首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Summary Saccharomyces diastaticus produces an extracellular glucoamylase and is therefore capable of hydrolyzing and fermenting starch. Tamaki (1978) studied starch utilization in S. diastaticus and found three polymeric genes controlling this function: STA1, STA2 and STA3. Independently, Erratt and Stewart (1978) studied dextrin utilization by the yeast S. diastaticus and designated the gene, which they identified, DEX1. Erratt and Stewart (1981a, b) later described two other genes which controlled glucoamylase production in S. diastaticus: DEX2 and a third which was allelic to STA3. At that time STA1 and STA2 were not available to test for allelism in the DEX gene family. In this study strains containing the remaining 4 genes have been examined to determine if further allelism exists between the two gene families. It was ascertained that DEX1 is allelic to STA2 and DEX2 is allelic to STA1. Therefore, no new gene controlling starch utilization has been identified and these two nomenclatures can now be consolidated into one. Based on the fact that the glucoamylase from S. diastaticus can hydrolyze both dextrin and starch, dextrin being the term used to described partially hydrolyzed starch, and the more wide use of the nomenclature STA, we propose to retain STA as the designation for genes coding for glucoamylase production in S. diastaticus.  相似文献   

2.
Summary One haploid and one diploid strain of Saccharomyces diastaticus carrying genes responsible for glucoamylase synthesis were fused with a brewing polyploid Saccharomyces uvarum lager strain. With the spheroplast fusion technique, the ability to use dextrin and starch was introduced in the brewing yeast. Spheroplasts of the strains to be used were obtained by enzymatic digestion of the cell walls. Fusion took place in polyethylene glycol; complete cells were then regenerated in hypertonic medium containing 3% agar at 37°C. In the first fusion experiment melibiose was used as carbon source; in the second fusion experiment glycerol was employed as carbon source, for the parental Saccharomyces diastaticus diploid strain was a petite mutant. Fusion products were capable of utilizing melibiose and dextrin as carbon sources.  相似文献   

3.
Summary Genetic studies were made on the genes determining the ability to ferment starch (STA) in five strains of S. diastaticus different in origins, strain IFO 1046, IFO 1015, Y 8, Y 13 and C1372. With the heterothallic strain IFO 1046, the genes STA1 and STA2 were separated by single spore cultures and crosses to S. cerevisiae. Strain Y 8 did not sporulate, but the progeny having gene STA3 was isolated from the hybrid between the respiratory deficient mutant of strain Y 8 and S. cerevisiae obtained by the minimal plate mating technique. Strain IFO 1015 was the homothallic strain. The progeny having gene STA4 was isolated from the hybrid between IFO 1015 and S. cerevisiae. Strain Y 13 did not sporulate, but the progeny having gene STA5 was isolated according to the same technique as applied to strain Y 8. Haploid strain C1372 retained the gene STA6. The genes STA1 and STA4, and STA3, STA5 and STA6 were shown to be not separable by tetrad analysis.These results demonstrate the existence in S. diastaticus of at least 3 polymorphic genes for starch fermentation; STA1 (STA4), STA3 (STA5 and STA6), and STA2, and these STA genes are located on different linkage groups.  相似文献   

4.
Summary The fermentation characteristics of a large number of starch-degrading yeasts were compared. None of the amylolytic yeasts currently recognized, appear to be entirely suitable for direct alcoholic fermentation of starchy biomass. The species capable of extensive starch hydrolysis produce only low amounts of ethanol from glucose and dextrin, one of the major limitations being their low ethanol tolerances. Some of the less-active yeasts have much better glucosefermentation characteristics, but dextrin conversion is limited probably due to the nature of their enzyme systems. Using an -amylase dextrin (22.5% w/v), ethanol yields of about 70% were obtained with Saccharomyces diastaticus strains. Through associative fermentation of S. diastaticus and other selected amylolytic yeasts slightly better yields, however not exceeding 80%, were obtained.  相似文献   

5.
The goal of this research was to construct a stable and efficient process for the production of ethanol from raw starch, using a recombinant Saccharomyces cerevisiae, which is productive even under conditions such as non-selection or long-term operation. Three recombinant yeast strains were used, two haploid strains (MT8-1SS and NBRC1440SS) and one diploid strain (MN8140SS). The recombinant strains were constructed by integrating the glucoamylase gene from Rhizopus oryzae fused with the 3′-half of the α-agglutinin gene as the anchor protein, and the α-amylase gene from Streptococcus bovis, respectively, into their chromosomal DNA by homologous recombination. The diploid strain MN8140SS was constructed by mating these opposite types of integrant haploid strains in order to enhance the expression of integrated amylase genes. The diploid strain had the highest ethanol productivity and reusability during fermentation from raw starch. Moreover, the ethanol production rate of the integrant diploid strain was maintained when batch fermentation was repeated three times (0.67, 0.60, and 0.67 g/l/h in each batch). These results clearly show that a diploid strain developed by mating two integrant haploid strains is useful for the establishment of an efficient ethanol production process.  相似文献   

