首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improving the sensitivity of bacterial bioreporters for heavy metals   总被引:2,自引:0,他引:2  
Whole-cell bacterial bioreporters represent a convenient testing method for quantifying the bioavailability of contaminants in environmental samples. Despite the fact that several bioreporters have been constructed for measuring heavy metals, their application to environmental samples has remained minimal. The major drawbacks of the available bioreporters include a lack of sensitivity and specificity. Here, we report an improvement in the limit of detection of bacterial bioreporters by interfering with the natural metal homeostasis system of the host bacterium. The limit of detection of a Pseudomonas putida KT2440-based Zn/Cd/Pb-biosensor was improved by a factor of up to 45 by disrupting four main efflux transporters for Zn/Cd/Pb and thereby causing the metals to accumulate in the cell. The specificity of the bioreporter could be modified by changing the sensor element. A Zn-specific bioreporter was achieved by using the promoter of the cadA1 gene from P. putida as a sensor element. The constructed transporter-deficient P. putida reporter strain detected Zn(2+) concentrations about 50 times lower than that possible with other available Zn-bioreporters. The achieved detection limits were significantly below the permitted limit values for Zn and Pb in water and in soil, allowing for reliable detection of heavy metals in the environment.  相似文献   

2.
Since the development of the first whole-cell living biosensor or bioreporter about 15 years ago, construction and testing of new genetically modified microorganisms for environmental sensing and reporting has proceeded at an ever increasing rate. One and a half decades appear as a reasonable time span for a new technology to reach the maturity needed for application and commercial success. It seems, however, that the research into cellular biosensors is still mostly in a proof-of-principle or demonstration phase and not close to extensive or commercial use outside of academia. In this review, we consider the motivations for bioreporter developments and discuss the suitability of extant bioreporters for the proposed applications to stimulate complementary research and to help researchers to develop realistic objectives. This includes the identification of some popular misconceptions about the qualities and shortcomings of bioreporters.  相似文献   

3.
Acinetobacter baylyi ADP1 was found to tolerate seawater and have a special ability of adhering to an oil–water interface of 10–80 µm emulsified mineral and crude oil droplets. These properties make ADP1 an ideal bacterial chassis for constructing bioreporters that are able to actively search and sense oil spill in water and soils. Acinetobacter baylyi bioreporter ADPWH_alk was developed and applied to the detection of alkanes and alkenes in water, seawater and soils. Bioreporter ADPWH_alk was able to detect a broad range of alkanes and alkenes with carbon chain length from C7 to C36. So far, ADPWH_alk is the only bioreporter that is able to detect alkane with carbon chain length greater than C18. This bioreporter responded to the alkanes in about 30 min and it was independent to the cell growth phase because of two point mutations in alkM promoter recognized by alkane regulatory protein ALKR. ADPWH_alk was applied to detect mineral oil, Brent, Chestnut and Sirri crude oils in water and seawater in the range 0.1–100 mg l?1, showing that the bioreporter oil detection was semi‐quantitative. This study demonstrates that ADPWH_alk is a rapid, sensitive and semi‐quantitative bioreporter that can be useful for environmental monitoring and assessment of oil spills in seawater and soils.  相似文献   

4.
Many recent advances in bioreporter technology focus on challenges related to bioengineering, yet in many applications implementation of optical signal measurement is equally susceptible to improvement. For bioluminescent bioreporters, one area of effort lies in the development of semiconductor chip-based detector modules; this holds great promise for ultra-compact and field-deployable instrumentation, but has not yet had a palpable impact on improved detection limits. Regarding lower detection limits, single-molecule detection techniques have seen their first application to bioreporters, and preliminary results serve as an indication of future promise. Another technique applicable to fluorescent bioreporters is fluorescence flow cytometry, which is rapid, suitable for high-throughput screening, and lends itself to increased analytical specificity through simple algorithmic approaches to data treatment.  相似文献   

