amounts of EGF receptor present on A431 human carcinoma cells, these cells were used to study further the relationship between the phosphorylation state of threonine-654, the tyrosine phosphorylation state of the receptor, and the receptor's protein tyrosine kinase activity toward exogenous substrates. Vitamin K-3 and TPA both increased the amount of phosphate on threonine-654 in A431 cells. However, whereas receptor from TPA-treated cells lacked phosphotyrosine, vitamin K-3-treated cells contained receptor with markedly elevated levels of phosphotyrosine. The addition of vitamin K-3, TPA or EGF to intact A431 cells followed by homogenization of the cells and the assay of EGF receptor protein tyrosine kinase activity by the use of a synthetic peptide substrate resulted in marked decreases in apparent receptor kinase activity. Therefore, assuming that the activity measured in the peptide assay reflects the protein tyrosine kinase activity of the receptor in the intact cell, the activity of the EGF receptor kinase cannot be deduced from the amount of phosphotyrosine associated with the receptor.  相似文献   

8.
A negative feedback loop attenuates EGF-induced morphological changes   总被引:5,自引:1,他引:4  
Activation of the EGF receptor tyrosine kinase by ligand indirectly activates a series of other cellular enzymes, including protein kinase C. To test the hypothesis that phosphorylation of the EGF receptor by protein kinase C provides an intracellular negative feedback loop to attenuate EGF receptor signaling, we used scanning EM to follow the characteristic EGF-induced retraction of lamellipodia and concomitant cell shape changes. Wild type and mutant EGF receptors were expressed in receptor-deficient NR6 cells. The mutant receptors were prepared by truncation at C' terminal residue 973 (c'973) to provide resistance to ligand-induced down regulation that strongly attenuates receptor signaling and by replacement of threonine 654 (T654) with alanine (A654) to remove the site of phosphorylation by protein kinase C. Cells expressing WT and c'973 EGF receptors demonstrated characteristic lamellipodial retraction after exposure to EGF, with the non-down regulating c'973 EGF receptors responding more rapidly. Exposure of cells to TPA blocked this response. Replacement of T654 by alanine resulted in EGF receptors that were resistant to TPA. Cells expressing the A654 mutation underwent more rapid and more extensive morphologic changes than cells with the corresponding T654 EGF receptor. In cells expressing T654 EGF receptors, down regulation of protein kinase C resulted in more rapid and extensive EGF-induced changes similar to those seen in cells expressing A654 EGF receptors. These data indicate that activation of protein kinase C and subsequent phosphorylation of the EGF receptor at T654 lead to rapid physiological attenuation of EGF receptor signaling.  相似文献   

9.
The addition of platelet-derived growth factor (PDGF) to many types of cells causes a rapid decrease in high affinity binding of 125I-epidermal growth factor (EGF), a process which has been termed transmodulation. Treatment with the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) also results in the transmodulation of the EGF receptor in many cell types. PDGF can transmodulate EGF binding through a mechanism that is not dependent on protein kinase C activity. A recent report (Wattenberg, E. V., McNeil, P. L., Fujiki, H., and Rosner, M. R. (1989) J. Biol. Chem. 264, 213-219) described the requirement for a sodium ion influx in the down-modulation of the EGF receptor stimulated by a non-TPA-type tumor promoter, palytoxin, in Swiss 3T3 cells. We tested for a similar sodium requirement in Balb/c/3T3 and Swiss 3T3 cells stimulated by PDGF or TPA in Balb cells treated with TPA for prolonged periods to down-regulate protein kinase C activity. Our results clearly show that the PDGF- and TPA-stimulated transmodulation of the EGF receptor does not require external sodium nor is the process affected by amiloride. In each of these experiments, the loss of 125I-EGF binding occurred to a similar extent and at a similar rate in the presence or absence of sodium. Intracellular pH also did not appear to have a role in the response. The sodium ionophore, monensin, was previously shown to bring about the down-modulation of 125I-EGF binding in Swiss cells. However, our results indicate that monensin-induced transmodulation of the EGF receptor occurs with or without external sodium, suggesting that the loss of binding is not the result of a sodium ion influx. These findings demonstrate that an increase in intracellular sodium does not cause nor is it required for PDGF- or TPA-stimulated EGF receptor transmodulation.  相似文献   