6.
Summary The protoplast fusion technique provides a useful method for improving industrial yeasts and agglutinant agents like polyethylene glycol (PEG) MW 4000 and Ca++ ions are widely used to stimulate the fusion process. Commercial Baker's yeast Saccharomyces cerevisiae and Saccharomyces diastaticus were selected as parental strains for somatic fusion. The Saccharomyces diastaticus carried a spontaneous petite mutation and could not metabolize starch unlike respiratory competent Saccharomyces diastaticus from which it was derived, that readily could.A medium containing soluble starch as a carbon source and 3 % agar was used as fusion products selection medium. Respiratory competent fusion products were capable of using dextrins and starch as carbon sources.  相似文献   

7.
Summary The single glucoamylase gene (SGA1) of the yeast Saccharomyces cerevisiae is expressed exclusively during the sporulation phase of the life cycle. Enzymatic studies and nucleic acid sequence comparisons have shown that the SGA1 glucoamylase is closely related to the secreted enzymes of S. cerevisiae var. diastaticus. The latter are encoded by any of three unlinked STA genes, which have been proposed to derive from the ancestral SGA1 form by genomic rearrangement. We show that the regulation of SGA1 is distinct from that of the other members of the STA gene family. SGA1 expression did not respond to STA10, the primary determinant of glucoamylase expression from STA2. Unlike STA2, SGA1 was not regulated directly by the mating type locus. Expression of SGA1 depended on the function of the MAT products in supporting sporulation and not on the formation of haploid progeny spores or on the composition of the mating type locus per se. We conclude that the STA genes acquired regulation by STA10 and MAT by the genomic rearrangements that led to their formation. This regulation is thus distinct from that of the ancestral SGA1 gene.  相似文献   

8.
Summary Direct alcoholic fermentation of dextrin or soluble starch with selected amylolytic yeasts was studied in both batch and immobilized cell systems. In batch fermentations, Saccharomyces diastaticus was capable of fermenting high dextrin concentrations much more efficiently than Schwanniomyces castellii. From 200 g·l–1 of dextrin S. diastaticus produced 77 g·l–1 of ethanol (75% conversion efficiency). The conversion efficiency decreased to 59% but a higher final ethanol concentration of 120 g·l–1 was obtained with a medium containing 400 g·l–1 of dextrin. With a mixed culture of S. diastaticus and Schw. castellii 136 g·l–1 of ethanol was produced from 400 g·l–1 of dextrin (67% conversion efficiency). S. diastaticus cells attached well to polyurethane foam cubes and a S. diastaticus immobilized cell reactor produced 69 g·l–1 of ethanol from 200 g·l–1 of dextrin, corresponding to an ethanol productivity of 7.6g·l–1·h–1. The effluent from a two-stage immobilized cell reactor with S. diastaticus and Endomycopsis fibuligera contained 70 g·l–1 and 80 g·l–1 of ethanol using initial dextrin concentrations of 200 and 250 g·l–1 respectively. The corresponding values for ethanol productivity were 12.7 and 9.6 g·l–1·h–1. The productivity of the immobilized cell systems was higher than for the batch systems, but much lower than for glucose fermentation.  相似文献   

9.
Direct and efficient production of ethanol by fermentation from raw corn starch was achieved by using the yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis α-amylase by using the C-terminal-half region of α-agglutinin and the flocculation functional domain of Flo1p as the respective anchor proteins. In 72-h fermentation, this strain produced 61.8 g of ethanol/liter, with 86.5% of theoretical yield from raw corn starch.  相似文献   

10.
Summary Fermentation of starch based industrial media was tested with yeast fusion products previously described, from a Baker's yeastSaccharomyces cerevisiae and Saccharomyces diastaticus and from a highly flocculentSaccharomyces cerevisiae andSaccharomyces diastaticus. The (somatic) fusion products were capable to produce more ethanol than parental strains after 96 h of batch fermentation. The aim of this work was to reduce the amount of enzyme used in saccharification by using good fermenting amylolytic yeast strains.  相似文献   

