首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A potential cellular pathway for photosynthate transfer between the crease phloem and the starchy endosperm of the developing wheat grain has been delineated using fluorescent dyes. Membrane permeable and impermeable dyes have been introduced into the grain through the crease phloem, the endosperm cavity or the dorsal surface of the starchy endosperm. The movement of the symplastic tracer 5-(6)-6-carboxyfluorescein (CF) derived from 5-(6)-6-carboxyfluorescein diacetate (CFDA), from either direction between the crease phloem and the endosperm cavity, indicated that the symplastic pathway was operative from the crease phloem to the nucellar projection. Furthermore, the inward movement of apoplastic tracer trisodium, 3-hydroxy-5,8,10-pyrentrisulphonate (PTS) from the endosperm cavity and that of CF following plasmolysis showed that there was a high resistance to solute transfer within the apoplast of the pigment strand. All dyes entered the modified aleurone and adjacent sub-aleurone bordering the endosperm cavity. Subsequent movement of the symplastic tracers CF and sulphorhodamine G (SRG) into and through the endosperm was rapid. However, the movement of apoplastic tracers PTS and Calcofluor White (CFW) was relatively slow and with tissue plasmolysis, CF was confined to the cytoplasm of the modified aleurone and subaleurone cells. Together, these results demonstrate that there is a high resistance to solute movement within the apoplast of the cells bordering the endosperm cavity. We propose that photosynthate transfer is via the symplast to the nucellar projection where membrane exchange to the endosperm cavity occurs. Uptake from the cavity is by the modified aleurone and small endosperm cells prior to transfer through the symplast to and through the starchy endosperm.  相似文献   

2.
The effects of a penetrating (NEM) and a non-penetrating (PCMBS) sulfhydryl-specific reagent on proton extrusion, 86Rb and [U-14C]sucrose uptake by Vicia faba leaves have been studied. Proton extrusion was strongly or completely inhibited by 0.1 mM NEM. 86Rb and [U-14C]sucrose uptake were markedly reduced by NEM concentrations equal to or higher than 0.5 mM. Under our experimental conditions, PCMBS (1 mM) exerted a strong inhibition on [14C]sucrose uptake but did not inhibit proton extrusion and 86Rb uptake. The sensitivity of phloem loading to PCMBS is thought to be a consequence of sugar-carrier blockage and not of inhibition of the proton pump.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - DES diethylstilbestrol - DCCD dicyclohexylcarbodiimide - FC Fusicoccin - NEM N-ethylmaleimide - PCMBS p-chloromercuribenzenesulfonic acid  相似文献   

3.
To compare oat (Avena sativa L. cv Froker) aleurone protein bodies with those of the starchy endosperm, methods were developed to isolate these tissues from mature seeds. Aleurone protoplasts were prepared by enzymic digestion and filtration of groat (caryopsis) slices, and starchy endosperm tissue was separated from the aleurone layer by squeezing slices of imbibed groats followed by filtration. Protein bodies were isolated from each tissue by sucrose density gradient centrifugation. Ultrastructure of the isolated protein bodies was not identical to that of the intact organelles, suggesting modification during isolation or fixation. Both aleurone and starchy endosperm protein bodies contained globulin and prolamin storage protein, but minor differences in the protein-banding pattern by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were evident. The amino acid compositions of the protein body fractions were similar and resembled that of oat globulin. The aleurone protein bodies contained phytic acid and protease activity, which were absent in starchy endosperm protein bodies.  相似文献   

4.
There are mainly three endosperm storage tissues in the cereal endosperm: aleurone cells, sub-aleurone cells and the center starch endosperm. The protein accumulation is very different in the three endosperm storage tissues. The aleurone cells accumulate protein in aleurone granules. The sub-aleurone cells and the center starch endosperm accumulate protein in endoplasmic reticulum-derived protein bodies and vacuolar protein bodies. Proteins are deposited in different patterns within different endosperm storage tissues probably because of the special storage properties of these tissues. There are several special genes and other molecular factors to mediate the protein accumulation in these tissues. Different proteins have distinct functions in the protein body formation and the protein interactions determine protein body assembly. There are both cooperation and competition relationships between protein, starch and lipid in the cereal endosperm. This paper reviews the latest investigations on protein accumulation in aleurone cells, sub-aleurone cells and the center starch endosperm. Useful information will be supplied for future investigations on the cereal endosperm development.  相似文献   