10.
Addition of epidermal growth factor (EGF) to many cell types activates phospholipase C resulting in increased levels of diacylglycerol and intracellular Ca2+ which may lead to activation of protein kinase C. EGF treatment of cells can also lead to phosphorylation of the EGF receptor at threonine 654 (a protein kinase C phosphorylation site) which appears to attenuate some aspects of receptor signaling. Thus, a feedback loop involving the EGF receptor, phospholipase C, and protein kinase C may regulate EGF receptor function. In this report, the role of phosphorylation of threonine 654 of the EGF receptor in regulation of EGF-stimulated activation of phospholipase C was investigated. NIH-3T3 cells expressing the normal human EGF receptor or expressing EGF receptor in which an alanine residue had been substituted at residue 654 of the receptor were used. Addition of EGF to cells expressing wild-type receptor induced a rapid, but transient, increase in phosphorylation of threonine 654. EGF addition also caused the rapid accumulation of inositol phosphates in these cells. EGF-stimulated accumulation of inositol phosphates was significantly higher in cells expressing Ala-654 receptors compared to control cells. Treatment of cells with 12-O-tetradecanoylphorbol 13-acetate (TPA), which stimulated phosphorylation of threonine 654 to a greater degree than EGF, completely inhibited EGF-dependent inositol phosphate accumulation in cells expressing wild-type receptor, but caused only a 20-30% inhibition in Ala-654 expressing cells. EGF stimulated phosphorylation of phospholipase C-gamma on serine and tyrosine residues in cells expressing wild-type of Ala-654 receptors. However, TPA treatment of cells inhibited EGF-induced tyrosine phosphorylation of phospholipase C-gamma only in cells expressing wild-type receptors. Similarly, TPA inhibited tyrosine-specific autophosphorylation of the EGF receptor and tyrosine phosphorylation of several other proteins in wild-type receptor cells, but not in Ala-654 cells. TPA treatment abolished high affinity binding of EGF to cells expressing wild-type receptors, while decreasing the number of high affinity binding sites 20-30% in Ala-654 cells. These data suggest that phosphorylation of threonine 654 can regulate early events in EGF receptor signal transduction such as phosphoinositide turnover, probably through a feedback mechanism involving protein kinase C. Subsequent dephosphorylation of threonine 654 could reactivate the EGF receptor for participation in later signaling events.  相似文献   

11.
The possible role of epidermal growth factor (EGF) receptor phosphorylation at threonine 654 in modulating the protein-tyrosine kinase activity of EGF-treated A431 cells has been studied. It has been suggested that EGF could indirectly activate a protein-serine/threonine kinase, protein kinase C, that can phosphorylate the EGF receptor at threonine 654. Protein kinase C is known to be activated, and threonine 654 is phosphorylated, when A431 cells are exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). The protein-tyrosine kinase activity of EGF receptors is normally evidenced in EGF-treated cells by phosphorylation of the receptor at tyrosine. This is inhibited when TPA-treated cells are exposed to EGF. We now show that receptor phosphorylation at threonine 654 can also be detected in EGF-treated A431 cells, presumably due to indirect stimulation of protein kinase C or a similar kinase. Some receptor molecules are phosphorylated both at threonine 654 and at tyrosine. Since prior phosphorylation at threonine 654 inhibits autophosphorylation, we propose that protein kinase C can phosphorylate the threonine 654 of autophosphorylated receptors. This provides evidence for models in which protein kinase C activation, consequent upon EGF binding, could reduce the protein-tyrosine kinase activity of the EGF receptor. Indeed, we find that 12-O-tetradecanoylphorbol-13-acetate, added 10 min after EGF, further increases threonine 654 phosphorylation and induces the loss of tyrosine phosphate from A431 cell EGF receptors.  相似文献   

