共查询到20条相似文献,搜索用时 0 毫秒
1.
Hidaka K Caffrey JJ Hua L Zhang T Falck JR Nickel GC Carrel L Barnes LD Shears SB 《The Journal of biological chemistry》2002,277(36):32730-32738
2.
S T Safrany S W Ingram J L Cartwright J R Falck A G McLennan L D Barnes S B Shears 《The Journal of biological chemistry》1999,274(31):21735-21740
Aps1 from Schizosaccharomyces pombe (Ingram, S. W., Stratemann, S. A. , and Barnes, L. D. (1999) Biochemistry 38, 3649-3655) and YOR163w from Saccharomyces cerevisiae (Cartwright, J. L., and McLennan, A. G. (1999) J. Biol. Chem. 274, 8604-8610) have both previously been characterized as MutT family hydrolases with high specificity for diadenosine hexa- and pentaphosphates (Ap(6)A and Ap(5)A). Using purified recombinant preparations of these enzymes, we have now discovered that they have an important additional function, namely, the efficient hydrolysis of diphosphorylated inositol polyphosphates. This overlapping specificity of an enzyme for two completely different classes of substrate is not only of enzymological significance, but in addition, this finding provides important new information pertinent to the structure, function, and evolution of the MutT motif. Moreover, we report that the human protein previously characterized as a diphosphorylated inositol phosphate phosphohydrolase represents the first example, in any animal, of an enzyme that degrades Ap(6)A and Ap(5)A, in preference to other diadenosine polyphosphates. The emergence of Ap(6)A and Ap(5)A as extracellular effectors and intracellular ion-channel ligands points not only to diphosphorylated inositol phosphate phosphohydrolase as a candidate for regulating signaling by diadenosine polyphosphates, but also suggests that diphosphorylated inositol phosphates may competitively inhibit this process. 相似文献
3.
A novel context for the 'MutT' module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase.
下载免费PDF全文

S T Safrany J J Caffrey X Yang M E Bembenek M B Moyer W A Burkhart S B Shears 《The EMBO journal》1998,17(22):6599-6607
Diphosphoinositol pentakisphosphate (PP-InsP5 or ''InsP7'') and bisdiphosphoinositol tetrakisphosphate ([PP]2-InsP4 or ''InsP8'') are the most highly phosphorylated members of the inositol-based cell signaling family. We have purified a rat hepatic diphosphoinositol polyphosphate phosphohydrolase (DIPP) that cleaves a beta-phosphate from the diphosphate groups in PP-InsP5 (Km = 340 nM) and [PP]2-InsP4 (Km = 34 nM). Inositol hexakisphophate (InsP6) was not a substrate, but it inhibited metabolism of both [PP]2-InsP4 and PP-InsP5 (IC50 = 0.2 and 3 microM, respectively). Microsequencing of DIPP revealed a ''MutT'' domain, which in other contexts guards cellular integrity by dephosphorylating 8-oxo-dGTP, which causes AT to CG transversion mutations. The MutT domain also metabolizes some nucleoside phosphates that may play roles in signal transduction. The rat DIPP MutT domain is conserved in a novel recombinant human uterine DIPP. The nucleotide sequence of the human DIPP cDNA was aligned to chromosome 6; the candidate gene contains at least four exons. The dependence of DIPP''s catalytic activity upon its MutT domain was confirmed by mutagenesis of a conserved glutamate residue. DIPP''s low molecular size, Mg2+ dependency and catalytic preference for phosphoanhydride bonds are also features of other MutT-type proteins. Because overlapping substrate specificity is a feature of this class of proteins, our data provide new directions for future studies of higher inositol phosphates. 相似文献
4.
The condensation step of fatty acid elongation is the addition of a C2 unit from malonyl-CoA to an acyl primer catalyzed by one of two families of enzymes, the 3-ketoacyl-CoA synthases and the ELO-like condensing enzymes. 3-Ketoacyl-CoA synthases use a Claisen-like reaction mechanism while the mechanism of the ELO-catalyzed condensation reaction is unknown. We have used site-directed mutagenesis of Dictyostelium discoideum EloA to identify residues important to catalytic activity and/or structure. Mutation of highly conserved polar residues to alanine resulted in an inactive enzyme strongly suggesting that these residues play a role in the condensation reaction. 相似文献
5.
