首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1 mmol/L and FPG <7.0 mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be used to distinguish patients with IPD from those with type 2 diabetes mellitus (T2DM) or healthy control individuals. FFA profiles of the subjects were investigated using gas chromatography–mass spectrometry (GC–MS). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used for classification and prediction among the three groups. The predictive correct rates were 92.86% for IPD and healthy control individuals and 90.70% for T2DM and healthy control individuals, indicating that PLS-DA could satisfactorily distinguish IPD individuals from healthy controls and those with T2DM. Finally, palmitic acid, stearic acid, oleic acid, linoleic acid and α-linolenic acid were identified as potential biomarkers for distinguishing IPD from healthy control and T2DM individuals. These potential biomarkers might be helpful for diagnosis and characterization of diabetes.  相似文献   

2.
目的:采用^1H核磁共振谱分析结合偏最小二乘分析( PLS-DA)方法研究自发性高血压大鼠和Wistar大鼠尿液的成分谱差异,寻找可能的生物标记物。方法选取自发性高血压大鼠和Wistar大鼠,连续4周收集尿液,以^1H-NMR分析两组大鼠的尿液成分,使用PLS-DA方法进行模式识别,通过OPLS-DA的相关系数寻找差异标记物。结果 PLS-DA方法处理高血压大鼠和Wistar大鼠的^1H-NMR谱数据显示,两组1 HNMR谱数据可以在得分图中明显区分,且代谢趋势在连续4周测定均非常稳定,说明自发性高血压大鼠有着特定的代谢模式,通过OPLS相关系数分析出体内部分氨基酸代谢产物和葡萄糖等能量代谢物质明显异于正常大鼠。结论^1H-NMR结合PLS-DA模式识别的代谢组学方法具有研究复杂条件下机体病理生理变化的优势,为了解高血压大鼠的代谢特征提供了科学依据。  相似文献   

3.
Proton metabolic profiling of incisional biopsied cervical lymph node tissue specimens of 109 patients suffering from tubercular (CTBL) and non-specific (NSCLA) lymphadenitis were analyzed by high resolution magic angle spinning (HR-MAS) NMR spectroscopy. In the present study, 40 endogenous metabolites namely, myo-inositol (m-Ins), branched chain amino acids (BCAA), glutamate, serine, taurine (Tau) aromatic amino acids, choline (Cho) containing compounds and glucose were characterized. To the best of our knowledge, this is the first report on metabolic profiling of cervical tubercular lymph node tissues using HR-MAS NMR spectroscopy. The principal component analysis revealed a clear discrimination between CTBL and NSCLA tissues. Increase in the concentration of mobile poly unsaturated fatty acids, BCAA, Cho, Tau, glycine and a decrease in the concentration of lactate, phosphocholine and m-Ins was observed in CTBL cases. The partial least square discriminant analysis (PLS-DA) with R 2 = 0.95 and Q 2 = 0.92 provided >98 % of correct classification between the two groups. A PLS-DA training set model of 75 % (CTBL = 54, NSCLA = 27) of the subjects when subjected for prediction of 25 % cases (CTBL = 18, NSCLA = 10) as an unknown dataset provided more than 98 % of diagnostic accuracy in their respective histological categories. The receiver operator characteristic curve was generated from PLS-DA factor-1 projected an area under the curve of 0.962. The metabolic profile obtained from HR-MAS NMR spectroscopy may be used as surrogate markers in vivo MRS for differentiating between CTBL and NSCLA cases non-invasively.  相似文献   

4.

Background

Membranous nephropathy is an important glomerular disease characterized by podocyte injury and proteinuria, but no metabolomics research was reported as yet. Here, we performed a parallel metabolomics study, based on human urine and serum, to comprehensively profile systematic metabolic variations, identify differential metabolites, and understand the pathogenic mechanism of membranous nephropathy.

