首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bradykinin (BK) and its analogs (1 nM-100 M) stimulated phosphoinositide (PI) turnover in murine fibrosarcoma (HSDM1C1) cells in a concentration-dependent manner. The relative potencies (EC50) were: BK=48±4 nM; Lys-BK=39±3 nM; Met-Lys-BK=158±33 nM; Des-Arg9-BK=2617±598 nM (means±SEM, n=3–14). All these analogs were full agonists and they produced up to 5.4±0.4-fold stimulation of PI turnover at the highest concentration (10–100 M) of the peptides. In contrast, the analogs [D-Arg0-HYP3-Thienyl5,8-D-Phe7]-BK (HYP3-antagonist), [D-Arg0-HYP3-Thienyl,5,8-D-Phe7]-BK (Thienyl antagonist) and Des-Arg9-Leu8-BK were inactive, as agonists, at 0.1 nM-1 M in this system. These data suggested that BK-induced PI turnover in these cells was mediated via B2-type of BK receptors. This was confirmed further by the fact that both the B2-selective Hyp3- and Thienyl-antagonists inhibited BK-induced PI turnover with KBS of 369±51 nM and 368±118 nM respectively while the B1-selective antagonist, Des-Arg9-Leu8-BK, was inactive at 1 M. [3H]BK receptor binding studies revealed two binding sites, one with high affinity (Kd=0.24±0.06 nM; Bmax=1.4±0.4 pmol/g tissue) and the other with low affinity (Kd=18.5±0.95 nM; Bmax=25.1±0.52 pmol/g tissue), on HSDM1C1 cell homogenates. The rank order of affinity of BK analogs at inhibiting specific [3H]BK binding was similar to that found for PI turnover. Taken together, these data have provided evidence for the presence of two B2-type BK binding sites on the HSDM1C1 cells. Based on the affinity parameters, the low-affinity component of [3H]BK binding in HSDM1C1 cells appears to be coupled to the phospholipase C-induced PI turnover mechanism. The high-affinity component has been previously shown to mediate the production of prostaglandins by activation of phospholipase A2.  相似文献   

2.
3.
The possible protection provided by enhancement of the cAMP signal in the process of lipopolysaccharide (LPS)-induced endothelial cell death has been addressed, with special emphasis on the endoplasmic initiation of caspase-12-mediated apoptosis. Human umbilical vein endothelial cells were challenged with LPS to reduce viability after 12 h to less than 20% that of the control. Cell death was preceded by ultrastructural disintegration at the endoplasmic reticulum, PERK-phosphorylation, degradation of caspase-12-like protein and cleavage of caspase 9, resulting in apoptosis through the activation of caspase 3. Treatment with a cell-permeable cAMP analogue led to a dose-dependent reduction of cell death over time, mitigated endoplasmic reticulum disturbances, reduced phosphorylation of PERK, and the degradation of caspases 12, 9 and 3. The selective inhibition of caspase 9 completely supplanted the anti-apoptotic effects obtained by cAMP, while being without any influence on caspase 12 degradation. The data suggest that cAMP positively modulates early endoplasmic alterations and caspase activation in LPS-induced apoptosis.This study was supported in part by a grant from the Herbert Reeck Stiftung.  相似文献   

4.
人血管内皮细胞中腺苷代谢的定量研究   总被引:4,自引:0,他引:4  
目的:通过对人脐静脉内皮细胞腺苷分泌进行定性及定量研究,了解人类血管内皮细胞的腺苷代谢及机制.方法:收集并测定不同干预下细胞柱流出液中分离的人脐静脉内皮细胞分泌的腺苷量.结果:在无干预、抑制腺苷激酶及去氨酶、抑制细胞膜腺苷转运情况下,人脐静脉内皮细胞腺苷分泌率分别为13.5±7.1 pmol·min-1·mg-1、32.5±14.2 pmol·min-1·mg-1和20.8±15.7 pmol·min-1·mg-1.结论:人类血管内皮细胞内腺苷合成高于胞外,而细胞膜腺苷转运被抑制后的腺苷分泌率反而高于生理状态下分泌率,则表明腺苷在胞内分解代谢非常迅速,使部分腺苷反由胞外扩散入胞内.  相似文献   