5.
A genetic analysis of maize aleurone development was conducted. Cell lineage was examined by simultaneously marking cells with C1 for anthocyanin pigmentation in the aleurone and wx1 for amylose synthesis in the starchy endosperm. The aleurone and starchy endosperm share a common lineage throughout development indicating that positional cues specify aleurone fate. Mutants in dek1 block aleurone formation at an early stage and cause peripheral endosperm cells to develop as starchy endosperm. Revertant sectors of a transposon-induced dek1 allele showed that peripheral endosperm cells remain competent to differentiate as aleurone cells until late in development. Ds-induced chromosome breakage was used to generate Dek1 loss-of-function sectors. Events occurring until late development caused aleurone cells to switch fate to starchy endosperm indicating that cell fate is not fixed. Thus, positional cues are required to specify and maintain aleurone fate and Dek1 function is required to respond to these cues. An analysis of additional mutants that disrupt aleurone differentiation suggests a hierarchy of gene functions to specify aleurone cell fate and then control aleurone differentiation. These mutants disrupt aleurone differentiation in reproducible patterns suggesting a relationship to endosperm pattern formation.  相似文献   

6.
Lysophospholipase was measured in extracts of germinating barley by determining the amount of free [14C]palmitate released from [1-14C] 1-palmitoyl-lysophosphatidylcholine (LPC). Soluble and particulate lysophospholipase activity was measured at 1-day intervals in extracts from the aleurone and endosperm of barley seeds germinated for 8 days. The soluble and particulate activities of the aleurone increase approximately in parallel with one another and after 8 days of germination have 20–30 times more activity than at day 1. The activity profiles and the distribution of the activity between the soluble and particulate forms of lysophospholipase in the endosperm are markedly different. With the exception of the first 2 days when the aleurone activity is low, the endosperm activity is less than that associated with the aleurone. The soluble activity increases during the first 3 days and is more active than that of the aleurone. Thereafter it diminishes and remains low. The particulate enzyme, however, increases dramatically between days 4 and 5 and remains moderately high. The fourth and fifth day represent that stage of germination when starch-bound LPC is released in concert with the increase in amylase activity. It is proposed that it is this particulate form of the endosperm activity which may be responsible for maintaining the level of free LPC low in the endosperm of the germinating seed.  相似文献   

7.
The volume and composition of the endosperm apoplast of thedeveloping wheat grain, comprising endosperm cavity and intercellularfree-space, was examined in relation to kernel growth rate andsize. Samples of the cavity sap were collected by centrifugationof kernels during the linear phase of grain growth. The cavitysap contained 10–50 mM sucrose, a small amount of hexosesbut a high concentration of oligosaccharides (up to 9 timesthat of sucrose). In comparing cvs Yandilla King and Cleveland,high growth rate was associated with high cavity sap sucroseconcentration but with low K+ concentration. K+ concentrationin the endosperm cells (124 mM) was about 5 times higher thanin the cavity sap (10–40 mM). Cavity sap pH was 6.3–6.6.The uptake of sucrose by endosperm cells was partly inhibitedby PCMBS, an inhibitor of membrane-bound carriers. Several necessaryconditions for proton cotransport during sucrose uptake by endospermcells were met. The volume of the intercellular free-space, estimated by membranepermeating (14C-mannitol, 14C-sucrose) or non-permeating (3H-PEG900)markers averaged 2.2 µl or 5–7% of the water ingrains of cvs Yandilla King, Cleveland and SUN 9E. The cavityvolume was highly variable but tended to be larger in largergrains. Pulse labelling of 14CO2 to flag leaves showed that 14C-sucrosewas the principal 14C-assimilate in the cavity sap and was convertedto insoluble compounds in the endosperm while the cavity sapoligosaccharides acquired negligible label in 6 h. Key words: Wheat, Endosperm apoplast, Sugars  相似文献   

8.
Vicia faba leaf discs without epidermis were pretreated with parachloromercuribenzenesulfonic acid (PCMBS), rinsed and incubated on [14C]sucrose (1 or 40 millimolar). Those sucrose concentrations were chosen as representative of the apparent uptake system 1 (1 millimolar) and system 2 (40 millimolar) previously characterized. Pretreatment with 0.5 millimolar PCMBS for 20 minutes inhibited system 1 and system 2 by about 70%.

Addition of unlabeled sucrose during PCMBS-pretreatment protected the carrier(s) from the inhibition, whereas glucose, fructose, and sucrose analogs were unable to afford protection. At 1 millimolar [14C]sucrose, the protection resulted in a small but consistent reduction of normal inhibition (from 63 to 45%) for sucrose concentrations of 50 millimolar and more during pretreatment. Contrarily, at 40 millimolar [14C]sucrose, the protection increased linearly with the sucrose concentration in the pretreatment medium, and complete prevention of inhibition was reached for 250 millimolar sucrose.