Results

There were obvious metabolic distinctions between the membranous nephropathy patients with urine protein lower than 3.5 g/24 h (LUPM) and those higher than 3.5 g/24 h (HUPM) by Partial Least Squares Discriminant Analysis (PLS-DA) model analysis. In total, 26 urine metabolites and 9 serum metabolites were identified to account for such differences, and the majority of metabolites were significantly increased in HUPM patients for both urines and serums. Combining the results of urine with serum, all differential metabolites were classified to 5 classes. This classification helps globally probe the systematic metabolic alterations before and after blood flowing through kidney. Citric acid and 4 amino acids were markedly increased only in the serum samples of HUPM patients, implying more impaired filtration function of kidneys of HUPM patients than LUPM patients. The dicarboxylic acids, phenolic acids, and cholesterol were significantly elevated only in urines of HUPM patients, suggesting more severe oxidative attacks than LUPM patients.

Conclusions

Parallel metabolomics of urine and serum revealed the systematic metabolic variations associated with LUPM and HUPM patients, where HUPM patients suffered more severe injury of kidney function and oxidative stresses than LUPM patients. This research exhibited a promising application of parallel metabolomics in renal diseases.
  相似文献   

5.
In this study, the 1H HRMAS-NMR (High-resolution Magic Angle Spinning-Nuclear Magnetic Resonance) spectra of 52 cheese samples obtained from the South Korean dairy farms were evaluated for their metabolic profiling and intensities associating with the sensory qualities. The NMR profiles displayed a broad range of compounds comprising amino acids, carbohydrates, organic acids, and phospholipids. Afterwards, the cheese samples were categorized into three groups (more likeness - G1, moderate likeness - G2, less likeness - G3), in relating to their sensory scores. The NMR data of the samples were later investigated through multivariate statistical tools to define the variations in metabolic fingerprints of every cheese sample and their intensities hailing in individual sensory groups. The unsupervised PCA employing all cheese samples unveiled the uniqueness in metabolite profiles of the brown and cheddar type cheeses (outliers). Moreover, Gouda and other types of cheeses displayed samples positioning in respective of their metabolite profiles. The pairwise comparison of sensory groups in the supervised models perceived better separation in OPLS-DA than PLS-DA. The corresponding VIP (PLS-DA) and loading (OPLS-DA) plots revealed amino acids and organic acids (lactate, citrate) as significant variables. The discrimination of G 1 Gouda type of cheeses against G 2 and G 3 was highly associated with their citrate levels. Further investigation using heatmaps displayed clear differentiation between each sensory group in terms of the levels of amino acids, lactate, citrate, phospholipids, and glycerol, conveying these variations are likely due to proteolytic and metabolic processes in cheese ripening. This study concluded that 1H HRMAS-NMR metabolite profile of the Korean cheeses is consistence with their sensory qualities. Further, the candidate metabolites identified in this study confers their potential application as biomarkers in cheese industries for faster and effective validation of sensory characteristics.  相似文献   

6.
Computational models using metabolic reconstructions for in silico simulation of metabolic disorders such as type 2 diabetes mellitus (T2DM) can provide a better understanding of disease pathophysiology and avoid high experimentation costs. There is a limited amount of computational work, using metabolic reconstructions, performed in this field for the better understanding of T2DM. In this study, a new algorithm for generating tissue-specific metabolic models is presented, along with the resulting multi-confidence level (MCL) multi-tissue model. The effect of T2DM on liver, muscle, and fat in MKR mice was first studied by microarray analysis and subsequently the changes in gene expression of frank T2DM MKR mice versus healthy mice were applied to the multi-tissue model to test the effect. Using the first multi-tissue genome-scale model of all metabolic pathways in T2DM, we found out that branched-chain amino acids'' degradation and fatty acids oxidation pathway is downregulated in T2DM MKR mice. Microarray data showed low expression of genes in MKR mice versus healthy mice in the degradation of branched-chain amino acids and fatty-acid oxidation pathways. In addition, the flux balance analysis using the MCL multi-tissue model showed that the degradation pathways of branched-chain amino acid and fatty acid oxidation were significantly downregulated in MKR mice versus healthy mice. Validation of the model was performed using data derived from the literature regarding T2DM. Microarray data was used in conjunction with the model to predict fluxes of various other metabolic pathways in the T2DM mouse model and alterations in a number of pathways were detected. The Type 2 Diabetes MCL multi-tissue model may explain the high level of branched-chain amino acids and free fatty acids in plasma of Type 2 Diabetic subjects from a metabolic fluxes perspective.  相似文献   

