首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a series of four experiments, the temporal development of acute inhibitory and delayed stimulatory effects of 17 beta-estradiol (E) on luteinizing hormone (LH) release by superfused rat anterior pituitary cells pulsed with gonadotropin-releasing hormone (GnRH) was studied. Dispersed anterior pituitary cells from ovariectomized rats were cultured on Bio-Beads for 3 days and then placed in columns and superfused for up to 24 hr. During superfusion, the cells were exposed to GnRH pulses (3 X 10(-9) M, one 6-min pulse/hr). Cells treated with E (3 X 10(-10) M) either before (only 24 hr prior to superfusion) or before and during superfusion released significantly (P less than 0.05) more LH in response to the first few pulses of GnRH than cells treated with diluent. In contrast, cells treated with E only during superfusion initially released less GnRH-induced LH than cells treated with diluent. In a subsequent experiment, the inhibitory effect of E reached a maximum by 1.5 hr (P less than 0.01), and then gradually disappeared after 4.5 hr. Cells superfused simultaneously with E and fixed "low"-dose GnRH (5 X 10(-10) M) pulses did not exhibit enhanced LH responses with time to that dose of GnRH. However, E-superfused cells responded more than diluent-superfused cells to subsequent stimulation with a higher-dose GnRH pulse. Superfusion of cells with E for 16.5 hr in the absence of GnRH pulses also did not increase release of LH to low-dose (5 X 10(-10) M) pulses of GnRH, yet did cause a transitory increase to subsequent high-dose (10(-8) M) GnRH pulses. In conclusion, these results demonstrate the direct biphasic inhibitory then stimulatory effects of E on GnRH-induced LH release by superfused rat anterior pituitary cells. Expression of the stimulatory effect of E is related to the dose of GnRH.  相似文献   

2.
O Khorram  K Y Pau  H G Spies 《Peptides》1988,9(2):411-417
The effect of NPY on the hypothalamic release of GnRH and pituitary release of gonadotropins was examined in intact and ovariectomized (OVEX) rabbits in a superfusion system. Exposure of mediobasal hypothalami (MBH) from intact rabbits to NPY (8 X 10(-8) M) resulted in a sustained stimulation of GnRH secretion into the medium. The same dose of NPY had no effect on MBH-GnRH release from OVEX rabbits. NPY also produced a sustained stimulation of LH and FSH release by pituitary fragments from intact rabbits, but NPY caused only a transient release of these hormones by pituitaries from OVEX does. Media samples from MBH superfusions were also measured for NPY concentrations. NPY was released episodically into the medium. The amplitude and frequency of NPY pulses in intact and OVEX rabbits did not differ; nor were mean levels of NPY significantly affected by castration. These results suggest that NPY has direct effects on both the hypothalamus and pituitary to modulate the the activities of GnRH neurons and gonadotropes. The pattern of GnRH and gonadotropin response to NPY exposure is determined by ovarian factors.  相似文献   

3.
Abstract: The fate of gonadotropin-releasing hormone (GnRH) was examined by a GnRH radioimmunoassay during in vitro incubations of the rat medial basal hypothalamus (MBH). There was a progressive disappearance of exogenous GnRH during MBH incubations. The GnRH degradation could be explained by the release of peptidases from the MBH into the incubation medium. The cytoplasmic marker lactic dehydrogenase (LDH) was also released into the incubation medium. The peptide antibiotic bacitracin produced a dose-dependent inhibition of GnRH degradation during MBH incubations; 1 mM-bacitracin completely inhibited exogenous GnRH degradation during 4-h incubations. Bacitracin also produced dose-dependent increases in the recovery of endogenous GnRH released from the MBH under basal conditions or when stimulated with the depolarizing agent veratrine. Veratrine also was found to decrease the GnRH peptidase activity significantly but not the LDH activity during MBH incubations. The present results indicate that peptidase activity can be an important regulator of endogenous GnRH released from the hypothalamus during in vitro incubations.  相似文献   