5.
Long-term culture of human endothelial cells   总被引:9,自引:0,他引:9  
Summary Human umbilical vein endothelial cells can be grown in vitro for 28 passages (CPDL 58) in Medium 199 supplemented with newborn bovine serum and a partially purified growth factor derived from bovine brain. Newborn bovine serum is superior to fetal bovine serum for the proliferation of human umbilical vein endothelial cells seeded at low density in the presence of the growth factor. The endothelial cells, which can be passaged every 7 to 10 d at a 1-to-5 split ratio, retain their morphological and biochemical characteristics. The proliferation of cells seeded at low density (103/cm2) is proportional to the concentration of the growth factor present in the medium. The growth factor, which has an isoelectric point between 5.0 and 5.5, can support cell proliferation at reduced serum concentrations; half-maximal growth is achieved in medium containing the growth factor and 3% serum. The brain endothelial cell growth factor does not stimulate DNA synthesis significantly in cultures of human skin fibroblasts. This research was supported by grants from the U.S. Public Health Service (AG 01732, HL 16387, and HL 07080), the Cystic Fibrosis Foundation, and the New York and American Heart Associations. Victor B. Hatcher is an Established Fellow of the New York Heart Association and a recipient of the Ann Weinberg Cystic Fibrosis Research Scholarship Award.  相似文献   

6.
Cyclic AMP (cAMP) is the archetypal smooth muscle relaxant, mediating the effects of many hormones and drugs. However, recently PGI(2) , acting via cAMP/PKA, was found to increase contraction-associated protein expression in myometrial cells and to promote oxytocin-driven myometrial contractility. Cyclo-oxygenase-2 (COX-2) is the rate-limiting enzyme in prostaglandin synthesis, which is critical to the onset and progression of human labour. We have investigated the impact of cAMP on myometrial COX-2 expression, synthesis and activity. Three cAMP agonists (8-bromo-cAMP, forskolin and rolipram) increased COX-2 mRNA expression and further studies confirmed that this was associated with COX-2 protein synthesis and activity (increased PGE(2) and PGI(2) in culture supernatant) in primary cultures of human myometrial cells. These effects were neither reproduced by specific agonists nor inhibited by specific inhibitors of known cAMP-effectors (PKA, EPAC and AMPK). We then used shRNA to knockdown the same effectors and another recently described cAMP-effector PDZ-GEF(1-2) , without changing the response to cAMP. We found that MAPK activation mediated the cAMP effects on COX-2 expression and that PGE(2) acts through EP-2 to activate MAPK and increase COX-2. These data provide further evidence in support of a dual role for cAMP in the regulation of myometrial function.  相似文献   

7.
Growth factor responses of human arterial endothelial cells in vitro   总被引:2,自引:0,他引:2  
Summary Human arterial endothelial cells were cultured in vitro for up to 40 cumulative population doublings. Culture conditions similar to those required for long-term propagation of human umbilical vein endothelial cells were employed. These included fibronectin-coated culture vessels, 5 to 20% fetal bovine serum, endothelial cell growth factor, and heparin. Thoracic aorta endothelial cells were larger than iliac artery endothelial cells. Both cell types stained positively for Factor VIII antigen by immunofluorescence. A decrease in confluent density as a function of population doubling level was correlated with the appearance of large, senescent cells in the cultures. Serum growth factors to which the arterial endothelial cells responded included insulin, transferrin, epidermal growth factor, thrombin, and somatomedins. The effect of thrombin did not require the availabilty of the active site of the protease. The effect of the somatomedins was only seen in the presence of heparin. Neither platelet-derived growth factor nor hydrocortisone induced arteiral endothelial cell proliferation. These growth factor responses were also observed on the part of human umbilical vein endothelial cells. This work was supported in part by Public Health Service grants HL01030, HL01734, and AG00599.  相似文献   