5.
Long-term preservation of bioreporter bacteria is essential for the functioning of cell-based detection devices, particularly when field application, e.g., in developing countries, is intended. We varied the culture conditions (i.e., the NaCl content of the medium), storage protection media, and preservation methods (vacuum drying vs. encapsulation gels remaining hydrated) in order to achieve optimal preservation of the activity of As (III) bioreporter bacteria during up to 12 weeks of storage at 4°C. The presence of 2% sodium chloride during the cultivation improved the response intensity of some bioreporters upon reconstitution, particularly of those that had been dried and stored in the presence of sucrose or trehalose and 10% gelatin. The most satisfying, stable response to arsenite after 12 weeks storage was obtained with cells that had been dried in the presence of 34% trehalose and 1.5% polyvinylpyrrolidone. Amendments of peptone, meat extract, sodium ascorbate, and sodium glutamate preserved the bioreporter activity only for the first 2 weeks, but not during long-term storage. Only short-term stability was also achieved when bioreporter bacteria were encapsulated in gels remaining hydrated during storage.  相似文献   

6.
Microbial bioreporters play an important role in environmental monitoring and ecotoxicology. Microorganisms that are genetically modified with reporter genes can be used in various formats to determine the bioavailability of chemicals and their effect on living organisms. Cyanobacteria are abundant in the photosynthetic biosphere and have considerable potential with regards to broadening bioreporter applications. Two recent studies described novel cyanobacterial reporters for the detection of environmental toxicants and iron availability.  相似文献   

7.
Whole‐cell bioreporters are living organisms and thus using them for detecting environmental contaminants would reflect biological effects of these pollutants. However, bioreporters are not widely used in field studies. Many of the bioreporter field protocols are suitable for liquid samples or include pipetting steps, which is a demanding task outside the laboratory. We present a bioreporter protocol without pipetting or sample type requirements. The protocol utilizes polyester swabs, commonly used in cleanroom technology. As an example contaminant, we used tetracycline and generated test samples with known concentrations up to the maximum tetracycline residue limit of milk set by the European Union (EU) regulation. The matrices of the test samples were Milli‐Q water, milk and soil. The swabs were first dipped in the bioreporter cell cultures and then to test samples and luminescence was measured after incubation. The standard deviation of measurements from ten replicate swabs was in the same range as commonly in pipetting protocols (4–19%). The test samples with lowest tetracycline concentration (5 ng mL?1) were distinguished from the control samples (0 ng mL?1 tetracycline). Our results show that swabs can be used together with luminescent whole cell bioreporters, making it possible to conduct the measurements in field conditions.  相似文献   

8.
Genetically engineered organisms expressing spectroscopically active reporter molecules in response to chemical effectors display great potential as living transducers in sensing applications. Green fluorescent protein (gfp gene) bioreporters have distinct advantages over luminescent couterparts (lux gene), including applicability at the single-cell level, but are typically less sensitive. Here we describe a gfp-bearing bioreporter that is sensitive to naphthalene (a poorly water soluble pollutant behaving like a large class of hydrophobic compounds), is suitable for use in chemical assays and bioavailability studies, and has detection limits comparable to lux-bearing bioreporters for higher efficiency detection strategies. Simultaneously, we find that the exploitation of population response data from single-cell analysis is not an algorithmic conduit to enhanced signal detection and hence lower effector detection limits, as normally assumed. The assay reported functions to equal effect with or without biocide.  相似文献   

9.
Combining bacterial bioreporters with microfluidics systems holds great promise for in-field detection of chemical or toxicity targets. Recently we showed how Escherichia coli cells engineered to produce a variant of green fluorescent protein after contact to arsenite and arsenate can be encapsulated in agarose beads and incorporated into a microfluidic chip to create a device for in-field detection of arsenic, a contaminant of well known toxicity and carcinogenicity in potable water both in industrialized and developing countries. Cell-beads stored in the microfluidics chip at -20°C retained inducibility up to one month and we were able to reproducibly discriminate concentrations of 10 and 50 μg arsenite per L (the drinking water standards for European countries and the United States, and for the developing countries, respectively) from the blank in less than 200 minutes. We discuss here the reasons for decreasing bioreporter signal development upon increased storage of cell beads but also show how this decrease can be reduced, leading to a faster detection and a longer lifetime of the device.  相似文献   