4.
Gonadotropin-releasing hormone (GnRH) stimulates release of gonadotropin hormone (GTH) through interaction with high affinity receptors in the goldfish pituitary. In the present study, we investigated desensitization of two native GnRH peptides, [Trp7, Leu8]-GnRH (sGnRH) and [His5, Trp7, Tyr8]-GnRH (cGnRH-II), using superfused fragments of goldfish pituitary in vitro. Pulsatile treatment with either sGnRH or cGnRH-II (2-min pulses given every 60 min) resulted in dose-dependent secretion of GTH from the goldfish pituitary; cGnRH-II had a greater GTH release potency and displayed a greater receptor binding affinity than sGnRH. Both sGnRH and cGnRH-II-induced GTH release were partially inhibited by concomitant treatment with either [D-Phe2, Pro3, D-Phe6]-GnRH or [D-pGlu1, D-Phe2, D-Trp3.6]-GnRH. These antagonists had greater receptor binding affinities than the native peptides, with no stimulatory action on GTH release in the absence of the GnRH agonists. Continuous treatment with either sGnRH or cGnRH-II (10(-7) M), rapidly desensitized pituitary GTH release in a biphasic fashion; initially there was a rapid increase in GTH release of approximately 10-20-fold (phase 1), followed by a sharp decline in GTH release, reaching a stable concentration 2-3-fold above the basal level (phase 2). Further stimulation of the pituitaries with sGnRH or cGnRH-II (10(-7) M) (second treatment) after 60 min recovery resulted in a significantly lower sGnRH or cGnRH-II-induced GTH release compared to that observed during the initial treatment period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The stimulation of luteinizing hormone (LH) release and cyclic GMP (cGMP) production in rat anterior pituitary cells by gonadotropin-releasing hormone (GnRH) are receptor mediated and calcium dependent, and have been shown to be accompanied by increased phospholipid turnover and arachidonic acid release. The incorporation of 32Pi into the total phospholipid fraction of pituitary gonadotrophs was significantly elevated by 10(-8) M GnRH, with specific increases in the labeling of phosphatidylinositol and phosphatidic acid (PA). Since PA acts as a calcium ionophore in several cell types, its effects upon calcium-mediated gonadotroph responses were compared with those elicited by GnRH. In rat pituitary gonadotrophs prepared by centrifugal elutriation, PA stimulated LH release and cGMP production by 9-fold and 5-fold, respectively. The stimulation of LH release by 30 microM PA was biphasic in its dependence on extracellular calcium concentration, rising from zero in the absence of calcium to a maximum of 10-fold at 0.5 mM Ca2+ and declining at higher calcium concentrations. In dose-response experiments, PA was 3-fold more potent at 0.5 mM Ca2+ than at 1.2 mM Ca2+. The cGMP response to PA in cultured gonadotrophs was also calcium dependent, and was progressively enhanced by increasing Ca2+ concentrations up to 1.5 mM. The ability of PA to stimulate both LH release and cGMP formation in a calcium-dependent manner suggests that endogenous PA formed in response to GnRH receptor activation could function as a Ca2+ ionophore in pituitary gonadotrophs, and may participate in the stimulation of gonadotroph responses by GnRH and its agonist analogs.  相似文献   