7.
Saliva is a biological fluid that is easy to collect and is of considerable interest as a source of biomarkers. To date, its protein composition has been the most extensively studied but its metabolic composition is also of real interest. However, the composition of saliva is complex and dependent on numerous factors, among which stimulation is source of many variations. The aim of this work was to study the effects of a stimulating condition (chewing) versus a resting condition on the human salivary metabolome. Saliva from 16 subjects was collected on three occasions and studied using nuclear magnetic resonance. The two conditions could be separated by PLS-DA analysis. Fatty acids, some organic acids and amino acids, probably arising from the degradation of prolin-rich proteins, were over-represented in stimulated saliva, whereas taurine, and propionate were over-represented in resting saliva. To clarify further the identification of fatty acids, the free and total fatty acid contents were studied by gas chromatography. The principal fatty acids identified were oleic, stearic and palmitic acids. It was also possible to separate the two conditions of stimulation by PLS-DA. These results show that the regulation of saliva and sampling conditions must be taken into account when studying markers in saliva.  相似文献   

8.
In this study, nuclear magnetic resonance techniques coupled with multivariate data analysis were used for the metabolic profiling of mycelia and fruiting bodies of the entomopathogenic fungi, Cordyceps bassiana according to developmental stages. A direct extraction method using two deuterated solvents of D2O and CDCl3 was used to investigate the relative levels of identified metabolites in each extraction condition in the mycelium and fruiting body formation stages. There was a clear separation among mycelia and fruiting bodies with various developmental stages in partial least-squares discriminant analysis (PLS-DA) derived score plots. During the transition from mycelia to fruiting bodies, the major metabolic change observed was the conversion of glucose to mannitol, and beauvericin to phenylalanine and 1-hydroxyisovaleric acid. In the developmental stages of fruiting bodies studied, there was a clear separation between stage 3 and the other stages in PLS-DA derived score plots. Nineteen compounds including 13 amino acids, 2 nucleosides, 3 organic acids, and glucose showed the highest levels in stage 3 fruiting bodies. The flavonoid content in the fruiting bodies showed similar levels during stages 1, 2, and 3, whereas the level at stage 4 was significantly decreased compared to the other stages. Results suggest that the fruiting body of C. bassiana is richer in natural resources at stage 3 compared to the other fruiting body stages due to its high abundance of compounds including total flavonoids. The metabolome information acquired in this study can be useful criteria for the quality control of commercial use of C. bassiana.  相似文献   

9.
Metabonomic profiles of the type 2 diabetic rats induced by streptozotocin and high-sugar, high fat diet on the treatment of Gegen Qinlian Decoction (GQD) for 9 weeks were investigated. Rats were randomly divided into five groups: normal control (NC), type 2 diabetes (DM), metformin hydrochloric, GQD in high and low dosages. Plasma samples for 1H NMR-based metabolomic research, serum samples for clinical biochemistry, and liver and pancreas tissues for histopathology test were collected. Compared with NC rats, metabolic pathways of DM rats were revealed to be altered by pattern analyses of plasma NMR data, which was further correlated with serum biochemistry. Cross-validated scores mean trajectory derived from PLS-DA of NMR spectra demonstrated that GQD significantly restored the abnormal metabolic state in the long run, more potent than metformin hydrochloric. Detailed analysis of the altered metabolite levels indicated that GQD significantly ameliorated the disturbance in glucose metabolism, tricarboxylic acid cycle, lipid metabolism, amino acid metabolism and gut microbial metabolism and N-acetyl group metabolism. The results confirmed the hypoglycemic efficacy of GQD and its ability to ameliorate the diabetic symptoms in a global scale. NMR-based metabonomics approach is helpful for the further understanding of diabetes-related mechanisms.  相似文献   

