首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most frequently observed K+ channel in the tonoplast of Characean giant internodal cells with a large conductance (ca. 170 pS; Lühring, 1986; Laver & Walker, 1987) behaves, although inwardly rectifying, like animal maxi-K channels. This channel is accessible for patch–clamp techniques by preparation of cytoplasmic droplets, where the tonoplast forms the membrane delineating the droplet. Lowering the pH of the bathing solution, that virtually mimicks the vacuolar environment, from an almost neutral level to values below pH 7, induced a significant but reversible decrease in channel activity, whereas channel conductance remained largely unaffected. Acidification (pH 5) on both sides of the membrane decreased open probability from a maximum of 80% to less than 20%. Decreasing pH at the cytosolic side inhibited channel activity cooperatively with a slope of 2.05 and a pK a 6.56. In addition, low pH at the vacuolar face shifted the activating voltage into a positive direction by almost 100 mV. This is the first report about an effect of extraplasmatic pH on gating of a maxi-K channel. It is suggested that the Chara maxi-K channel possesses an S4-like voltage sensor and negatively charged residues in neighboring transmembrane domains whose S4-stabilizing function may be altered by protonation. It was previously shown that gating kinetics of this channel respond to cytosolic Ca2+ (Laver & Walker, 1991). With regard to natural conditions, pH effects are discussed as contributing mainly to channel regulation at the vacuolar membrane face, whereas at the cytosolic side Ca2+ affects the channel. An attempt was made to ascribe structural mechanisms to different states of a presumptive gating reaction scheme. Received: 8 May 1998/Revised: 18 September 1998  相似文献   

2.
Vacuoles play various roles in many physiologically relevant processes in plants. Some of the more prominent are turgor provision, the storage of minerals and nutrients, and cellular signalling. To fulfil these functions a complement of membrane transporters is present at the tonoplast. Prolific patch clamp studies have shown that amongst these, both selective and non-selective ion channels participate in turgor regulation, nutrient storage and signalling. This article reviews the physiological roles, expression patterns and structure function properties of plant vacuolar anion and cation channels that are gated by voltage and ligands.  相似文献   

3.
Summary Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts ofVicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. “Laserassisted” patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.  相似文献   

4.
Previous work with membrane vesicles has demonstrated an absolute dependence on K+ for proton translocation by the inorganic pyrophosphatase (H(+)-PPase: EC 3.6.1.1) from the vacuolar membrane (tonoplast) of higher plants. Using intact vacuoles from sugar beet (Beta vulgaris) storage tissue, we have monitored PP1-dependent currents by patch clamp in 'whole vacuole' mode. Serial K+ substitutions were made at both tonoplast faces. The results show that K+ activation occurs only at the cytosolic face.  相似文献   

5.
Macroscopic instantaneous and time-dependent currents have been measured in the vacuolar membrane of Beta vulgaris using a patch clamp configuration analogous to whole cell mode. At low cytosolic Ca2+ and in the absence of Mg2+, only an instantaneous current was observed. This current is carried predominantly by cations (PKPCl 71, pnapcl 41 and arginine is also conducted). The instantaneous current can be activated by ATP4– (e.g., ATP-activated mean K+ current density was –20 mA.m–2 at a membrane voltage of –20 mV) and by increasing cytosolic pH and Mg2+ (raising Mg2+ from 0 to 0.4 mm induced a mean current density increase of –7 mA.m–2 at –20 mV). Such current can be activated by simultaneous addition of putative in vivo concentrations of ATP4–/MgATP/Mg free 2+ (in the presence of bafilomycin to inhibit the vacuolar ATPase) and further modulated by cytosolic pH. With vacuolar K+ concentration greater than that of the cytosol, activation of the instantaneous current would mediate vacuolar K+ release over the range of physiological membrane voltage. It is argued that the ATP4–-activated current, in addition to acting as a K+ mobilization pathway, could provide a counter-ion (shunt) conductance, allowing the two electrogenic H+ pumps which reside in the vacuolar membrane to acidify the vacuolar lumen.A separate time-dependent current, which was not observed at low Ca2+ concentrations (less than 500 nm) could also be elicited by addition of Mg2+ at the cytoplasmic membrane face. This current was stimulated by increasing cytoplasmic pH.The authors are grateful to the BBSRC for financial support (Grant PG87/529) and to the Royal Society (University Research Fellowship to J.M.D.). We thank C. Abbott, K. Partridge and J. Robinson for plant cultivation; A. Amtmann, A. Bertl, D. Gradmann and G. Thiel for helpful discussion.  相似文献   