Laforin is the only phosphatase in the animal kingdom that contains a carbohydrate-binding module. Mutations in the gene encoding laforin result in Lafora disease, a fatal autosomal recessive neurodegenerative disorder, which is diagnosed by the presence of intracellular deposits of insoluble complex carbohydrates known as Lafora bodies. We demonstrate that laforin interacts with proteins known to be involved in glycogen metabolism and rule out several of these proteins as potential substrates. Surprisingly, we find that laforin displays robust phosphatase activity against a phosphorylated complex carbohydrate. Furthermore, this activity is unique to laforin, since several other phosphatases are unable to dephosphorylate polysaccharides. Finally, fusing the carbohydrate-binding module of laforin to the dual specific phosphatase VHR does not result in the ability of this phosphatase to dephosphorylate polysaccharides. Therefore, we hypothesize that laforin is unique in its ability to utilize a phosphorylated complex carbohydrate as a substrate and that this function may be necessary for the maintenance of normal cellular glycogen. 相似文献
6.
Tran TT Mamo G Búxo L Le NN Gaber Y Mattiasson B Hatti-Kaul R 《Enzyme and microbial technology》2011,49(2):177-182
Site-directed mutagenesis of a thermostable alkaline phytase from Bacillus sp. MD2 was performed with an aim to increase its specific activity and activity and stability in an acidic environment. The mutation sites are distributed on the catalytic surface of the enzyme (P257R, E180N, E229V and S283R) and in the active site (K77R, K179R and E227S). Selection of the residues was based on the idea that acid active phytases are more positively charged around their catalytic surfaces. Thus, a decrease in the content of negatively charged residues or an increase in the positive charges in the catalytic region of an alkaline phytase was assumed to influence the enzyme activity and stability at low pH. Moreover, widening of the substrate-binding pocket is expected to improve the hydrolysis of substrates that are not efficiently hydrolysed by wild type alkaline phytase. Analysis of the phytase variants revealed that E229V and S283R mutants increased the specific activity by about 19% and 13%, respectively. Mutation of the active site residues K77R and K179R led to severe reduction in the specific activity of the enzyme. Analysis of the phytase mutant-phytate complexes revealed increase in hydrogen bonding between the enzyme and the substrate, which might retard the release of the product, resulting in decreased activity. On the other hand, the double mutant (K77R-K179R) phytase showed higher stability at low pH (pH 2.6-3.0). The E227S variant was optimally active at pH 5.5 (in contrast to the wild type enzyme that had an optimum pH of 6) and it exhibited higher stability in acidic condition. This mutant phytase, displayed over 80% of its initial activity after 3 h incubation at pH 2.6 while the wild type phytase retained only about 40% of its original activity. Moreover, the relative activity of this mutant phytase on calcium phytate, sodium pyrophosphate and p-nitro phenyl phosphate was higher than that of the wild type phytase. 相似文献
7.
8.
9.
Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase 总被引:4,自引:0,他引:4
Abboud-Jarrous G Rangini-Guetta Z Aingorn H Atzmon R Elgavish S Peretz T Vlodavsky I 《The Journal of biological chemistry》2005,280(14):13568-13575
Heparanase is an endo-beta-D-glucuronidase that degrades heparan sulfate in the extracellular matrix and cell surfaces. Human proheparanase is produced as a latent 65-kDa polypeptide undergoing processing at two potential proteolytic cleavage sites, located at Glu109-Ser110 (site 1) and Gln157-Lys158 (site 2). Cleavage of proheparanase yields 8- and 50-kDa subunits that heterodimerize to form the active enzyme. The fate of the linker segment (Ser110-Gln157) residing between the two subunits, the mode of processing, and the protease(s) engaged in proheparanase processing are currently unknown. We applied multiple site-directed mutagenesis and deletions to study the nature of the potential cleavage sites and amino acids essential for processing of proheparanase in transfected human choriocarcinoma cells devoid of endogenous heparanase but possessing the enzymatic machinery for proper processing and activation of the proenzyme. Although mutagenesis at site 1 and its flanking sequences failed to identify critical residues for proteolytic cleavage, processing at site 2 required a bulky hydrophobic amino acid at position 156 (i.e. P2 of the cleavage site). Substitution of Tyr156 by Ala or Glu, but not Val, resulted in cleavage at an upstream site in the linker segment, yielding an improperly processed inactive enzyme. Processing of the latent 65-kDa proheparanase in transfected Jar cells was inhibited by a cell-permeable inhibitor of cathepsin L. Moreover, recombinant 65-kDa proheparanase was processed and activated by cathepsin L in a cell-free system. Altogether, these results suggest that proheparanase processing at site 2 is brought about by cathepsin L-like proteases. The involvement of other members of the cathepsin family with specificity to bulky hydrophobic residues cannot be excluded. Our results and a three-dimensional model of the enzyme are expected to accelerate the design of inhibitory molecules capable of suppressing heparanase-mediated enhancement of tumor angiogenesis and metastasis. 相似文献
10.