The protection was not due to exchange diffusion and was located in the veins. Michaelian kinetics indicated that PCMBS and sucrose compete with each other at the active site of the carrier.

Among 14 compounds tested (sugars, amino-acids, hormones, 32P), sucrose uptake was by far the most sensitive to PCMBS. Sucrose preferentially protected its carrier(s) from inhibition. Treatment with 20 millimolar cysteine or 20 millimolar dithioerythreitol reversed inhibition by PCMBS pretreatment.

  相似文献   

9.
In the developing wheat grain, photosynthate is transferred longitudinally along the crease phloem and then laterally into the endosperm cavity through the crease vascular parenchyma, pigment strand and nucellar projection. In order to clarify this cellular pathway of photosynthate unloading, and hence the controlling mechanism of grain filling, the potential for symplastic and apoplastic transfer was examined through structural and histochemical studies on these tissue types. It was found that cells in the crease region from the phloem to the nucellar projection are interconnected by numerous plasmodesmata and have dense cytoplasm with abundant mitochondria. Histochemical studies confirmed that, at the stage of grain development studied, an apoplastic barrier exists in the cell walls of the pigment strand. This barrier is composed of lignin, phenolics and suberin. The potential capacity for symplastic transfer, determined by measuring plasmodesmatal frequencies and computing potential sucrose fluxes through these plasmodesmata, indicated that there is sufficient plasmodesmatal cross-sectional area to support symplastic unloading of photosynthate at the rate required for normal grain growth. The potential capacity for membrane transport of sucrose to the apoplast was assessed by measuring plasma membrane surface areas of the various cell types and computing potential plasma membrane fluxes of sucrose. These fluxes indicated that the combined plasma membrane surface areas of the sieve element–companion cell (se–cc) complexes, vascular parenchyma and pigment strand are not sufficient to allow sucrose transfer to the apoplast at the observed rates. In contrast, the wall ingrowths of the transfer cells in the nucellar projection amplify the membrane surface area up to 22-fold, supporting the observed rates of sucrose transfer into the endosperm cavity. We conclude that photosynthate moves via the symplast from the se–cc complexes to the nucellar projection transfer cells, from where it is transferred across the plasma membrane into the endosperm cavity. The apoplastic barrier in the pigment strand is considered to restrict solute movement to the symplast and block apoplastic solute exchange between maternal and embryonic tissues. The implications of this cellular pathway in relation to the control of photosynthate transfer in the developing grain are discussed.  相似文献   

10.
The cellular pathway of sugar uptake in developing cotyledons of Vicia faba L. and Phaseolus vulgaris L. seed was evaluated using a physiological approach. The cotyledon interface with the seed coat is characterised by a specialised dermal cell complex. In the case of Vicia faba cotyledons, the epidermal component of the dermal cell complex is composed of transfer cells. Sucrose is the major sugar presented to the outer surface of both cotyledons and it is taken up from the apoplasm unaltered. Estimated sucrose concentrations within the apparent free space of Vicia and Phaseolus cotyledons were 105 and 113 mM respectively. Rates of in-vitro uptake of [14C]sucrose by cotyledon segments or by whole cotyledons following physical removal or porter inactivation of the outer cells demonstrated that, for both Vicia and Phaseolus cotyledons, the dermal cell complexes are the most intense sites of sucrose uptake. Accumulation of [14C]sucrose in the storage parenchyma of whole cotyledons was directly affected by experimental manipulation of uptake by the outer cell layers and plasmolytic disruption of the interconnecting plasmodesmata. These findings indicated that sucrose accumulated by the dermal cell complexes is transported symplasmically to the storage parenchyma. Overall, it is concluded that the dermal cell complexes of the developing legume embryo, irrespective of the presence or absence of wall ingrowths, are the major sites for the uptake of sucrose released from the maternal tissues to the seed apoplasm. Thereafter, the accumulated sucrose is transported radially inward through the symplast to the storage parenchyma.Abbreviations AFS apparent free space - CF 5-(6)-carboxyfluorescein - CFDA 5-(6)-carboxyfluorescein diacetate - Mes 2-(N-morpholino)ethanesulfonic acid - PCMBS p-chloromercuribenzenesulfonic acid - SRG sulphorhodamine G The investigation was supported by funds from the Research Management Committee, The University of Newcastle and the Australian Research Council. One of us, R. McDonald, gratefully acknowledges the support of an Australian Postgraduate Research Award. We are grateful to Stella Savoury for preparing the photomicrographs.  相似文献   