6.
The vacuole is the largest compartment of a mature plant cell and serves as an internal reservoir of metabolites and nutrients. In the last years transport of solutes across the tonoplast has been intensively investigated. It was shown that two different proton pumps reside in the tonoplast. These pumps generate an electrochemical gradient which can be used as an energy-source to accumulate solutes. Cation uptake is driven by an H+ antiport mechanism. Anions are accumulated in response to the inside positive membrane potential. In addition, the existence of ion channels was shown using the patch clamp technique. The aim of this review is to compare and to discuss the present state of our knowledge of solute transport across the tonoplast.  相似文献   

7.
Summary The membrane of mechanically prepared vesicles ofChara corallina has been investigated by patch-clamp techniques. This membrane consists of tonoplast as demonstrated by the measurement of ATP-driven currents directed into the vesicles as well as by the ATP-dependent accumulation of neutral red. Addition of 1mm ATP to the bath medium induced a membrane current of about 3.2 mA·m–2 creating a voltage across the tonoplast of about –7 mV (cytoplasmic side negative). On excised tonoplast patches, currents through single K+-selective channels have been investigated under various ionic conditions. The open-channel currents saturate at large voltage displacements from the equilibrium voltage for K+ with limiting currents of about +15 and –30 pA, respectively, as measured in symmetric 250mm KCl solutions. The channel is virtually impermeable to Na+ and Cl. However, addition of Na+ decreases the K+ currents. TheI–V relationships of the open channel as measured at various K+ concentrations with or without Na+ added are described by a 6-state model, the 12 parameters of which are determined to fit the experimental data.  相似文献   

8.
The patch-clamp technique was applied to vacuoles isolated from a photoautotrophic suspension cell culture of Chenopodium rubrum L. and vacuolar clamp currents, which are predominantly carried by the previously identified Ca2+-dependent slow vacuolar (SV) ion channels, were recorded. These currents, which were activated by 1-s voltage pulses of -100 mV (vacuolar interior negative) in the presence of 100 M Ca2+ (cytosolic side), could be blocked completely and reversibly by the calmodulin antagonist W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide] and its chlorine-deficient analogue W-5; half-maximum inhibition was found at approx. 6 M for W-7 and 70 M for W-5. Inhibition was reversed by addition of 1 g · ml–1 calmodulin purified from Chenopodium cell suspensions; reversal by bovine brain calmodulin was scarcely appreciable. We conclude that cytosolic calmodulin mediates the Ca2+ dependence of the SV-channel in the Chenopodium tonoplast.Abbreviations SV-channel slowly activated, vacuolar ion channel - W-5 N-(6-aminohexyl)-1-naphthalenesulfonamide - W-7 N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide We acknowledge support by the Deutsche Forschungsgemeinschaft and the Bundesminister für Forschung und Technologie, Bonn, and by the Justus-Liebig-Universität Giessen (to W.B.)  相似文献   

9.
The relationship between the physiological characteristics and changes in the activities of H+ pumps of the plasma membrane and tonoplast of characean cells is discussed. The large size of the characean internodal cells allows us to perform various experimental operations. The intracellular perfusion technique developed by Tazawaet al. (1976) is a powerful tool for analyzing the characteristics and control mechanisms of the H+ pumps (Tazawa and Shimmen 1987, Tazawaet al. 1987, Shimmenet al. 1994) Respiration-dependent changes in the activity of the plasma membrane H+ pump are explained by changes in the supply of energy substrate. Photosynthesis-dependent changes in activities of both the plasma membrane and the tonoplast H+ pumps are explained in terms of changes in the level of inorganic phosphate in the cytoplasm. Cytoplasmic and vacuolar pHs are suggested to be controlling factors forin vivo activities of the H+ pumps. Furthermore, the membrane potential and various ions are considered to bein vivo factors that regulate the activities of the H+ pumps. Recipient of the Botanical Society Award of Young Scientists, 1993.  相似文献   

10.
Ion channels in tonoplast of leaf cells of a Crassulacean acid metabolism plant, Graptopetalum paraguayense, using the patch clamp technique were investigated. Results showed the existence of two types of channels involved in the malate ion transport across the tonoplast. One type corresponded to the slow-activating vacuolar-type (R Hedrich, E Neher [1987] Nature 329: 833-836), probably taking part in the malate efflux from vacuoles. Another showed the membrane potential-dependent channel current of malate flux over a wide range of cytoplasmic free Ca2+ concentration (10−8-10−5 molar), a property favoring the malate uptake. This type seems to be different from the fast-activating vacuolar-type.  相似文献   