10.
Hyperthyroidism (HT) is characterized by an intense metabolic impact which affects the lipid, carbohydrate and amino acids metabolism, with increased resting energy expenditure and thermogenesis. Metabolomics is a new comprehensive technique that allows to capture an instant metabolic picture of an organism, reflecting peculiar molecular and pathophysiological states. The aim of the present prospective study was to identify a distinct metabolomic profile in HT patients using 1H NMR spectroscopy before and after antithyroid drug treatment. This prospective study included 15 patients (10 female, 5 male) who were newly diagnosed hyperthyroidism. A nuclear magnetic resonance (1H NMR) based analysis was performed on plasma samples from the same patients at diagnosis (HypT0) and when they achieved euthyroidism (HypT1). The case groups were compared with a control group of 26 healthy volunteers (C). Multivariate statistical analysis was performed with Partial Least Squares-Discriminant Analysis (PLS-DA). PLS-DA identified a distinct metabolic profile between C and untreated hyperthyroid patients (R2X 0.638, R2Y 0.932, Q2 0.783). Interestingly, a significant difference was also found between C and euthyroid patients after treatment (R2X 0.510, R2Y 0.838, Q2 0.607), while similar cluster emerged comparing HypT0 vs HypT1 patients. This study shows that metabolomic profile is deeply influenced by hyperthyroidism and this alteration persists after normalization of thyrotropin (TSH) and free thyroid hormone (FT3, FT4) concentration. This suggests that TSH, FT3 and FT4 assays may not be insufficient to detect long lasting peripheral effects of the thyroid hormones action. Further studies are needed to clarify whether and to what extent the evaluation of metabolomics profile may provide relevant information in the clinical management of hyperthyroidism.  相似文献   

11.
Chronic kidney disease (CKD) is characterized by the gradual loss of the kidney function to excrete wastes and fluids from the blood. 1H NMR-based metabolomics was exploited to investigate the altered metabolic pattern in rats with CKD induced by surgical reduction of the renal mass (i.e., 5/6 nephrectomy (5/6 Nx)), particularly for identifying specific metabolic biomarkers associated with early of CKD. Plasma metabolite profiling was performed in CKD rats (at 4- or 8-weeks after 5/6 Nx) compared to sham-operated rats. Principle components analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) score plots showed a significant separation between the groups. The resulting metabolic profiles demonstrated significantly increased plasma levels of organic anions, including citrate, β-hydroxybutyrate, lactate, acetate, acetoacetate, and formate in CKD. Moreover, levels of alanine, glutamine, and glutamate were significantly higher. These changes were likely to be associated with complicated metabolic acidosis in CKD for counteracting systemic metabolic acidosis or increased protein catabolism from muscle. In contrast, levels of VLDL/LDL (CH2)n and N-acetylglycoproteins were decreased. Taken together, the observed changes of plasma metabolite profiles in CKD rats provide insights into the disturbed metabolism in early phase of CKD, in particular for the altered metabolism of acid-base and/or amino acids.  相似文献   

12.
《Chronobiology international》2013,30(9):1017-1023
“Morningness” and “Eveningness” represent lifestyle patterns including sleep–wake patterns. Although previous studies described a relationship between the morningness–eveningness trait and glycemic control in patients with type 2 diabetes mellitus (T2DM), the mechanism underlying this association remains unknown. The study participants comprised 725 Japanese T2DM outpatients free of history of cardiovascular diseases. Various lifestyles were analyzed using self-reported questionnaires, including morningness–eveningness questionnaire (MEQ). The relationships between morningness–eveningness trait and various biochemical parameters were investigated by linear regression analysis and logistic regression analysis. We classified the study patients into three groups, morning type (n?=?117), neither type (n?=?424) and evening type (n?=?184). Subjects of the evening type had high levels of alanine aminotransferase, triglyceride, fasting blood glucose and HbA1c and low high-density lipoprotein-cholesterol level in a model adjusted for age and gender. Furthermore, multivariate analysis showed that the evening type was associated with high HbA1c and estimated glomerular filtration rate even after adjustment for other lifestyle factors known to affect metabolic control. The results suggest that T2DM patients with eveningness trait are under inadequate metabolic control independent of other lifestyle factors. Thus, the evening trait of T2DM patients represents an important target for intervention to ensure appropriate metabolic function.  相似文献   