6.
C Shu  M Selmanoff 《Peptides》1989,10(1):131-136
We investigated Ca2+-dependent, depolarization-induced release of substance P (SP) and LH-RH from medial basal hypothalamic (MBH) and substantia nigra (SN) synaptosomes prepared from male rat brain. Depolarization of MBH synaptosomes evoked significant release of SP from 10.0 +/- 0.1 (5 mM K+) to 28.0 +/- 2.4 (75 mM K+) pg released/10 seconds. Fractional release was 1.0% and 2.7% respectively. In contrast, LH-RH was not released by depolarization of MBH synaptosomes: 11.6 +/- 0.9 (5 mM K+) to 11.0 +/- 0.7 (75 mM K+) pg released/10 seconds. Fractional release was 1.1 and 1.0% respectively. Depolarization-induced LH-RH release also did not occur in the presence of 10(-4) or 10(-6) M norepinephrine, 10(-7) M 12-O-tetradecanoylphorbol-13-acetate (TPA, PMA), 10(-5) M forskolin or in female rats. The inability of depolarizing concentrations of K+ to stimulate LH-RH release in physiological buffers remains an enigma. Significant depolarization-induced SP release was seen from MBH and SN synaptosomes at 20, 15, 10, 5 and only 1 second of release. Despite comparable basal release of SP from MBH and SN synaptosomes, the rate and magnitude of evoked release were much more pronounced in SN synaptosomes. The initial rate (0-1 second) of SP release was 4.5-fold greater from SN than from MBH synaptosomes [krel = 0.027(-1) (SN), krel = 0.006(-1) (MBH)]. The magnitude of SP release from SN synaptosomes was 2- to 3-fold greater at any given time interval compared with release from MBH synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In an in vitro bioassay using rat pituitary cell cultures the effect of contraceptive progestins was tested on basal and gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion in vitro. Progestins diminished gonadotropin release in pituitary cells stimulated with GnRH, but did not alter basal values. This inhibitory effect was dose dependent in a range of 10(-10)-10(-5) M tested and the inhibitory action of most of the progestins examined was more potent than that of progesterone. The maximal reduction of LH and FSH values was by 60% of GnRH-induced control levels. Progestins also caused a shift in sensitivity of cells to GnRh (10(-12)-10(-6) M). When time dependence was investigated, some progestins potentiated GnRH effect on gonadotropins in pituitary cell cultures pre-incubated for a short time (4 h) with steroids. More prolonged pre-incubations from 23 to 71 h resulted in a progressive suppression of LH and FSH response to GnRH (10(-7) M). In order to examine intracellular effects, cells were pretreated with progestins and inositol phosphate metabolism was investigated. The data obtained in pituitary cells give evidence that polyphosphoinositide breakdown is potentially an early step in the action of GnRH on gonadotropin secretion by providing diacylglycerol and inositol phosphates. Addition of gonadotropin-releasing hormone to myo-2[3H]inositol-prelabeled rat pituitary cells in primary culture evoked a dose-dependent increase of the accumulation of [3H]inositol phosphates with a rise of inositol triphosphate, inositol diphosphate and inositol monophosphate within 1 min. Using one contraceptive progestin, gestoden, inositol phosphate production was inhibited by 80% compared to controls of GnRH-treated cells without the addition of steroids. The data obtained in this study suggest that this in vitro bioassay using rat pituitary cells is a useful tool in testing progestational compounds regarding their potency on gonadotropin release. In addition, these results show that one possible site of interference of progestins with GnRH-induced gonadotropin secretion may involve polyphosphoinositide breakdown.  相似文献   

8.
Ovarian granulosa cells obtained from hypophysectomized, diethylstilbestrol-treated rats were cultured in the presence of ovine follicle-stimulating hormone (FSH) and gonadotropin-releasing hormone (GnRH). FSH stimulated the production and accumulation of both cAMP and cGMP, as well as progesterone, during a 48-h incubation period. Addition of GnRH or an agonist analog, [D-Ala6]des-Gly10-GnRH N-ethylamide (GnRHa), did not influence the cyclic nucleotide response to FSH in the first 6 h of incubation, but caused dose-dependent inhibition of the FSH-induced rise in cyclic nucleotide production from 24 to 48 h of incubation. Cellular production of both cyclic nucleotides and progesterone was decreased by GnRHa concentrations as low as 10(-12) M, with maximum inhibition at 10(-9) M GnRHa. These results suggest that the in vitro antigonadal actions of GnRH and related peptides are expressed through inhibition of cyclic nucleotide production.  相似文献   