10.
11.
We developed a biocompatible and highly efficient approach for functionalization of bacterial cell wall with magnetic nanoparticles (MNPs). Three Acinetobacter baylyi ADP1 chromosomally based bioreporters, which were genetically engineered to express bioluminescence in response to salicylate, toluene/xylene and alkanes, were functionalized with 18 ± 3 nm iron oxide MNPs to acquire magnetic function. The efficiency of MNPs functionalization of Acinetobacter bioreporters was 99.96 ± 0.01%. The MNPs‐functionalized bioreporters (MFBs) can be remotely controlled and collected by an external magnetic field. The MFBs were all viable and functional as good as the native cells in terms of sensitivity, specificity and quantitative response. More importantly, we demonstrated that salicylate sensing MFBs can be applied to sediments and garden soils, and semi‐quantitatively detect salicylate in those samples by discriminably recovering MFBs with a permanent magnet. The magnetically functionalized cells are especially useful to complex environments in which the indigenous cells, particles and impurities may interfere with direct measurement of bioreporter cells and conventional filtration is not applicable to distinguish and harvest bioreporters. The approach described here provides a powerful tool to remotely control and selectively manipulate MNPs‐functionalized cells in water and soils. It would have a potential in the application of environmental microbiology, such as bioremediation enhancement and environment monitoring and assessment.  相似文献   

12.
Microbial bioreporters offer excellent potentialities for the detection of the bioavailable portion of pollutants in contaminated environments, which currently cannot be easily measured. This paper describes the construction and evaluation of two microbial bioreporters designed to detect the bioavailable chromate in contaminated water samples. The developed bioreporters are based on the expression of gfp under the control of the chr promoter and the chrB regulator gene of TnOtChr determinant from Ochrobactrum tritici 5bvl1. pCHRGFP1 Escherichia coli reporter proved to be specific and sensitive, with minimum detectable concentration of 100 nM chromate and did not react with other heavy metals or chemical compounds analysed. In order to have a bioreporter able to be used under different environmental toxics, O. tritici type strain was also engineered to fluoresce in the presence of micromolar levels of chromate and showed to be as specific as the first reporter. Their applicability on environmental samples (spiked Portuguese river water) was also demonstrated using either freshly grown or cryo-preserved cells, a treatment which constitutes an operational advantage. These reporter strains can provide on-demand usability in the field and in a near future may become a powerful tool in identification of chromate-contaminated sites.  相似文献   

13.
A simple solid phase assay for the detection of 2,4-D in soil   总被引:1,自引:0,他引:1  
Contaminated soils are usually characterized using chemical analyses. However, these do not assess the bioavailability of pollutants, a factor which may be important in estimating the risks associated with contamination. Thus there is a need to support chemical analyses with information on biological effects to determine the potential risks a pollutant may pose in the soil. Although bacterial bioreporters have been used to detect the presence of contaminants in soils, in general these studies have been carried out in slurries or soil extracts rather than soil itself. The following study presents the development of a simple solid-phase bioassay for the direct detection of the herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) in soil using Ralstonia eutropha JMP 134-32, a luxCDABE-based 2,4-D whole cell bioreporter. The bioreporter was spotted onto glass microfibre filter discs that allowed its retrieval and analysis after exposure to 2,4-D amended soils. These disc-fixed cells responded in a concentration dependent manner to 2,4-D in solution (0-25 mg/L) and in spiked soil (0-50 mg/kg). The influence of environmental factors on bioavailability was demonstrated in soil with a low moisture content which prevented 2,4-D-induced bioluminescence but which did not affect bioluminescence from already induced cells. This rapid and low cost bioassay provides a proof of concept demonstrating that retrievable disk-fixed cells can be induced in soil, thus providing a measure of solid-phase bioavailability. This method overcomes some of the limitations associated with the inoculation and monitoring of bioreporters directly in soil. Additionally, this simple system should be amenable to use with other bioreporters.  相似文献   