8.
Sumamry A method to isolate and maintain microvascular endothelial cells from the cutaneous vessels of adult human skin in long-term culture has been developed. Endothelial cells lining the microvessels of the papillary dermis are released from surrounding tissue during a brief trypsin incubation (0.3% trypsin, 1% EDTA). Cells are plated onto a fibronectin substrate and maintained in Leibovitz (L15) culture medium containing pooled human serum (50%) and antibiotics. Proliferation is dependent upon the presence of several additional growth factors, cholera enterotoxin (1×10−9 M), isobutyl methylxanthine (3.3×10−5 M), and medium conditioned by explant culture of the mouse EHS sarcoma. Using this supplemented medium, cells proliferate readily and can be cultivated serially for more than 6 passages (3 months in vitro). These cells retain their characteristic endothelial cell morphology, stain positively for Factor VIII antigen, and contain Weibel-Palade bodies. This research was supported by grant AG 01312 from the U.S. Public Health Service, Washington, D.C.  相似文献   

9.
10.
The effect of alkaline stress, or an increase in extracellular pH (pHext), on cell viability is poorly defined. Human pulmonary artery endothelial cells (HPAEC) were subjected to alkaline stress using different methods of increasing pHext. Viability and mode of cell death following alkaline stress were determined by assessing nuclear morphology, ultrastructural features, and caspase-3 activity. Incubation of monolayers in media set to different pHext values (7.4–8.4) for 24-h induced morphological changes suggesting apoptosis (35–45% apoptotic cells) following severe alkaline stress. The magnitude of apoptosis was related to the severity of alkaline stress. These findings were confirmed with an assessment of ultrastructural changes and caspase-3 activation. While there was no difference in the intracellular calcium level ([Ca2+]i) in monolayers set to pHext 7.4 versus 8.4 following the first hour of alkaline stress, blockade of calcium uptake with the chelator, EGTA, potentiated the magnitude of apoptosis under these conditions. Potentiation of apoptosis was reduced by calcium supplementation of the media. Finally, alkaline stress was associated with an increase in intracellular pH. This is the first report of apoptosis following alkaline stress in endothelial cells in the absence of other cell death stimuli.  相似文献   

11.
In the vascular endothelium of human beings, telomere length is negatively related while the frequency of aneuploidy is positively related to donor age. Both in culture and in vivo the frequency of aneuploidy increases as telomere length is shortened. In this study we explored the relation between telomere length and aneuploidy in cultured human umbilical vein endothelial cells (HUVEC) by: (a) karyotype analysis and fluorescent in situ hybridization (FISH), (b) measurement of the terminal restriction fragments (TRF), and (c) assessment of replicative senescence by the expression of beta-galactosidase. Of 8 HUVEC strains, 7 cell strains lost chromosome 13, as shown by metaphase analysis and FISH of interphase cells. Five strains gained chromosome 11. In addition, five HUVEC strains became hypotetraploid shortly after the loss of chromosome 13. The loss of chromosome 13 was observed as early as PD 20, when mean TRF length was greater than 9 kb and the percentage of cells positive for beta-galactosidase was relatively low. The almost uniform loss of chromosome 13 suggests that this unique type of aneuploidy of HUVEC is the result of a progressive expression of clones with survival advantage.  相似文献   