9.
Previous in vivo studies from our laboratory suggested that glucocorticoids antagonize estrogen-dependent actions on LH secretion. This study investigated whether corticosterone (B) may have similar actions on gonadotropin biosynthesis and secretion in vitro. Enzymatically dispersed anterior pituitary cells from adult female rats were cultured for 48 h in alpha-modified Eagle's medium containing 10% steroid-free horse serum with or without 0.5 nM estradiol (E2). The cells were then cultured for 24 h with or without B in the presence or absence of E2. To evaluate hormone release, 5 x 10(5) cells were incubated with varying doses of GnRH (0, 10(-11)-10(-7) M) or pulsatile GnRH (10(-9) M; 20 min/h) for 4 h. Cell and medium LH and FSH were measured by RIA. To evaluate LH biosynthesis, 5 x 10(6) cells were incubated for an additional 24 h with 10(-10) M GnRH, 60 microCi 3H-glucosamine (3H-Gln), 20 microCi 35S-methionine (35S-Met), and the appropriate steroid hormones. Radiolabeled precursor incorporation into LH subunits was determined by immunoprecipitation, followed by SDS-PAGE. Continuous exposure to GnRH stimulated LH release in a dose-dependent manner, and this response was enhanced by E2. B by itself had no effect on LH release, but inhibited LH secretion in E2-primed cells at low concentrations of GnRH (10(-10) M or less). Total LH content was not altered by GnRH or steroid treatment. Similar effects of B were observed in cells that were given a pulsatile GnRH stimulus. In contrast to LH, E2 or B enhanced GnRH-stimulated FSH release at the higher doses of GnRH, while the combination of E2 and B increased basal and further augmented GnRH-stimulated release. Total FSH content was also increased in the presence of B, but not E2 alone, and was further augmented in cells treated with both steroids. There were no effects of the steroids on the magnitude of FSH release in response to GnRH pulses, but the cumulative release of FSH was greater in the E2 + B group compared to controls, indicating an increased basal release. Independent of E2, B suppressed the incorporation of 3H-Gln into LH by more than 50% of control, with only subtle effects on the incorporation of 35S-Met.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
K Kim  C S Lee  W K Cho  V D Ramirez 《Life sciences》1988,43(7):609-613
To test the hypothesis that progesterone (P) administered in a high dose and for a long duration would influence in vitro LHRH release by naloxone, silastic capsules containing P (50 mg/ml) or vehicle were implanted sc in ovariectomized, estradiol-primed (OVX+E) prepubertal rats. Following a 48 hr exposure to P, rats were sacrificed and mediobasal hypothalamic (MBH) fragments were obtained. In addition, in other OVX+E primed rats, a single injection of P (1 mg) was given sc 6 hr prior to decapitation. Naloxone or control medium were infused into superfusion chambers containing MBH fragments derived from these animals for 2 hr following a 1 hr control period. Infusion of naloxone (1 x 10(-4) M) markedly stimulated in vitro LHRH release from MBH from rats pre-exposed to P for 48 hr, whereas it was unable to do so in other groups examined. These data clearly indicate that the ability of naloxone (1 x 10(-4) M) to stimulate LHRH release is dependent on the duration of P administration.  相似文献   

11.
The effects of PHI-27, a peptide of the glucagon-secretion family, on luteinizing hormone (LH) release and on LH-releasing hormone (LH-RH)- or estradiol-induced LH release were examined in a sequential double chamber perifusion system by perifusing the pituitary alone or in sequence with the mediobasal hypothalamus (MBH) from normal female rats in diestrus. PHI at 10(-7) M had no significant effect on LH release from the pituitary in series with the MBH. Moreover, on perifusion of the pituitary alone with medium containing 10(-7) M PHI, LH release induced by 20 ng/ml LH-RH from the pituitary was not significantly different from that without PHI. Furthermore, PHI had no effect on estradiol-induced LH release from the pituitary in sequence with the MBH. These data indicate that PHI has no effect on LH release in vitro.  相似文献   