14.
The classical concept of arsenic transfer into plants through arsenate uptake via phosphate transporters, reduction to arsenite, complexation and compartmentation within vacuoles is challenged by recent identification of bidirectional transporters for arsenite and their potential role in plant As status regulation. Soil-based studies with chemical analysis of soil solution require root mat formation amplifying root effects on their surroundings and additionally denying investigations along individual roots differing in age and function. We tried to overcome these shortcomings by using bioreporter bacteria to visualise the spatial distribution of inorganic arsenic along roots and to characterize inorganic arsenic gradients in the rhizosphere concurrent with root age and branching. Therefore we developed an agar-based carrier element ensuring intimate contact between bioreporters and root-soil system and enabling fast and easy reporter output analysis. We show that inorganic arsenic distribution is related to root development with the highest bioreporter signal induction around lateral roots, which are known to show the highest expression of transporters responsible for bidirectional arsenite flux. Since there is so far no evidence for an arsenate efflux mechanism this is a strong indicator that we observed rather arsenite than arsenate efflux. No signal was detected along the distal region of young adventitious roots, i.e. the region of extension growth and root hair formation. The novel bioreporter assay may thus complement conventional measurements by providing information on the spatial distribution of inorganic arsenic on mm to cm-scale.  相似文献   

15.
Ecotoxicological assessment relies to a large extent on the information gathered with surrogate species and the extrapolation of test results across species and different levels of biological organisation. Bacteria have long been used as a bioreporter for genotoxic testing and general toxicity. Today, it is clear that bacteria have the potential for screening of other toxicological endpoints. Escherichia coli has been studied for years; in-depth knowledge of its biochemistry and genetics makes it the most proficient prokaryote for the development of new toxicological assays. Several assays have been designed with E. coli as a bioreporter, and the recent trend to develop novel, better advanced reporters makes bioreporter development one of the most dynamic in ecotoxicology. Based on in-depth knowledge of E. coli, new assays are being developed or existing ones redesigned, thanks to the availability of new reporter genes and new or improved substrates. The technological evolution towards easier and more sensitive detection of different gene products is another important aspect. Often, this requires the redesign of the bacterium to make it compatible with the novel measuring tests. Recent advances in surface chemistry and nanoelectronics open the perspective for advanced reporter based on novel measuring platforms and with an online potential. In this article, we will discuss the use of E. coli-based bioreporters in ecotoxicological applications as well as some innovative sensors awaited for the future.  相似文献   

16.
Whole-cell bioreporters are genetically modified micro-organisms designed to sense bioavailable forms of nutrients or toxic compounds in aquatic systems. As they represent the most promising cost-efficient tools available for such purpose, engineering and use of bioreporters is rapidly growing in association with wide applicability. Bioreporters are urgently needed to determine phytoplankton iron (Fe) limitation, which has been reported in up to 30% of the ocean, with consequences affecting Earth's global carbon cycle and climate. This study presents a critical evaluation and optimization of the only Cyanobacteria bioreporter available to sense Fe limitation in marine systems (Synechococcus sp. PCC7002). The nonmonotonic biphasic dose–response curve between the bioreporters’ signal and Fe bioavailability impairs an appropriate data interpretation, highlighting the need for new carefully designed bioreporters. Here, limitations under low Fe concentrations were related to cellular energy stress, nonlinear expression of the targeted promoter and siderophore expression. Furthermore, we provide critical standard criteria for the development of new Fe bioreporters. Finally, based on gene expression data under a range of marine Fe concentrations, we propose novel sensor genes for the development of new Cyanobacteria Fe bioreporters for distinct marine regions.  相似文献   

17.
Whole-cell bacterial bioreporters await miniaturized photon counting modules with high sensitivity and robust compatible hardware to fulfill their promise of versatile, on-site biosensor functionality. In this study, we explore the photon counting readout properties of the silicon photomultiplier (SPM) with a thermoelectric cooler and the possibilities of detecting low-level bioluminescent signals. Detection performance was evaluated through a simulated LED light source and the bioluminescence produced by the genetically engineered Pseudomonas fluorescens bacterial bioreporter 5RL. Compared with the conventional photomultiplier tube (PMT), the results revealed that the cooled SPM exhibits a wider linear response to inducible substrate concentrations (salicylate) ranging from 250 to 5000 ppb. Although cooling of the SPM lowered dark count rates and improved the minimum detectable signal, and the application of a digital filter enhanced the signal-to-noise ratio, the detection of very low light signals is still limited and remains a challenge in the design of compact photon counting systems.  相似文献   