The g5R (D250) gene of African swine fever virus encodes a Nudix hydrolase that preferentially degrades diphosphoinositol polyphosphates.
下载免费PDF全文

Jared L Cartwright Stephen T Safrany Linda K Dixon Edward Darzynkiewicz Janusz Stepinski Richard Burke Alexander G McLennan 《Journal of virology》2002,76(3):1415-1421
The African swine fever virus (ASFV) g5R gene encodes a protein containing a Nudix hydrolase motif which in terms of sequence appears most closely related to the mammalian diadenosine tetraphosphate (Ap4A) hydrolases. However, purified recombinant g5R protein (g5Rp) showed a much wider range of nucleotide substrate specificity compared to eukaryotic Ap4A hydrolases, having highest activity with GTP, followed by adenosine 5'-pentaphosphate (p5A) and dGTP. Diadenosine and diguanosine nucleotides were substrates, but the enzyme showed no activity with cap analogues such as 7mGp3A. In common with eukaryotic diadenosine hexaphosphate (Ap6A) hydrolases, which prefer higher-order polyphosphates as substrates, g5Rp also hydrolyzes the diphosphoinositol polyphosphates PP-InsP5 and [PP]2-InsP4. A comparison of the kinetics of substrate utilization showed that the k(cat)/K(m) ratio for PP-InsP5 is 60-fold higher than that for GTP, which allows classification of g5R as a novel diphosphoinositol polyphosphate phosphohydrolase (DIPP). Unlike mammalian DIPP, g5Rp appeared to preferentially remove the 5-beta-phosphate from both PP-InsP5 and [PP]2-InsP4. ASFV infection led to a reduction in the levels of PP-InsP5, ATP and GTP by ca. 50% at late times postinfection. The measured intracellular concentrations of these compounds were comparable to the respective K(m) values of g5Rp, suggesting that one or all of these may be substrates for g5Rp during ASFV infection. Transfection of ASFV-infected Vero cells with a plasmid encoding epitope-tagged g5Rp suggested localization of this protein in the rough endoplasmic reticulum. These results suggest a possible role for g5Rp in regulating a stage of viral morphogenesis involving diphosphoinositol polyphosphate-mediated membrane trafficking. 相似文献
11.
12.
A polyphosphatase deficient mutant of Neurospora crassa has been isolated. The criterion for selecting the mutant was the capacity of the fungus to assimilate polyphosphates as the source of exogenous phosphorus. The mutant like the parent strain ad-6, was an adenine auxotroph but differed from the parent strain by a lower growth rate though, at the stationary stage, its biomass reached the same level as in the strain ad-6. The character of changes in the activity of polyphosphatase in the course of growth was the same in the two cultures, but the activity of the enzyme in the mutant was considerably lower at all the growth stages. The content of polyphosphate fractions with the highest molecular weight increased twofold in the mutant culture. These data suggest that there is a close metabolic and topographic correlation between polyphosphatase and the highest molecular weight fractions of polyphosphates in N. crassa. 相似文献
13.
14.
We have recently isolated FYVE-DSP1, a FYVE domain-containing dual specificity protein phosphatase (R. Zhao, Y. Qi, and Z. J. Zhao, Biochem. Biophys. Res. Commun. 270, 222--229 (2000)). Here, we report a novel isozyme that we designated FYVE-DSP2. FYVE-2 contains a single FYVE domain at the C-terminus, and it shares approximately 47% overall sequence identity with FYBE-DSP1. Genomic sequence analyses revealed that the FYVE-DSP1 and FYVE-DSP2 genes share similar intron/exon organization. They are localizedon human chromosome 22q12 and chromosome 17, respectively. Like FYVE-DSP1, recombinant FYVE-DSP2 dephosphorylated low-molecular-weight phosphatase substrate para-nitrophenylphosphate, and its activity was inhibited by sodium vanadate. More importantly, our study also revealed that both FYVE-DSP1 and FYVE-DSP2 efficiently and specifically dephosphorylated phosphotidylinositol 3-phosphate. Subcellular fractionation demonstrated partition of FYVE-DSP1 and FYVE-DSP2 in membrane fractions, and immunofluorescent cell staining showed perinuclear localization of the enzymes. FYVE-DSP2 is expressed in many human tissues with an alternatively spliced isoform expressed in the kidney. Together with two homologous hypothetical proteins found in Caenorhabditis elegans and Drosophila, FYVE-DSP1 and FYVE-DSP2 form a subfamilyof phosphatases that may have an importantrole in cellular processes. 相似文献
15.