11.
Z. Ping  I. Yabe  S. Muto 《Protoplasma》1992,171(1-2):7-18
Summary K+, Cl, and Ca2+ channels in the vacuolar membrane of tobacco cell suspension cultures have been investigated using the patch-clamp technique. In symmetrical 100mM K+, K+ channels opened at positive vacuolar membrane potentials (cytoplasmic side as reference) had different conductances of 57 pS and 24 pS. K+ channel opened at negative vacuolar membrane potentials had a conductance of 43 pS. The K+ channels showed a significant discrimination against Na+ and Cl. The Cl channel opened at positive vacuolar membrane potentials for cytoplasmic Cl influx had a high conductance of 110pS in symmetrical 100mM Cl. When K+ and Cl channels were excluded from opening, no traces were found of Ca2+ channel activity for vacuolar Ca2+ release induced by inositol 1,4,5-trisphosphate or other events. However, we found a 19pS Ca2+ channel which allowed influx of cytoplasmic Ca2+ into the vacuole when the Ca2+ concentration on the cytoplasmic side was high. When Ca2+ was substituted by Ba2+, the conductance of the 19 pS channel became 30 pS and the channel showed a selectivity sequence of Ba2+Sr2+Ca2+Mg2+=10.60.60.21. The reversal potentials of the channel shifted with the change in Ca2+ concentration on the vacuolar side. The channel could be efficiently blocked from the cytoplasmic side by Cd2+, but was insensitive to La3+, Gd3+, Ni2+, verapamil, and nifedipine. The related ion channels in freshly isolated vacuoles from red beet root cells were also recorded. The coexistence of the K+, Cl, and Ca2+ channels in the vacuolar membrane of tobacco cells might imply a precise classification and cooperation of the channels in the physiological process of plant cells.  相似文献   

12.
Combined application of the patch–clamp technique and fura-2 fluorescence detection enables the study of study calcium fluxes or related increases in cytosolic calcium concentration. Here we used the excised patch configuration, focusing the photomultiplier on the tip of the recording pipette where the fluorescent dye was present (FLEP, fluorescence combined with excised patch). This configuration has several advantages, i.e. a lack of delay in loading the fluorophore, of interference by internal calcium buffers and of photobleaching, due to the quasi-infinite dye reservoir inside the pipette. Upon voltage stimulation of tonoplast patches, sustained and robust fluorescence signals indicated permeation of calcium through the slow vacuolar (SV) channel. Both SV currents and fluorescence signal changes were absent in the presence of SV channel inhibitors and in vacuoles from Arabidopsis tpc1 knockout plants that lack SV channel activity. The fractional calcium currents of this non-selective cation channel were voltage-dependent, and were approximately 10% of the total SV currents at elevated positive potentials. Interestingly, calcium permeation could be recorded as the same time as oppositely directed potassium fluxes. These events would have been impossible to detect using patch–clamp measurements alone. Thus, we propose use of the FLEP technique for the study of divalent ion-selective channels or transporters that may be difficult to access using conventional electrophysiological approaches.  相似文献   

13.
Summary The origins of the two peaks of the action potential inNitella flexilis were analyzed by inserting two microelectrodes. one into the vacuole and the other into the cytoplasm. It was unequivocally demonstrated that the rapid first peak was generated at the plasmalemma and the slow second peak at the tonoplast. MnCl2 applied in the external medium abolished the second, tonoplast, peak but not the first, plasmalemma, peak, MnCl2 also inhibited the cessation of the cytoplasmic streaming accompanying the action potential. CaCl2 added in MnCl2-containing medium recovered generation of the tonoplast action potential and the streaming cessation. Since it has been established that the cessation of cytoplasmic streaming on membrane excitation is caused by an increase in cytoplasmic free Ca2– (Williamson, R.E., Ashley, C.C., 1982.Nature (London) 296:647–651: Tominaga, Y., Shimmen, T., Tazawa, M., 1983,Protoplasma 116:75–77), it is suggested that the tonoplast action potential is also induced by an increase in cytoplasmic Ca2+ resulting from the plasmalemma excitation. When vacuolar Cl was replaced with SO 4 2 by vacuolar perfusion, the polarity of the second, slow peak was reversed from vacuolar positive to vacuolar negative with respect to the cytoplasm, supporting the previous report that the tonoplast action potential is caused by increase in Cl permeability (Kikuyama, M., Tazawa, M., 1976.J. Membrane Biol.29:95–110).  相似文献   