12.
Addition of tumor promoting phorbol esters, such as phorbol 12-myristate 13-acetate (PMA), to many cell lines results in a decrease of 125I-epidermal growth factor (EGF) binding and increased serine/threonine phosphorylation of the EGF receptor in a process termed transmodulation. It is, however, unclear whether or not receptor phosphorylation is causally related to the inhibition of high affinity EGF binding. We have investigated the significance of phosphorylation/dephosphorylation events in the mechanism of PMA-induced transmodulation using the adenylate cyclase activator cholera toxin and the serine/threonine protein phosphatase inhibitor okadaic acid. In Rat-1 fibroblasts treated at 37 degrees C, PMA induced a rapid decrease in EGF binding which persisted for 3 hours. In contrast, cells exposed to PMA in the presence of cholera toxin exhibited a marked recovery of binding within 60 minutes. The PMA-stimulated decrease in binding correlated with a rapid increase in the phosphorylation state of the EGF receptor. While phosphorylation of the receptor was sustained at an elevated level for at least three hours in cells receiving PMA alone, EGF receptor phosphorylation decreased between 1 and 3 hours in cells treated with PMA and cholera toxin. Furthermore, the cholera toxin-stimulated return of EGF binding was inhibited by treatment with the phosphatase inhibitor okadaic acid. These results suggest that a cholera toxin-activated phosphatase can increase binding capacity of the transmodulated EGF receptor in Rat-1 cells. Cholera toxin treatment elicited a qualitatively similar response in cells transmodulated by platelet-derived growth factor (PDGF). Okadaic acid antagonized the natural return of binding observed in cells stimulated with PDGF alone, indicating that a dephosphorylation event may be required for the recovery of normal EGF binding after receptor transmodulation.  相似文献   

13.
Preincubation of Swiss 3T3 cells with the tumor promoter 12-0-tetradecanoyl-phorbol-13-acetate (TPA) at 37 degrees C is observed to cause only a small (approximately 10%) decrease in maximal binding of 125I-platelet-derived growth factor (125I-PDGF), and does not affect the affinity of 125I-PDGF binding to these cells. Under the same conditions, the affinity of the epidermal growth factor receptor is greatly reduced, possibly resulting from phosphorylation by protein kinase C. TPA is also shown to have no effect on the kinetics of internalization or degradation of bound 125I-PDGF. Although TPA has little or no effect on these properties of the PDGF receptor, it was found to act in a synergistic fashion with low, but not high, concentrations of PDGF to increase DNA synthesis by 3T3 cells. Since TPA has previously been shown to activate protein kinase C, these findings suggest that protein kinase C does not regulate the ligand-binding properties of the PDGF receptor, and that the observed synergism between TPA and PDGF in stimulating mitogenesis reflects effects of TPA on other processes in the mitogenic pathway.  相似文献   

14.
15.
Preincubation of Swiss 3T3 cells or human fibroblasts with purified platelet-derived growth factor (PDGF) at 4 degrees C or 37 degrees C rapidly inhibits subsequent binding of 125I-epidermal growth factor (125I-EGF). The effect does not result from competition by PDGF for binding to the EGF receptor since (a) very low concentrations of PDGF are effective, (b) cells with EGF receptors but no PDGF receptors are not affected, and (c) the inhibition persists even if the bound PDGF is eluted before incubating the cells with 125I-EGF. PDGF does not affect 125I-insulin binding nor does EGF affect 125I-PDGF binding under these conditions. Endothelial cell-derived growth factor also competes for binding to PDGF receptors and inhibits 125I-EGF binding. The inhibition demonstrated by PDGF seems to result from an increase in the Kd for 125I-EGF binding with no change in the number of EGF receptors.  相似文献   