Site-directed mutagenesis of the FAD-binding histidine of 6-hydroxy-D-nicotine oxidase. Consequences on flavinylation and enzyme activity 总被引:1,自引:0,他引:1
In 6-hydroxy-D-nicotine oxidase (6-HDNO) FAD is covalently bound to His71 of the polypeptide chain by an 8 alpha-(N3-histidyl)-riboflavin linkage. The FAD-binding histidine was exchanged by site-directed mutagenesis to either a Cys- or Tyr-residue, two amino acids known to be involved in covalent binding of FAD in other enzymes, or to a Ser-residue. None of the amino acid replacements for His71 allowed covalent FAD incorporation into the 6-HDNO polypeptide. Thus, the amino acid residues involved in covalent FAD-binding require a specific polypeptide surrounding in order for this modification to proceed and cannot be replaced with each other. Enzyme activity was completely abolished with Tyr in place of His71. 6-HDNO activity with non-covalently bound FAD was found with 6-HDNO-Cys and to a lesser extent also with 6-HDNO-Ser. However, the Km values for 6-HDNO-Cys and 6-HDNO-Ser were increased approximately 20-fold as compared to 6-HDNO-His. Both mutant enzymes, in contrast to the wild-type enzyme, needed additional FAD in the enzymatic assay (50 microM for 6-HDNO-Ser and 10 microM for 6-HDNO-Cys) for maximal enzyme activity. 相似文献
16.
Polyphosphate kinase from Propionibacterium shermanii was purified to 70% homogeneity and shown to be a monomeric enzyme of molecular weight 83,000 +/- 3,000. It was demonstrated that short chains of polyphosphate serve as primers by using [32P]polyphosphate, 6-80 residues in length for synthesis of long-chain polyphosphate glucokinase, the radiolabel was found to be at the end of the polymer, proving that the mechanism of elongation of polyphosphate by polyphosphate kinase is strictly processive. Only 1 out of 3-8 of the polyphosphate chains contained the primer, indicating that there is a second unknown pathway of initiation which does not involve the polyphosphate primer. The termination of polyphosphate synthesis was investigated. With polyphosphate as a primer, the majority of the synthesized polyphosphate was 750 residues in length. With phosphate, in place of the polyphosphate primer, the major portion was about 2,000 residues in length but there was a large span of chain lengths down to 300. Termination is influenced by pH, temperature, and the concentration of the polyphosphate primer, with the chain length decreasing as either the temperature or the concentration of primer is increased. 相似文献
17.
Cysteine-319 belongs to the flexible flap at the active site of Proteus vulgaris urease. Replacing this cysteine by threonine resulted in a 20-fold increase of specific activity. Temperature stability increased, susceptibility to inhibition by dipyridyl disulfide decreased, and pH optimum shifted from 8 to 6.9. K
m (35 to 12 mM) and Vmax (47.4 to 1.8 mol min–1) were substancially altered. Both variants of the enzyme were irreversibly inhibited by phenylmethanesulfonyl fluoride. 相似文献
18.
19.
《FEBS letters》1993,320(3):193-197
In the absence of a structure of the closed form of phosphoglycerate kinase we have modified by site directed mutagenesis several of the residues which, on the basis of the open form structure, are likely to be involved in substrate binding and catalysis. Here we report on the kinetic and anion activation properties of the yeast enzyme modified at positions 65, 121 and 168. In each case an arginine, thought to be involved in the binding of the sugar substrate's non-transferable phosphate group, has been replaced by lysine (same charge) and by methionine (no charge). Km values for 3-phosphoglycerate of all six mutant enzymes are only marginally higher than that of the wild-type enzyme. Removing the charge associated with two of the three arginine residues appears to influence (as judged by the measured Km's) the binding of ATP. Although binding affinity is not necessarily coupled to turnover the substitutions which have the greatest effect on the Km's do correlate with the reduction in enzymes maximum velocity. The one exception to this generalisation is the R65K mutant which, surprisingly, has a significantly higher kcat than the wild-type enzyme. In the open form structure of the pig muscle enzyme each of the three substituted arginines residues are seen to make two hydrogen bonds to the sugar substrate's non-transferable phosphate. From this it might be expected that anion activation would be similarly affected by the substitution of any one of these three residues. Although the interpretation of such effects are complicated by the fact that one of the mutants (R65M) unfolds at low salt concentrations, this appears not to be the case. Replacing Arg121 and Arg121 with methionine reduces the anion activation whereas a lysine in either of these two positions practically destroys the effect. With the substitutions at residue 65 the opposite is observed in that the lysine mutant shows anion activation whereas the methionine mutant does not. 相似文献