14.
Cytoplasmic magnesium regulates the fast activating vacuolar cation channel   总被引:2,自引:1,他引:1  
Fast activating vacuolar (FV) channels, which are permeable for small monovalent cations, dominate the ion conductance of the vacuolar membrane at physiological Ca2+ concentrations. Here the effect of Mg2+ on FV channels was studied. Patch-clamp measurements were performed on whole barley (Hordeum vulgare) mesophyll vacuoles and on excised tonoplast patches. Free Mg2+ concentrations in the millimolar range inhibited FV channels from the cytosolic and the vacuolar side. Increasing cytosolic free Mg2+ decreased the open probability of FV channels without affecting single channel current amplitudes. The Mg2+ effect showed a bell-shaped voltage-dependence and was most pronounced at voltages between -40 and -60 mV. The dose dependence of the FV channel inhibition by cytosolic Mg2+ could be described by a simple Michaelis-Menten type of binding with Kd values of 10 and 35 M at -60 mV and +100 mV, respectively.  相似文献   

15.
Summary The action of GRF on GH3 cell membrane was examined by patch electrode techniques. Under current clamp with patch elecrtrode, spontaneous action potentials were partially to totally eliminated by application of GRF. In the case of partial elimination, the duration of remaining spontaneous action potentials was prolonged and the amplitude of afterhyperpolarization was decreased. The evoked actiion potential in the cells which did not show spontaneous action potentials was also eliminated by GRF. In order to examine what channels were affected by GRF, voltage-clamp analysis was performed. It was revealed that voltage-gated Ca2+ channel current and Ca2+-induced K+ channels current were decreased by GRF, while voltage-gated Na+ channel and delayed K+ channel current was considered to be a consequence of he decrease of voltage-gated Ca2+ channels current. Therefore it is likely that the effect of GRF on GH3 cells was due to the block of voltage-gated Ca2+ channels. The elimination of action potential under current clamp corresponded to the block of voltage-gated Ca2+ channels and the prolongation of action potential could be explained by the decrease of Ca2+-induced K+ channel current. The amplitude decrease of afterhyperpolarization could also be explained by the reduction of Ca2+-induced K+ channel current. Thus the results under current clamp well coincide with the results under voltage clamp. Hormone secretion from GH3 cells was not stimulated by GRF. However, the finding that GRF solely blocked voltage-gated Ca2+ channel suggested the specific action of GRF on GH3 cell membranes.  相似文献   

16.
Tonoplast K+ channels of Chara corallina are well characterized but only a few reports mention anion channels, which are likely to play an important role in the tonoplast action potential and osmoregulation of this plant. For experiments internodal cells were isolated. Cytoplasmic droplets were formed in an iso-osmotic bath solution according to a modified procedure. Ion channels with conductances of 48 pS and 170 pS were detected by the patch-clamp technique. In the absence of K+ in the bath solution the 170 pS channel was not observed at negative pipette potential values. When Cl on either the vacuolar side or the cytoplasmic side was partly replaced with F, the reversal potential of the 48 pS channel shifted conform to the Cl equilibrium potential with similar behavior in droplet-attached and excised patch mode. These results showed that the 48 pS channel was a Cl channel. In droplet-attached mode the channel rectified outward current flow, and the slope conductance was smaller. When Chara droplets were formed in a bath solution containing low (10−8 m) Ca2+, then no Cl channels could be detected either in droplet-attached or in inside-out patch mode. Channel activity was restored if Ca2+ was applied to the cytoplasmic side of inside-out patches. Rectification properties in the inside-out patch configuration could be controlled by the holding pipette potential. Holding potential values negative or positive to the calculated reversal potential for Cl ions induced opposite rectification properties. Our results show Ca2+-activated Cl channels in the tonoplast of Chara with holding potential dependent rectification. Received: 30 March 1999/Revised: 10 August 1999  相似文献   