13.
Diabetes mellitus (DM) is characterized by dysregulated energy metabolism. Resveratrol (RSV) has been shown to ameliorate hyperglycemia and hyperlipidemia in diabetic animals. However, its overall in vivo effects on energy metabolism and the underlying mechanism require further investigation. In the present study, electrospray ionization-tandem mass spectrometry was employed to characterize the urine and plasma metabolomes of control, streptozotocin-induced DM and RSV-treated DM rats. Using principal component analysis (PCA) and heat map analysis, we discovered significant differences among control and experimental groups. RSV treatment significantly reduced the metabolic abnormalities in DM rats. Compared with the age-matched control rats, the level of carnitine was lower, and the levels of acetylcarnitine and butyrylcarnitine were higher in the urine and plasma of DM rats. RSV treatment ameliorated the deranged carnitine metabolism in DM rats. In addition, RSV treatment attenuated the diabetic ketoacidosis and muscle protein degradation, as evidenced from the attenuation of elevated urinary methyl-histidine and plasma branched-chain amino acids levels in DM rats. The beneficial effects of RSV in DM rats were correlated with activation of hepatic AMP-activated protein kinase and SIRT1 expression, increase of hepatic and muscular mitochondrial biogenesis and inhibition of muscle NF-κB activities. We concluded that RSV possesses multiple beneficial metabolic effects in insulin-deficient DM rats, particularly in improving energy metabolism and reducing protein wasting.  相似文献   

14.
Metabolite profiling of Cheonggukjang inoculated with different Bacillus strains including Bacillus amyloliqueciens CH86-1, Bacillus licheniformis 58, and Bacillus licheniformis 67 during fermentation, was performed using gas chromatography-time of flight-mass spectrometry after derivatization, combined with multivariate statistical analysis. A total of 20 amino acids, 10 sugars, five sugar alcohols, and seven organic acids were identified in three Cheonggukjang samples. With fermentation time, most of the amino acids showed increasing amounts. On the other hand, most of the sugars including sucrose, fructose, and glucose decreasing patterns, and the amounts of organic acids varied. In order to observe differences in metabolites with fermentation time and inoculated Bacillus strains, principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were carried out, respectively. On PCA plots, some sugars and organic acids including sucrose, fructose, glucose, mannose, succinic acid, and malonic acid, as well as most of the amino acids, contributed mainly to differentiation of the Cheonggukjang samples fermentation time. On the other hand, on PLS-DA, mannose, xylose, glutamic acid, and proline were mainly responsible for differentiating the Cheonggukjang among into various inoculated strains.  相似文献   

15.
2型糖尿病(type 2 diabetes mellitus,T2DM)是一种因胰岛素分泌不足或胰岛素抵抗而引起的慢性代谢疾病,T2DM患病人数的快速增长使治疗和预防T2DM成为世界上亟待解决的医学问题。随着微生物组学技术的进步,肠道菌群及其代谢产物与T2DM的研究亦逐渐深入,肠道菌群可能成为治疗和预防T2DM的靶点。肠道菌群及其代谢产物作用于T2DM的潜在机制,主要是参与体内炎症反应、增加肠道短链脂肪酸产量、调节肠道胆汁酸的代谢、调节支链氨基酸的代谢等。目前,治疗T2DM的药物可能会产生一些副作用,而基于肠道菌群干预T2DM的措施相对安全无害。例如,可通过严格控制的特定结构饮食长期摄入或增加益生菌的长期摄取控制血糖,或通过口服可影响肠道菌群生态结构的降糖药物(二甲双胍、阿卡波糖)有效地调控血糖水平。综述基于肠道菌群及其代谢产物诱发T2DM的潜在机制,研讨基于肠道菌群干预T2DM的措施,从肠道菌群的新视角探索治疗T2DM的新方法,为彻底治疗T2DM提供一种新可能。  相似文献   