11.
The results of a light and electron microscopic study of the caryopsis coat and aleurone cells in ungerminated, unimbibed rice (Oryza sativa) caryopses are presented. Surrounding the rice grain is the caryopsis coat composed of the pericarp, seed coat and nucellar layers. The outermost layer, the pericarp, consists of crushed cells and is about 10 μm thick. The seed coat, interior to the pericarp, is one cell thick and has a thick cuticle. Between the seed coat cuticle and endosperm are the remains of the nucellus. The nucellus is about 2.5 μm thick and has a thick cuticle adjacent to the seed coat cuticle. Interior to the caryopsis coat is the aleurone layer of the endosperm. The aleurone completely surrounds the rice grain and is composed of two cell types—aleurone cells that surround the starchy endosperm and modified aleurone cells that surround the germ. The aleurone cells of the starchy endosperm contain many aleurone grains and lipid bodies around a centrally located nucleus. The modified aleurone cells lack aleurone grains, have fewer lipid bodies than the other aleurone cells, and contain filament bundles (fibrils). Plastids of aleurone cells exhibit a unique morphology in which the outer membranes invaginate to form tubules and vesicles within the plastid. Transfer aleurone cells are not observed in the mature rice caryopsis.  相似文献   

12.
An imaging secondary ion mass spectrometry system has been developed that allows the distribution of elements or ions to be superimposed on an image of the plant cell or tissue generated by ion-induced secondary electrons. This system has been evaluated by analysing the aleurone and sub-aleurone cells of mature wheat grain, showing high spatial resolution (100-200 nm) images of O-, PO(2)-, Mg+, Ca+, Na+ and K+ within the phytate granules of the aleurone, with CN- being diagnostic for proteins and C(2)- being diagnostic for starch in the starchy endosperm cells. This system should provide improved localization of elements in a range of other plant systems.  相似文献   

13.
Previous work showed that the segl mutant of barley (Hordeum vulgare cv Betzes) did not differ from normal Betzes in plant growth, photosynthesis, or fertility, but it produced only shrunken seeds regardless of pollen source. To determine whether defects in sucrose uptake or starch synthesis resulted in the shrunken condition, developing grains of Betzes and segl were cultured in [14C]sucrose solutions after slicing transversely to expose the endosperm cavity and free space. In both young grains (before genotypes differed in dry weight) and older grains (17 days after anthesis, when segl grains were smaller than Betzes), sucrose uptake and starch synthesis were similar in both genotypes on a dry weight basis. To determine if sucrose was hydrolyzed during uptake, spikes of Betzes and segl were allowed to take up [fructose-U-14C]sucrose 14 days after anthesis and the radioactivity of endosperm sugars was examined during 3 hours of incubation. Whereas less total radioactivity entered the endosperm and the endosperm cavity (free space) of segl, in both genotypes over 96% of the label of endosperm sugars was in sucrose, and there was no apparent initial or progressive randomization of label among hexose moieties of sucrose as compared to the free space sampled after 1 hour of incubation. We conclude that segl endosperms are capable of normal sucrose uptake and starch synthesis and that hydrolysis of sucrose is not required for uptake in either genotype. Evidence suggests abnormal development of grain tissue of maternal origin during growth of segl grains.  相似文献   

14.
Two experimental systems were developed to study the uptake of sucrose by the dermal transfer cells of developing cotyledons of Vicia faba L. First, the in-vivo state was approximated by short-term (10 min) incubation of whole cotyledons in [14C]sucrose solutions. Under these conditions, a minimum of 67% of the 14C label entered the dermal transfer cell complex. Of this, at least 40% crossed the plasma membranes of the epidermal transfer cells. Second, a protocol was developed to enzymatically isolate and purify dermal transfer cell protoplasts. The yields of the transfer cell protoplasts were relatively low and their preparation incurred a significant loss of plasma membrane. However, the protoplasts remained viable up to 24 h following purification and proved to be a suitable system to verify transport properties observed with whole cotyledons. Using these two experimental systems, it was established that [14C]sucrose uptake by the dermal transfer cells exhibited features consistent with mediated energy-dependent transport. This included saturation kinetics, competition for uptake between structurally similar molecules, and inhibition of uptake by p-chloromercuribenzenesulfonic acid and several other metabolic inhibitors. For comparative purposes, sugar uptake by the storage parenchyma of the Vicia cotyledons was also examined. In contrast to the dermal transfer cell complex, sucrose uptake by the storage parenchyma displayed characteristics consistent with simple diffusion.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DNP 2,4-dinitrophenol - NEM N-ethylmaleimide - PCMBS p-chloromercuribenzenesulfonic acid The investigation was supported by funds from the Research Management Committee, the University of Newcastle and the Australian Research Council. One of us, R. McDonald, gratefully acknowledges the support of an Australian Postgraduate Research Award. We are indebted to Stella Savory for preparing the ultrathin sections for electron microscopy.  相似文献   