17.
Classically, ion channels are classified into 2 groups: chemical-sensitive (ligand-gated) and voltage sensitive channels. Single ATP-sensitive K+ (K-ATP) channel currents were recorded in acutely dissociated rat neocortical neurons using patch clamp technique. A type of K-ATP channel has been found to be gated not only by intracellular ATP, but also by membrane potential (Vm), and proved to be a novel mechanism underlying the gating of ion channels, namely bi-gating mechanism. The results also show that the K-ATP channels possess heterogeneity and diversity. These types of K-ATP channels have been identified in 40.12% of all patches, which are different in activation-threshold and voltage-sensitivity. The present experiment studied the type-3 K-ATP channel with a unitary conductance of about 80 pS in detail (n = 15). Taking account of all the available data, a variety of K-ATP channels are suggested to exist in body, and one type of them is bi-gated by both chemical substances and membrane potentials. This property of the K-ATP channels may be related to their pathophysiological function. Project supported by the National Natural Science Foundation of China and Natural Science Foundation of Guangdong Province  相似文献   

18.
The properties of the vacuolar membrane (tonoplast) ion channels of sugar beet (Beta vulgaries) cell cultures were studied using the patch-clamp technique. Tonoplast currents displayed inward rectification in the whole vacuole and isolated outside-out patch configurations and permeability ratios PK+/PNa+ = 1 and PK+/PCl− = 5. Amiloride and two of its analogs, 5-(N-methyl-N-isobutyl)-amiloride and benzamil, inhibitors of Na+ channels in animal systems, blocked inward currents by reducing single-channel openings. Concentrations for 50% inhibition of vacuolar currents of 730 nanomolar, 130 nanomolar, and 1.5 micromolar for amiloride, benzamil, and 5-(N-methyl-N-isobutyl)-amiloride, respectively, were obtained from whole-vacuole recordings. The high inhibitory action (affinity) of amiloride and its analogs for the tonoplast cation channel suggests that these compounds could be used for the isolation and biochemical characterization of this protein.  相似文献   

19.
The vacuole occupies 25-95% of the plant cell volume and plays an essential role in maintaining cytoplasmic homeostasis of nutrients and ions. Recent patch-clamp studies identified ion channels and electrogenic pumps as pathways for the movement of ions and metabolites across the vacuolar membrane (tonoplast). At high cytoplasmic Ca2+ (>10-6 M) and negative potentials (inside the vacuole) non-selective channels of the `slow-vacuolar (SV)-type' were activated resulting in anion release or cation influx. In the present study these vacuolar channels were characterized pharmacologically by ion channel inhibitors. The cation-transport inhibitors Ba2+, TEA+ and amiloride caused only partial and reversible block of the `SV-type'channels, whereas anion-transport inhibitors strongly affected the vacuolar channels. Pyridoxalphosphate and the dimethylaminecarboxylate derivates anthracene-9-carboxylic acid and C 144 reversibly blocked the channels up to 70% and Zncl2 up to 95%. DIDS and SITS inhibited this channel irreversibly up to 95%. The block developed under a variety of experimental conditions using solutions containing combinations of permanent cations and anions. The DIDS binding site is located on the cytoplasmic surface of the tonoplast, as intravacuolar DIDS did not block the channels. DIDS concentrations in the micromolar range, efficient in blocking 70—80% of the `SV-type' channels did not significantly affect ATP-induced or pyrophosphate-induced proton-pumps. Stilbene derivatives may therefore be useful tools for studies on the substrate binding site on this vacuolar channel and for channel isolation.  相似文献   

20.
Large-scale preparations of highly purified tonoplast and plasma-membrane vesicles were obtained from roots (garden cress, Lepidium sativum L.) and shoots (etiolated zucchini hypocotyl, Cucurbita pepo L.) of representative dicotyledonous seedlings. When tonoplast-enriched fractions of cress roots were prepared by centrifugation and then subjected to free-flow electrophoresis a highly purified tonoplast fraction was obtained. This fraction from cress roots was characterized by morphometry of filipin-treated freeze-fractured preparations and by enzymology to be about 90% homogeneous. Using latency of nitrate-inhibited ATPase and H+-pumping as criteria we found that the majority of the tonoplast vesicles from both sources were oriented right(cytoplasmic)-side-out. Plasma-membrane vesicles were first purified by two-phase partitioning and then subjected to free-flow electrophoresis for further purification. From cress roots, the fraction of highest purity contained 89% plasma-membrane vesicles as judged by morphometry of filipin-treated, freeze-fractured preparations and by enzymology. From both sources, the major plasma-membrane subfraction in the upper phase after two-phase partitioning was shown to have the least electrophoretic mobility in free-flow electrophoresis and to be oriented right(extracytoplasmic)-side-out a slightly more mobile plasma-membrane subfraction was oriented inside-out and originated after freezing thawing from outside-out plasma-membrane vesicles.Part of the doctoral thesis (D5) of B. vom DorpWe thank the Bundesministerium für Forschung und Technologie for financial support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号