16.
Diabetes mellitus (DM) is a chronic disease that can affect metabolism of glucose and other metabolites. In this study, the normal- and obese-diabetic rats were compared to understand the diabetes disorders of type 1 and 2 diabetes mellitus. This was done by evaluating their urine metabolites using proton nuclear magnetic resonance (1H NMR)-based metabolomics and comparing with controls at different time points, considering the induction periods of obesity and diabetes. The biochemical parameters of the serum were also investigated. The obese-diabetic model was developed by feeding the rats a high-fat diet and inducing diabetic conditions with a low dose of streptozotocin (STZ) (25 mg/kg bw). However, the normal rats were induced by a high dose of STZ (55 mg/kg bw). A partial least squares discriminant analysis (PLS-DA) model showed the biomarkers of both DM types compared to control. The synthesis and degradation of ketone bodies, tricarboxylic (TCA) cycles, and amino acid pathways were the ones most involved in the variation with the highest impact. The diabetic groups also exhibited a noticeable increase in the plasma glucose level and lipid profile disorders compared to the control. There was also an increase in the plasma cholesterol and low-density lipoprotein (LDL) levels and a decline in the high-density lipoprotein (HDL) of diabetic rats. The normal-diabetic rats exhibited the highest effect of all parameters compared to the obese-diabetic rats in the advancement of the DM period. This finding can build a platform to understand the metabolic and biochemical complications of both types of DM and can generate ideas for finding targeted drugs.  相似文献   

17.

Introduction and objectives

NOS1AP variant rs12742393 is a functional single nucleotide polymorphism (SNP) and has been reported to be associated with schizophrenia and type 2 diabetes (T2DM) susceptibility in different populations. However, the molecular mechanisms are not clear. The main focus of the present study was to identify metabolic differences among different genotypes of the variant and to identify potential physiological and pathological mechanisms for the diseases.

Methods

In this study, we conducted a comprehensive serum metabolomic analysis in healthy subjects with different genotypes of rs12742393 (n?=?49 for AA, AC, and CC, respectively) using gas chromatography–time of flight mass spectrometry and ultra-performance liquid chromatography–quadruple time of flight mass spectrometry. Serotonin was also measured by enzyme-linked immunosorbent assay.

Results

Our data showed that there were significant metabolic differences among the different genotypes of rs12742393: compared with AA carriers, serum serotonin and N-acetyl-5-hydroxytryptamine were significantly higher; while tryptophan and kynurenine were significantly lower in CC allele carriers (variable importance in the projection (VIP) >1 and P?<?0.05). In addition, CC allele carriers showed low levels of aromatic amino acids (phenylalanine and tyrosine) and fatty acids (lauric acid, 2-methyl-4-pentenoic acid, and adrenic acid), but a high level of isolithocholic acid (VIP >1 and P?<?0.05).

Conclusion

The influence of rs12742393 variant is involved in a set of complex metabolic alterations, including amino acids, fatty acids and cholic acids, especially those in the serotonin and kynurenine pathway, probably associates with the early development of schizophrenia and T2DM.
  相似文献   