12.
An in vitro preparation from the pedal ganglia of the marine bivalve, Mytilus edulis, was used to examine the modulation of transmitter release by adenosine and its analogs from invertebrate nervous tissue. The ganglia of this organism contain the monoamines dopamine (DA), serotonin (5-HT), and norepinephrine (NE), and the presynaptic release of these substances is known to be calcium-dependent. This organism also contains a DA-sensitive adenylate cyclase system which resembles that seen in mammals. Neural tissue from the pedal ganglia was incubated with labeled monoamines, and release studies were then conducted in superfusion chambers; release of monoamines was evoked by the addition of 50 mM KCl. Addition to the superfusion medium of the adenosine analog, 5'-N-ethylcarboxamidoadenosine (NECA; 10 nM), inhibited the release of 5-HT and DA, and to a lesser extent NE, whereas 100-fold higher concentrations of adenosine itself and the adenosine analog, R-N6-phenylisopropyladenosine, were required to achieve comparable levels of inhibition. The inhibitory effects of NECA on neurotransmitter release were blocked by the adenosine receptor antagonist, theophylline (IC50 = 10-14 microM). The results from this study indicate for the first time the possible role of adenosine as a modulator of neurotransmitter release in the invertebrate nervous system.  相似文献   

13.
The actions of two inhibin preparations and cycloheximide on gonadotropin release were investigated in superfused pituitary cell cultures. Pituitary cells isolated from 18-day-old male rats were grown in Matrigel-coated superfusion chambers in chemically defined medium. After stationary culture for 4 days, the cell monolayers were superfused at a constant speed (0.25 ml/min) and were intermittently stimulated (6 min/h) with 10 nM gonadotropin-releasing hormone (GnRH). Groups of cultures were exposed to the test substances for varying time periods during stationary culture and/or during superfusion. Inhibitory effects of both inhibin preparations on the secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in response to GnRH pulses were observed after 2 h of exposure and became maximal after about 6 h. Basal secretion of FSH between GnRH pulses was also suppressed, whereas the basal interpulse secretion of LH was not changed. When exposure to inhibin was discontinued, the secretion of both FSH and LH progressively increased and returned to control values by approximately 6 h. Cycloheximide (500 ng/ml) affected gonadotropin release with dynamics similar to those observed for the inhibin preparation. These data support the hypothesis that inhibition of gonadotropin synthesis may be an important step in the molecular mechanism of action by which inhibin regulates gonadotropin release.  相似文献   

14.
The roles of K+, Ca2+, and Na+ ions in the mechanism of gonadotropin releasing hormone (GnRH) action on frog (Rana pipiens) hemipituitaries were studied using an in vitro superfusion system. The effects of elevated K+ alone or in combination with Ca2+-depleted medium, tetrodotoxin (TTX), or with 100 ng/ml GnRH were examined. The involvement of K+ was also studied indirectly through the use of tetraethyl ammonium chloride (TEA). The importance of Ca2+ was established by the loss of responsiveness to GnRH in Ca2+-depleted medium, or in the presence of the Ca2+ competitor CoCl2. The absence of a major dependence of GnRH on Na+ was revealed by the continued gonadotropin secretion after addition of 1 microM TTX to medium containing GnRH or 36.3 mM KCl, or by replacement of NaCL with choline chloride. High (10 X normal) KCl (36.3 mM) stimulated gonadotropin--both LH and FSH--secretion, but the response was more gradual than for GnRH. The inclusion of TEA (to block K+ efflux) in medium with GnRH accentuated the effect of GnRH, and the effects of elevated (36.3 mM) KCl and 100 ng/ml GnRH (a relatively high dose) were additive. Responses to high K+, like GnRH, were abolished by removal of Ca2+ from the medium. Overall, the roles of K+, Ca2+, and Na+ ions in the mechanism of GnRH action are very similar between mammals and frogs; Ca2+ apparently serves a critical function in the mechanism of GnRH action, while Na+ appears not to be involved. K+ can induce gonadotropin secretion, but it is not clear that it plays a direct role in the mediation of the action of GnRH.  相似文献   