12.
Proper bone remodeling requires an active process of angiogenesis which in turn supplies the necessary growth factors and stem cells. This tissue cooperation suggests a cross‐talk between osteoblasts and endothelial cells. This work aims to identify the role of paracrine communication through vascular endothelial growth factor (VEGF) in co‐culture between osteoblastic and endothelial cells. Through a well defined direct contact co‐culture model between human osteoprogenitors (HOPs) and human umbilical vein endothelial cells (HUVECs), we observed that HUVECs were able to migrate along HOPs, inducing the formation of specific tubular‐like structures. VEGF165 gene expression was detected in the HOPs, was up‐regulated in the co‐cultured HOPs and both Flt‐1 and KDR gene expression increased in co‐cultured HUVECs. However, the cell rearrangement observed in co‐culture was promoted by a combination of soluble chemoattractive factors and not by VEGF165 alone. Despite having no observable effect on endothelial cell tubular‐like formation, VEGF appeared to have a crucial role in osteoblastic differentiation since the inhibition of its receptors reduced the co‐culture‐stimulated osteoblastic phenotype. This co‐culture system appears to enhance both primary angiogenesis events and osteoblastic differentiation, thus allowing for the development of new strategies in vascularized bone tissue engineering. J. Cell. Biochem. 106: 390–398, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
The blood–brain barrier (BBB) of the central nervous system (CNS) consists of a unique subset of endothelial cells that possess tight junctions which form a relatively impervious physical barrier to a large variety of blood components. Until recently, there have been no good in vitro models for studying the human BBB without the co-culture of feeder cells. The hCMEC/D3 cell line is the first stable, well-differentiated human brain endothelial cell line that grows independently in culture with characteristics that closely resemble those of resident human brain endothelial cells. As our previously published findings demonstrated the importance of adenosine receptor (AR) signaling for lymphocyte entry into the CNS, we wanted to determine if human brain endothelial cells possess the capacity to generate and respond to extracellular adenosine. Utilizing the hCMEC/D3 cell line, we determined that these cells express CD73, the cell surface enzyme that converts extracellular AMP to adenosine. When grown under normal conditions, these cells also express the A1, A2A, and A2B AR subtypes. Additionally, hCMEC/D3 cells are responsive to extracellular AR signaling, as cAMP levels increase following the addition of the broad spectrum AR agonist 5′-N-ethylcarboxamidoadenosine (NECA). Overall, these results indicate that human brain endothelial cells, and most likely the human BBB, have the capacity to synthesize and respond to extracellular adenosine.  相似文献   

14.
Summary Human umbilical vein endothelial cells (HUV-EC) grew rapidly in vitro in medium supplemented with epidermal growth factor, fetal bovine serum (FBS) and human diploid fibroblast-conditioned medium. The effect of FBS could be replaced partially by bovine serum albumin, cholesterol, and vitamin E, and completely by further addition of serum dialysate or refeeding every other day. Among these components, fibroblast-conditioned medium is essential for HUV-EC growth. The HUV-EC were cultured serially for over 50 population doublings in the 10% FBS containing fibroblast-conditioned medium and for over 40 population doublings in the serum-free medium. Mitogenic factor(s) present in the medium conditioned by fibroblasts may be related to endothelial cell growth factor and play an important role angiogenesis and regeneration of vascular endothelium in vitro.  相似文献   

15.
Vascular endothelial cell growth factor (VEGF) is an endothelial cell-specific angiogenic and permeability-inducing factor that has been implicated in the pathogenesis of diabetic retinopathy. The objectives of this study are to compare VEGF and VEGF receptor expression between retinal and brain-derived endothelial cells cultured in 5 or 30 mM glucose for 5 days. Our results show that expression of cell-surface VEGF receptors, assessed by flow cytometry, is higher in retinal-derived endothelial cells. RT-PCR results show that both retinal and brain-derived endothelial cells express comparable levels and types of VEGF. Exposure to 30 mM glucose for 5 days did not alter levels of VEGF or VEGF receptors. The higher level of VEGF receptor expression in retinal endothelial cells suggests that the retinal microcirculation may be more sensitive to the effects of VEGF and this may contribute to the pathogenesis of diabetic retinopathy.  相似文献   