18.
J Lu  J Zhou  Y Bao  T Chen  Y Zhang  A Zhao  Y Qiu  G Xie  C Wang  W Jia  W Jia 《Journal of proteome research》2012,11(9):4705-4711
Fulminant type 1 diabetes (FT1DM) is a relatively new clinical entity featured by acute destruction of pancreatic beta cells. Clinical consequences of FT1DM could be fatal when timely medications are not provided, suggesting the particular importance of rapid and accurate diagnosis. Here we report a serum metabonomics study of FT1DM patients, together with healthy control subjects (NC), type 2 diabetes (T2DM), classic type 1 diabetes (T1DM), and diabetic ketoacidosis (DKA) patients, with the aim of discovering metabolic markers associated with FT1DM. A total of 79 subjects were enrolled (22 NC, 22 T1DM, 22 T2DM, 8 DKA and 5 FT1DM) and the serum metabolic profiling of fasting blood samples was performed using gas chromatography time-of-flight mass spectrometry (GC-TOFMS) coupled with multivariate and univariate statistical analyses. Serum metabolites differentially expressed in FT1DM relative to NC, or to T2DM, T1DM and DKA were identified. Three metabolite markers, 5-oxoproline, glutamate, and homocysteine, were significantly altered among FT1DM, T2DM, T1DM, and DKA. In addition, the three metabolite markers, 5-oxoproline, glutamate, and homocysteine, presented similar patterns of distribution across groups. The results showed that the metabolic signatures of FT1DM identified in this study could be of potential clinical significance for the accurate diagnosis of FT1DM.  相似文献   

19.

Objectives

A detailed understanding of the metabolic processes governing rapid growth in early life is still lacking. The aim of this study was to investigate the age-related metabolic changes in healthy children throughout early childhood.

Methods

Healthy children from a birth cohort were enrolled in this study from birth through 4 years of age. Urinary metabolites were assessed at 6 months, and 1, 2, 3, and 4 yr of age by using 1H-nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate statistical analysis including principal components analysis (PCA) and partial least-squares discriminant analysis (PLS-DA). Metabolic pathway analysis was performed using the MetPA web tool.

Results

A total of 105 urine samples from 30 healthy children were collected and analyzed. Metabolites contributing to the discrimination between age groups were identified by using supervised PLS-DA (Q2 = 0.60; R2 = 0.66). A significantly higher urinary trimethylamine N-oxide (TMAO) and betaine level was found in children aged 6 months. Urinary glycine and glutamine levels declined significantly after 6 months of age and there was a concomitant compensatory increase in urinary creatine and creatinine. Metabolic pathway analysis using MetPA revealed similar nitrogen metabolism associated energy production across all ages assessed. Pathways associated with amino acid metabolism were significantly different between infants aged 6 months and 1 year, whereas pathways associated with carbohydrate metabolism were significantly different between children at ages 2 and 3 years.

Conclusions

Urine metabolomics ideally represents dynamic metabolic changes across age. Urinary metabolic profiles change significantly within the first year of life, which can potentially provide crucial information about infant nutrition and growth.  相似文献   

20.
Neovascularization is required for the growth of tumors, vascular endothelial growth factor (VEGF) and related signal pathways are important in tumor angiogenesis. Apatinib is a highly selective and potent antiangiogenesis drug targeting the receptor of VEGFR2, blocking downstream signal transduction and inhibiting angiogenesis of tumor tissue. Apatinib has a wide range of antitumor activities in vitro and in vivo, but its effect on metabolic changes has not deeply research at present. Nowadays, our research first systematically studied the metabolic changes affected by apatinib in the HepG2 cells at the half-maximal inhibitory concentration value. We used the metabolomics by using 1H nuclear magnetic resonance (1H-NMR) to analyze the HepG2 cell culture media. Multivariable Statistics was applied to analyze the 1H-NMR spectra of the cell media, including principal component analysis, partial least squares discriminant analysis (PLS-DA) and orthogonal PLS-DA (OPLS-DA). Compared with the uncultured and cultured media (negative/positive control), the metabolic phenotypes were changed in the apatinib treatment with a continuous effect over time. The metabolic pathway analysis is shown that the mainly disturbed metabolic pathways pyruvate metabolism, alanine, aspartate, and glutamate metabolism and amino acid metabolism associated with them in the apatinib treatment. The differential metabolites which were identified from the reconstructed OPLS-DA loading plots also reflected in these disturbed metabolic pathways. Our works could allow us to well understand the therapeutic effect of apatinib, especially in metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号