15.
The involvement of protein kinase C in the signal transduction of gonadotropin-releasing hormone (GnRH) action was investigated with a GnRH superagonist, partial agonists, and antagonists in intact rat pituitary cells. Exposure of 32P-labeled cells to GnRH or to the superagonist [D-Nal(2)6]GnRH (200 times GnRH potency in vivo) induced the enhanced phosphorylation of 42-, 34-, 11-, and 10-kDa proteins and the dephosphorylation of a 15-kDa protein as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis/autoradiography. This effect was blocked in a dose-dependent manner by potent GnRH antagonists. At its maximally effective concentration of 10(-9) M, [D-Nal(2)6]GnRH induced an up to 2 times more pronounced phosphorylation of endogenous substrates than GnRH at 10(-7) M. This was in accord with its ability to cause an 8-fold increase in the translocation of protein kinase C to the particulate fraction vs. 3.4-fold for GnRH. This effect correlated with potency for a series of GnRH agonists ( [D-Nal(2)6]GnRH greater than GnRH greater than [Gly2]LH-RH) and was prevented by GnRH antagonists, as assessed by a novel phorbol ester receptor binding assay and by a standard kinase assay. Downregulation of protein kinase C by prolonged incubation of the pituitary cells with high concentrations of active phorbol esters abolished protein kinase C activity and also prevented the phosphorylation induced by GnRH, or [D-Nal(2)6]GnRH. The same effect was obtained by preincubating the cells with the protein kinase C inhibitor H-7. In this study we identify for the first time physiological substrates for protein kinase C in intact pituitary cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effects of thrombin on cytosolic calcium levels ([Ca2+]cyt), and on gonadotropin-releasing hormone (GnRH) release, were characterized in cultured GT1-7 neurons. GnRH release from GT1-7 neurons was pulsatile with an average pulse amplitude of 14.3+/-5.8 pg x min x ml(-1) and an average pulse duration of 21.3+/-4.2 min. The [Ca2+]cyt response to 0.005 to 0.2 U/ml thrombin was saturable and concentration dependent (EC50 = 0.0268 U/ml). Ethyleneglycotetraacetic acid (EGTA) chelation of extracellular Ca2+ resulted in an approximately 70% attenuation of thrombin-stimulated increase in [Ca2+]cyt. By use of a special superfusion system, a 5-min exposure to 0.1 U/ml thrombin significantly increased the amplitude (193.2+/-67.8 pg x min x ml(-1); P = 0.001) but not the duration (22.5+/-2.4 min; P = 0.8) of GnRH release. These results suggest that thrombin increases [Ca2+]cyt and GnRH release from GT1-7 neurons via specific membrane-bound receptors.  相似文献   

17.
The present study was undertaken to examine the effects of 12-0-tetradecanoyl-phorbol-13-acetate (TPA), one of the potent tumor promoting agents, on GH, TSH and PRL release by rat adenohypophyseal dispersed cells and fragments, using a superfusion technique. TPA (10(-6) to 10(-5) M) stimulated GH release from acutely dispersed rat adenohypophyseal cells. Neither TSH nor PRL was affected, but both were increased by TRH in a dose-dependent fashion (10(-9) to 10(-7) M). In fragments, TPA (10(-8) to 10(-6) M) elicited a dose-related release of GH. Exposure of the fragments to 10(-6) M TPA for 5 min promptly caused a 5-fold increase in GH release which continued for at least 40 min after stopping the stimulation. The addition of somatostatin (SRIF) (10(-7) M) decreased basal GH release and abolished GH release induced by 10(-6) M TPA. In contrast to GH, neither TSH nor PRL release was affected by TPA, but both were stimulated by TRH. These results indicate 1) that GH release is more sensitive to stimulation with TPA in normal rat anterior pituitaries in vitro than the release of TSH and PRL, and 2) that SRIF abolishes TPA-induced GH release.  相似文献   