11.
Summary Spheroplasts of a petite mutant of the amylolitic Saccharomyces diastaticus 1376 yeast strain were successfully fused with spheroplasts of a flocculent and respiratory competent Saccharomyces cerevisiae 1161 yeast strain.Flocculent and non-flocculent stable recombinants were recovered after regeneration of the cell walls all of which formed halos around their colonies in media containing starch/dextrin as carbon source. The sporulation ability varied in some of the fusion products and the possible influence of genetic instability is discussed.  相似文献   

12.
In the yeast Saccharomyces diastaticus, expression of both glucoamylase-producing (STA) genes and a novel flocculation gene FLO 8 was greatly diminished by the mating-type locus MATa/MAT α.  相似文献   

13.
Bacillus macerans enzyme (BME)-derived high molecular weight dextrins, which are by-products in the course of the industrial production of cylodextrins, were isolated and their chemical structures were characterized.Dextrin I was obtained in a yield of about 24% from BME-hydrolyzate (a mixture of dextrin and cylodextrins, 50% each) of potato starch by fractionation with an ultrafiltrator having a membrane of cut-off molecular weight 2.0 × 104. Dextrin II was obtained in a yield of about 15% from BME-hydrolyzate (a mixture of dextrins and cyclodextrins, 70 : 30) of Dextrin I by the same method.Dextrin I and II consisted of dextrin having molecular weights over 20 × 106 and dextrins having molecular weights 4 × 103−1 × 105 in the ratio of 80 : 12 and 66: 15, respectively.The results of hydrolysis by β-amylase and methylation analysis indicated that the average, exterior and interior chain lenghts of the dextrins having molecular weights over 20 × 106 and 4 × 103−1 × 105 from Dextrin I were 16.5, 8.2 and 7.3, and 11.5, 6.9 and 3.6, respectively, than those from Dextrin II were 13.6, 4.7 and 9.9, and 10.4, 5.1 and 4.3, respectively.  相似文献   

14.
The production of raw starch-degrading amylases by recombinant Saccharomyces cerevisiae provides opportunities for the direct hydrolysis and fermentation of raw starch to ethanol without cooking or exogenous enzyme addition. Such a consolidated bioprocess (CBP) for raw starch fermentation will substantially reduce costs associated with energy usage and commercial granular starch hydrolyzing (GSH) enzymes. The core purpose of this review is to provide comprehensive insight into the physiological impact of recombinant amylase production on the ethanol-producing yeast. Key production parameters, based on outcomes from modifications to the yeast genome and levels of amylase production, were compared to key benchmark data. In turn, these outcomes are of significance from a process point of view to highlight shortcomings in the current state of the art of raw starch fermentation yeast compared to a set of industrial standards. Therefore, this study provides an integrated critical assessment of physiology, genetics and process aspects of recombinant raw starch fermenting yeast in relation to presently used technology. Various approaches to strain development were compared on a common basis of quantitative performance measures, including the extent of hydrolysis, fermentation-hydrolysis yield and productivity. Key findings showed that levels of α-amylase required for raw starch hydrolysis far exceeded enzyme levels for soluble starch hydrolysis, pointing to a pre-requisite for excess α-amylase compared to glucoamylase for efficient raw starch hydrolysis. However, the physiological limitations of amylase production by yeast, requiring high biomass concentrations and long cultivation periods for sufficient enzyme accumulation under anaerobic conditions, remained a substantial challenge. Accordingly, the fermentation performance of the recombinant S. cerevisiae strains reviewed in this study could not match the performance of conventional starch fermentation processes, based either on starch cooking and/or exogenous amylase enzyme addition. As an alternative strategy, the addition of exogenous GSH enzymes during early stages of raw starch fermentation may prove to be a viable approach for industrial application of recombinant S. cerevisiae, with the process still benefitting from amylase production by CBP yeast during later stages of cultivation.  相似文献   

15.
We developed a novel strategy for constructing yeast to improve levels of amylase gene expression and the practical potential of yeast by combining δ-integration and polyploidization through cell fusion. Streptococcus bovis α-amylase and Rhizopus oryzae glucoamylase/α-agglutinin fusion protein genes were integrated into haploid yeast strains. Diploid strains were constructed from these haploid strains by mating, and then a tetraploid strain was constructed by cell fusion. The α-amylase and glucoamylase activities of the tetraploid strain were increased up to 1.5- and tenfold, respectively, compared with the parental strain. The diploid and tetraploid strains proliferated faster, yielded more cells, and fermented glucose more effectively than the haploid strain. Ethanol productivity from raw starch was improved with increased ploidy; the tetraploid strain consumed 150 g/l of raw starch and produced 70 g/l of ethanol after 72 h of fermentation. Our strategy for constructing yeasts resulted in the simultaneous overexpression of genes integrated into the genome and improvements in the practical potential of yeasts.  相似文献   