18.
Complex chemistry and biological uptake pathways render iron bioavailability particularly difficult to assess in natural waters. Bioreporters are genetically modified organisms that are useful tools to directly sense the bioavailable fractions of solutes. In this study, three cyanobacterial bioreporters derived from Synechococcus PCC 7942 were examined for the purpose of optimizing the response to bioavailable Fe. Each bioreporter uses a Fe‐regulated promoter (isiAB, irpA and mapA), modulated by distinct mechanisms under Fe deficiency, fused to a bacterial luciferase (luxAB). In order to provide a better understanding of the way natural conditions may affect the ability of the bioreporter to sense iron bioavailability, the effect of relevant environmental parameters on the response to iron was assessed. Optimal conditions (and limits of applicability) for the use of these bioreporters on the field were determined to be: a 12 h (12–24 h) exposure time, temperature of 15°C (15°C–22°C), photon flux density of 100 μmol photons·m?2·s?1 (37–200 lmol photons·m?2·s?1), initial biomass of 0.6–0.8 lg chlorophyll a (chl a)·L?1 (0.3–1.5 lg chl a·L?1) or approximately 105 bioreporter cells·mL?1, high phosphate (10 lM), and low micronutrients (absent). The measured luminescence was optimal with an exogenous addition of 60 lM aqueous decanal substrate allowing a 5 min reaction time in the dark before analysis. This study provides important considerations relating to the optimization in the use of bioreporters under field conditions that can be used for method development of other algal and cyanobacterial bioreporters in aquatic systems.  相似文献   

19.
The focus of this research effort was to develop an autonomous, inducible, lux-based bioluminescent bioreporter for the real-time detection of dichloromethane. Dichloromethane (DCM), also known as methylene chloride, is a volatile organic compound and one of the most commonly used halogenated solvents in the U.S., with applications ranging from grease and paint stripping to aerosol propellants and pharmaceutical tablet coatings. Predictably, it is released into the environment where it contaminates air and water resources. Due to its classification as a probable human carcinogen, hepatic toxin, and central nervous system effector, DCM must be carefully monitored and controlled. Methods for DCM detection usually rely on analytical techniques such as solid-phase microextraction (SPME) and capillary gas chromatography or photoacoustic environmental monitors, all of which require trained personnel and/or expensive equipment. To complement conventional monitoring practices, we have created a bioreporter for the self-directed detection of DCM by taking advantage of the evolutionary adaptation of bacteria to recognize and metabolize chemical agents. This bioreporter, Methylobacterium extorquens DCM lux , was engineered to contain a bioluminescent luxCDABE gene cassette derived from Photorhabdus luminescens fused downstream to the dcm dehalogenase operon, which causes the organism to generate visible light when exposed to DCM. We have demonstrated detection limits down to 1.0 ppm under vapor phase exposures and 0.1 ppm under liquid phase exposures with response times of 2.3 and 1.3 h, respectively, and with specificity towards DCM under relevant industrial environmental monitoring conditions.  相似文献   

20.
A two-component bacteriophage-based bioluminescent reporter system was developed for the detection of Escherichia coli in environmental samples. The bioreporter system consists of a luxI integrated lambda bacteriophage and a lux-based bioluminescent reporter cell that responds to the infection event through acyl-homoserine lactone (AHL) mediated quorum sensing and bioluminescent signal stimulation. This work addresses the ability of the bioreporter system to detect and quantify the target pathogen in response to two analytical challenges: (1) detection of target cells in the presence of lactonase-producing non-target organisms that could interrupt AHL signal transduction, and (2) detection of sub-lethally injured or physiologically stressed target cells. The bioreporter system was able to autonomously respond to lambda phage infection events with a target host E. coli at 1x10(8) cfu/mL against a background of lactonase-producing Arthrobacter globiformis at cell densities ranging from 1 to 1x10(8) cfu/mL. E. coli target cells stressed by carbon-limitation for 2 weeks (i.e., starvation) or exposure to iodine for 1 week at 2 and 20 ppm (i.e., disinfection) yield a reduced, but detectable, biosensor response. Conversely, short-term iodine exposure produces a significant increase in bioreporter response within the first 24 h. The signal response and limit of detection for the two-component bioreporter system were affected by the physiology and environment of the target, but the bioreporter maintained target specificity demonstrating its potential application for remote sensing of pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号