16.
Copper ions stimulate proliferation of human umbilical artery and vein endothelial cells but not human dermal fibroblasts or arterial smooth muscle cells. Incubation of human umbilical vein endothelial cells for 48 h with 500 μM CuSO4 in a serum-free medium in the absence of exogenous growth factors results in a twofold increase in cell number, similar to the cell number increase induced by 20 ng/ml of basic fibroblast growth factor under the same conditions. Copper-induced proliferation of endothelial cells is not inhibited by 10% fetal bovine serum or by the presence of antibodies against a variety of angiogenic, growth, and chemotactic factors including angiogenin, fibroblast growth factors, epidermal growth factor, platelet-derived growth factor, tumor necrosis factor-α, transforming growth factor-β, macrophage/monocyte chemotactic and activating factor, and macrophage inflammatory protein-1α. Moreover, despite the previous observations that copper increased total specific binding of 125I-angiogenin to endothelial cells, binding to the 170 kDa receptor is not changed; hence, the mitogenic activity of angiogenin is not altered by copper. Copper-induced proliferation, along with early reports that copper induces migration of endothelial cells, may suggest a possible mechanism for the involvement of copper in the process of angiogenesis. J. Cell. Biochem. 69:326–335, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
《Cell》2022,185(20):3753-3769.e18
  1. Download : Download high-res image (311KB)
  2. Download : Download full-size image
  相似文献   

18.
The successful use of tissue-engineered transplants is hampered by the need for vascularization. Recent advances have made possible the using of stem cells as cell sources for therapeutic angiogenesis, including the vascularization of engineered tissue grafts. The goal of this study was to examine the endothelial potential of human umbilical cord-derived stem (UCDS) cells. UCDS cells were initially characterized and differentiated in an endothelial differentiation medium containing VEGF and bFGF. Differentiation into endothelial cells was determined by acetylated low-density lipoprotein incorporation and expression of endothelial-specific proteins, such as PECAM and CD34. In vivo, the transplanted UCDS cells were sprouting from local injection and differentiated into endothelial cells in a hindlimb ischemia mouse model. These findings indicate the presence of a cell population within the human umbilical cord that exhibits characteristics of endothelial progenitor cells. Therefore, human umbilical cord might represent a source of stem cells useful for therapeutic angiogenesis and re-endothelialization of engineered tissue grafts.  相似文献   

19.
Matrix metalloproteinase-9 (MMP9) plays an important role during angiogenesis. It is an inducible enzyme which is known to be secreted from human endothelial cells in response to phorbol myristate acetate (PMA), but thought not to be constitutively expressed. We examined the secretion of MMP9 by primary culture (P0), passage 1 (P1) and passage 2 (P2) human umbilical vein endothelial cells (HUVE). Whereas there was no detectable MMP9 in P2 cells under basal conditions, P0 HUVE secreted MMP9, as detected by zymography and ELISA. RT-PCR and cycloheximide inhibition studies confirmed that MMP was synthesized by P0 HUVE. MMP9 secretion was passage-dependent, decreasing rapidly as the cells were passaged in culture and was not detected at P2. The decrease was largely due to the population doubling of cells as they are cultured. This is the first report to show that cultured HUVE constitutively express MMP9 and that this secretion is restricted to very early-passage cells. These findings may be relevant to the angiogenic potential of human endothelial cells as they age.  相似文献   

20.
Iron is suspected to be involved in the induction and/or progression of various human tumors. The present study was designed to investigate the effects of iron on endothelial cells, keeping in mind that the homeostasis of microvessels plays a critical role in neo-angiogenesis. Applying a model of human dermal microvascular endothelial cell terminal differentiation and death induced by serum deprivation, we found that iron salts (iron chloride and ferric nitrilotriacetate) provided a survival advantage to endothelial cells. Using immunohistochemistry and Western Blot analysis, we found that the extended cellular life span induced by iron was paralleled by an increase of Bcl-2 protein expression. Taken together, these observations suggest that iron may give a survival advantage to endothelial cells and represent a novel mechanism through which iron may contribute to tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号