16.
Summary Each one of at least three unlinked STA loci (STA1, STA2 and STA3), in the genome of Saccharomyces diastaticus controls starch hydrolysis by coding for an extracellular glucoamylase. Cloned STA2 sequences were used as hybridization probes to investigate the physical structure of the family of STA genes in the genomes of different Saccharomyces strains. Sta+ strains, each carrying a single genetically defined STA locus, were crossed with a Sta strain and the segregation behavior of the functional locus (i.e. Sta+) and sequences homologous to a cloned STA2 glucoamylase structural gene at that locus were analyzed. The results indicate that in all strains examined there is a multiplicity of sequences that are homologous to STA2 DNA but that only the functional STA loci contain extensive 5 and 3 homology to each other and can be identified as residing on unique fragments of DNA; that all laboratory yeast strains examined contain extensive regions of the glucoamylase gene sequences at or closely linked to the STA1 chromosomal position; that the STA1 locus contains two distinct glucoamylase gene sequences that are closely linked to each other; and that all laboratory strains examined also contain another ubiquitous sequence that is not allelic to STA1 and is nonfunctional (Sta), but has retained extensive sequence homology to the 5 end of the cloned STA2 gene. It was also determined that the DEX genes (which control dextrin hydrolysis in S. diastaticus), MAL5 (a gene once thought to control maltose metabolism in yeast) and the STA genes are allelic to each other in the following manner: STA1 and DEX2, STA1 and MAL5, and STA2 and DEX1 and STA3 and DEX3.  相似文献   

17.
Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.  相似文献   

18.
Starch isolated from mature Ginkgo biloba seeds and commercial normal maize starches were subjected to α-amylolysis and acid hydrolysis. Ginkgo starch was more resistant to pancreatic α-amylase hydrolysis than the normal maize starch. The chain length distribution of debranched amylopectin of the starches was analyzed by using high performance anion-exchange chromatography equipped with an amyloglucosidase reactor and a pulsed amperometric detector. The chain length distribution of ginkgo amylopectin showed higher amounts of both short and long chains compared to maize starch. Naegeli dextrins of the starches prepared by extensive acid hydrolysis over 12 days demonstrated that ginkgo starch was more susceptible than normal maize to acid hydrolysis. Ginkgo dextrins also demonstrate a lower concentration of singly branched chains than maize dextrins, and unlike maize dextrin, debranched ginkgo shows no multiple branched chains. The ginkgo starch displayed a C-type X-ray diffraction pattern, compared to an A-type pattern for maize. Ginkgo starch and maize starch contained 24.0 and 17.6% absolute amylose contents, respectively.  相似文献   

19.
Yeast strains capable of fermenting starch and dextrin to ethanol were isolated from samples collected from Brazilian factories in which cassava flour is produced. Considerable alcohol production was observed for all the strains selected. One strain (DI-10) fermented starch rapidly and secreted 5 times as much amylolytic enzyme than that observed for Schwanniomyces alluvius UCD 54-83. This strain and three other similar isolates were classified as Saccharomyces cerevisiae var. diastaticus by morphological and physiological characteristics and molecular taxonomy.  相似文献   

20.
The industrial Saccharomyces cerevisiae IR-2 is a promising host strain to genetically engineer xylose-utilizing yeasts for ethanol fermentation from lignocellulosic hydrolysates. Two IR-2-based haploid strains were selected based upon the rate of xylulose fermentation, and hybrids were obtained by mating recombinant haploid strains harboring heterogeneous xylose dehydrogenase (XDH) (wild-type NAD+-dependent XDH or engineered NADP+-dependent XDH, ARSdR), xylose reductase (XR) and xylulose kinase (XK) genes. ARSdR in the hybrids selected for growth rates on yeast extract-peptone-dextrose (YPD) agar and YP-xylose agar plates typically had a higher activity than NAD+-dependent XDH. Furthermore, the xylose-fermenting performance of the hybrid strain SE12 with the same level of heterogeneous XDH activity was similar to that of a recombinant strain of IR-2 harboring a single set of genes, XR/ARSdR/XK. These results suggest not only that the recombinant haploid strains retain the appropriate genetic background of IR-2 for ethanol production from xylose but also that ARSdR is preferable for xylose fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号