16.
To assess the functional significance of phosphorylation of the epidermal growth factor (EGF) receptor at Thr654, we compared the effects of 12-O-tetradecanoyl-13-acetate (TPA) on ligand-induced internalization and down-regulation between wild-type and mutant receptors that contain an alanine substitution at position 654. Activation of protein kinase C with TPA blocked EGF-induced internalization and down-regulation of Thr654 receptors and inhibited in vivo tyrosine kinase activity by 80%. TPA did not inhibit transferrin receptor internalization or constitutive EGF receptor internalization, suggesting that protein kinase C activation inhibits only the ligand-induced process. Inhibition by TPA of induced internalization, down-regulation, and kinase activity required threonine at position 654 since full-length Ala654 EGF receptors were significantly resistant to TPA inhibition of these ligand-induced activities. However, C'-terminal truncation further enhanced this resistance to TPA inhibition. The EGF-dependent internalization of kinase-inactive receptors truncated at residue 1022 was also impaired by TPA in Thr654 receptors, but not in Ala654 receptors, indicating that phosphorylation at Thr654 also interferes with tyrosine kinase-independent receptor activities. We conclude that the dominant regulatory effect of protein kinase C on the EGF receptor is mediated through phosphorylation at Thr654 which effectively inactivates the receptor. The submembrane region of the EGF receptor appears to regulate transmission of conformational information from the extracellular ligand-binding site to the cytoplasmic kinase and regulatory domains.  相似文献   

17.
Thyrotropin releasing hormone (TRH) causes phosphatidylinositol bisphosphate hydrolysis to form inositol trisphosphate and diacylglycerol. Since diacylglycerol activates protein kinase C (Ca2+/phospholipid-dependent enzyme), this enzyme may be involved in mediating the physiological response to TRH. Activation of protein kinase C leads to phosphorylation of receptors for epidermal growth factor (EGF) and decreased EGF affinity. The present study examined the effect of TRH on EGF binding to intact GH4C1 rat pituitary tumor cells to test whether TRH activates protein kinase C. Cells were incubated with TRH at 37 degrees C and specific 125I-EGF binding was then measured at 4 degrees C. 125I-EGF binding was decreased by a 10-min treatment with 0.1-100 nM TRH to 30-40% of control in a dose-dependent manner. 125I-EGF binding was not altered if cells were incubated at 4 degrees C, although TRH receptors were saturated or in a variant pituitary cell line without TRH receptors. TRH (10 min at 37 degrees C) decreased EGF receptor affinity but caused little change in receptor density, 125I-EGF internalization, or degradation. When cells were incubated continuously with TRH, there was a recovery of 125I-EGF binding after 24 h. Incubation with the protein kinase C activating phorbol ester TPA caused an immediate (less than 10 min) profound (greater than 85%) decrease in 125I-EGF binding followed by partial recovery at 24 h. Maximally effective doses of TRH and TPA decreased EGF receptor affinity with half-times of 3 min. EGF treatment (5 min) caused an increase in the tyrosine phosphate content of several proteins; prior incubation with TRH resulted in a small decline in the EGF response. GH4C1 cells were incubated with 500 nM TPA for 24 h in order to down-regulate protein kinase C. Protein kinase C depletion was confirmed by immunoblots and the effects of TRH and TPA on 125I-EGF binding were tested. TRH and TPA were both much less effective in cells pretreated with phorbol esters. TRH increased cytoplasmic pH measured with an intracellularly trapped pH sensitive dye after mild acidification with nigericin. This TRH response is presumed to be the result of protein kinase C-mediated activation of the amiloride-sensitive Na+/H+ exchanger and was blunted in protein kinase C-depleted cells. All of these results are consistent with the view that TRH acts rapidly in the intact cell to activate protein kinase C and that a consequence of this activation is EGF receptor phosphorylation and Na+/H+ exchanger activation.  相似文献   