18.
Continuously superfused rat anterior pituitary cells were used to study the effects of exogenous prostaglandins (PGs) and thromboxanes (TXs) on the secretion of prolactin (PRL). No change in hormone release was observed upon superfusion with TXB2 (10(-5)M) or the TX synthesis inhibitor, imidazole (1.5 mM). PGs A2, B2, D2, E1, E2, F1 alpha, F2 alpha, and endoperoxide analogs, U-44069 and U-46619, also had no effect on PRL secretion (all at 10(-5)M). In contrast 10(-5)M PGI2 was repeatedly found to stimulate PRL release to a level at least 125% above control, while producing no apparent change in the amount of hormone secreted in response to TRH. Somatostatin (SRIF), at a dose of 10(-6)M, maximally inhibited TRH-induced PRL output, but failed to alter the PRL response to PGI2. These studies indicate that PGI2 may have a direct effect on the anterior pituitary to modify PRL secretion.  相似文献   

19.
The dynamics of gonadotropin releasing hormone (GnRH) induced luteinizing hormone (LH) release was studied invitro by superfusion of cultured pituitary cells. Continuous exposure of the cells to GnRH resulted in desensitization of the gonadotroph responsiveness to further stimulation by the hormone. The refractory state was achieved within 4 hr of hormone introduction (10?7 M) and was accompanied by down-regulation of GnRH receptors (50%) assayed by equilibration with [125I]iodo-[D-Ala6]des-Gly10-GnRH N-ethylamide. The data indicate that GnRH can regulate the number of its own receptors, and that desensitization is accompanied by down-regulation.  相似文献   

20.
1. 3H-gamma-Aminobutyric acid (GABA) release elicited by a depolarizing K+ stimulus or by noradrenergic transmitter was examined in rat pineals in vitro. 2. The release of 3H-GABA was detectable at a 20 mM K+ concentration in medium and increased steadily up to 80 mM K+. 3. In a Ca2+-free medium 3H-GABA release elicited by 30 mM K+, but not that elicited by 50 mM K+, became blunted. 4. Norepinephrine (NE; 10(-6)-10(-4) M) stimulated 3H-GABA release from rat pineal explants in a dose-dependent manner. 5. The activity of 10(-5) M NE on pineal GABA release was suppressed by equimolecular amounts of prazosin or phentolamine (alpha 1- and alpha 1/alpha 2-adrenoceptor blockers, respectively) and was unaffected by propranolol (beta-adrenoceptor blocker). 6. The alpha 1-adrenoceptor agonist phenylephrine (10(-7)-10(-5) M) and the beta-adrenoceptor agonist isoproterenol (10(-5) M) mimicked the GABA releasing activity of NE, while 10(-7) M isoproterenol failed to affect it; the alpha 2-adrenoceptor agonist clonidine (10(-7)-10(-5) M) did not modify 3H-GABA release. 7. The addition of 10(-4) M GABA or of the GABA transaminase inhibitor gamma-acetylenic GABA or aminooxyacetic acid inhibited the melatonin content and/or release to the medium in rat pineal organotypic cultures. 8. GABA at concentrations of 10(-5) M or greater partially inhibited the NE-induced increase in melatonin production by pineal explants. 9. The depressant effect of GABA on melatonin production was inhibited by the GABA type A receptor antagonist bicuculline; bicuculline alone increased the pineal melatonin content. Baclofen, a GABA type B receptor agonist, did not affect the pineal melatonin content or release. 10. The decrease in serotonin (5-HT) content of rat pineal explants brought about by NE was not modified by GABA; GABA by itself increased 5-HT levels. 11. These results indicate that (a) GABA is released from rat pineals by a depolarizing stimulus of K+ through a mechanism which is partially Ca2+ dependent; (b) NE releases rat pineal GABA via interaction with alpha 1-adrenoceptors; (c) GABA inhibits melatonin production in vitro via interaction with GABA type A receptor sites; and (d) GABA's effect on NE-induced melatonin release does not correlate with the lack of effect on the NE-induced decrease in pineal 5-HT content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号