18.
Addition of 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) to A431 human epidermoid carcinoma cells causes a marked increase in the phosphorylation state of the epidermal growth factor (EGF) receptor with a concomitant inhibition of both the high-affinity binding of 125I-EGF and the receptor tyrosine kinase activity. It was found in the present studies that the diuretic drug amiloride has no effect on the action of PMA to inhibit the binding of 125I-EGF. However, amiloride was observed to inhibit markedly the effect of PMA to cause a 3-fold increase in the phosphorylation state of the EGF receptors. In the presence of PMA and amiloride, the increase in the phosphorylation state of the EGF receptors was found to be only 1.2-fold over controls. Analysis of the EGF receptor phosphorylation sites by phosphopeptide mapping by reverse-phase h.p.l.c. demonstrated that PMA increases the phosphorylation state of the EGF receptor at many sites. One of these sites has been identified as a C-kinase substrate, threonine-654. In the presence of amiloride, PMA causes phosphorylation of threonine-654 to the same stoichiometry as that observed in the absence of amiloride. However, the marked increase in the phosphorylation state of the EGF receptor at other sites caused by PMA is abolished in the presence of amiloride. We conclude that the extensive phosphorylation of the EGF receptor at several sites caused by the addition of PMA to A431 cells is not required for the action of PMA to inhibit the high-affinity binding of 125I-EGF. The results indicate that the phosphorylation state of threonine-654 may play a role in this process.  相似文献   

19.
Protamine sulfate blocked 125I-PDGF binding to its specific physiological receptor on Swiss mouse 3T3 cells. Reduced 125I-PDGF binding in the presence of protamine sulfate correlated directly with a protamine sulfate dose-dependent decrease in the PDGF-dependent incorporation of [3H]-thymidine into 3T3 cells and a decreased PDGF-stimulated tyrosine-specific protein kinase activity in isolated membrane preparations of 3T3 cells. Protamine sulfate blocked 125I-PDGF binding to simian sarcoma virus transformed cells (SSV-NIH 3T3 and SSV-NP1 cells) and to nontransformed cells in a manner qualitatively identical to unlabelled PDGF. In contrast, protamine sulfate enhanced the specific binding of 125I-EGF by increasing the apparent number of EGF receptors on the cell surface. The increase in 125I-EGF receptor binding was not prevented by cycloheximide nor by actinomycin D. Protamine sulfate did not affect 125I-EGF binding to membranes from 3T3 cells or the EGF-stimulated 3T3 cell membrane tyrosine specific protein kinase activity, suggesting that protamine sulfate may have exposed a population of cryptic EGF receptors otherwise not accessible. Protamine sulfate was fractionated into four active fractions by Sephadex G-50 gel filtration columns; the half maximum inhibition concentration of 125I-PDGF binding to 3T3 cells of protamines I and II (MW approximately 11,000 daltons and 7,000 daltons, respectively) is approximately 0.4 microM. Protamine II (MW approximately 4,800 daltons) was equally active (half maximum inhibition concentration approximately 0.4 microM); protamine IV (MW approximately 3,300 daltons) was substantially less active (half maximum inhibition concentration approximately 2.8 microM). These investigations have extended previous observations that protamine sulfate is a potent inhibitor of PDGF binding and establish that protamine sulfate blocks PDGF binding at the physiological receptor, preventing PDGF initiated biological activities. Protamine sulfate can be used as a reagent to separate the influence of PDGF and EGF on cells with high specificity and has been used to demonstrate that the receptors on simian sarcoma virus transformed 3T3 cells qualitatively respond identically to protamine sulfate as to unlabelled PDGF and are likely identical to those on nontransformed 3T3 cells.  相似文献   

20.
Tumor necrosis factor (TNF) caused an inhibition of 125I-labeled epidermal growth factor [( 125I]EGF) binding to its receptors of human amniotic (WISH) cells at 5 min after addition of TNF, which reached a maximal level (60-70% reduction) after 15-30 min and declined thereafter. TNF also induced a translocation of protein kinase C activity from the cytosol to the membrane, which peaked at 45-60 min after addition of TNF and almost returned to basal level at 120 min. Furthermore, prolonged incubation of WISH cells with 12-O-tetradecanoylphorbol 13 acetate (TPA) diminished the TPA effect on the inhibition of EGF binding to the cells due to the desensitization of protein kinase C; however, TNF still reduced the EGF binding to the cells pretreated with TPA for a long time. These results indicate that although TNF causes the translocation of protein kinase C to the membrane, activation of protein kinase C is not required for TNF to induce a decrease in EGF binding to the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号