15.
Replacement of mannitol with sucrose decreases the binding of [203Hg]-p-chloromercuribenzenesulphonic acid (PCMBS) to Vicia faba leaf discs without epidermis. This decrease is optimal for 20 minutes on incubation, is concentration-dependent, and is also found with maltose and raffinose. In parallel experiments, the addition of sucrose, maltose, and raffinose during PCMBS pretreatment was shown to increase subsequent uptake of [U-14C]sucrose. In contrast, d- or l-glucose, 3-O-methylglucose, galactose, fructose, palatinose, turanose, or melibiose had no effect either on PCMBS binding or on [14C]sucrose uptake. The sucrose-induced decrease of PCMBS binding is retained after a cold and ionic shock. Measurements of specific activities of membrane fractions prepared from tissues incubated in labeled PCMBS show that the decrease concerns the 120,000 gravity pellet, but that very mild procedures must be chosen to prevent redistribution of label in the supernatant. Altogether, the data provide new support to the hypothesis that the active site of the sucrose carrier contains a group sensitive to PCMBS.  相似文献   

16.
The isolation and sugar uptake characteristics of protoplasts from maize ( Zea mays L.) endosperm-derived suspension cultures are described. In contrast with protoplasts from intact developing endosperm, which by virtue of their large size and high starch content are too fragile for sugar uptake experiments, suspension cultures yielded protoplasts capable of withstanding the necessary handling and centrifugations. Intactness of the protoplasts was demonstrated by dye exclusion or accumulation and latency of malate dehydrogenase activity. Uptake of radioactivity from [3H]-inulin did not increase with time, but that from [14C]-sugars increased over a wide range of external concentrations. Kinetics of fructose, glucose and sucrose uptake were biphasic, and the saturable components of uptake were eliminated by p -chloromercuribenzene sulfonate (PCMBS). Rates of uptake of sucrose and 1'-fluorosucrose were similar, confirming that hydrolysis by cell wall invertase contributes to sucrose uptake by the suspension cultures. The isolation of protoplasts from this tissue source will enable experimental access to plasma membrane sugar carriers which may exist in the intact maize endosperm.  相似文献   

17.
1′-Fluorosucrose (FS), a sucrose analog resistant to hydrolysis by invertase, was transported from husk leaves into maize (Zea mays L., Pioneer Hybrid 3320) kernels with the same magnitude and kinetics as sucrose. 14C-Label from [14C]FS and [14C]sucrose in separate experiments was distributed similarly between the pedicel, endosperm, and embryo with time. FS passed through maternal tissue and was absorbed intact into the endosperm where it was metabolized and used in synthesis of sucrose and methanol-chloroform-water insolubles. Accumulation of [14C] sucrose from supplied [14C]glucosyl-FS indicated that the glucose moiety from the breakdown of sucrose (here FS), which normally occurs in the process of starch synthesis in maize endosperm, was available to the pool of substrates for resynthesis of sucrose. Uptake of FS into maize endosperm without hydrolysis suggests that despite the presence of invertase in maternal tissues and the hydrolysis of a large percentage of sucrose unloaded from the phloem, hexoses are not specifically needed for uptake into maize endosperm.  相似文献   

18.
Stems of Vicia faba plants were used to study phloem unloading because they are hollow and have a simple anatomical structure that facilitates access to the unloading site. After pulse labeling of a source leaf with 14CO2, stem sections were cut and the efflux characteristics of 14C-labeled sugars into various buffered solutions were determined. Radiolabeled sucrose was shown to remain localized in the phloem and adjacent phloem parenchyma tissues after a 2-hour chase. Therefore, sucrose leakage from stem segments prepared following a 75-minute chase period was assumed to be characteristic of phloem unloading. The efflux of 14C assimilates from the phloem was enhanced by 1 millimolar p-chloromercuribenzene sulfonic acid (PCMBS) and by 5 micromolar carbonyl cyanide m-chlorophenly hydrazone (CCCP). However, PCMBS inhibited and CCCP enhanced general leakage of nonradioactive sugars from the stem segments. Sucrose at concentrations of 50 millimolar in the free space increased efflux of [14C]sucrose, presumably through an exchange mechanism. This exchange was inhibited by PCMBS and abolished by 0.2 molar mannitol. Increasing the osmotic concentration of the efflux medium with mannitol reduced [14C]sucrose efflux. However, this inhibition seems not to be specific to sucrose unloading since leakage of total sugars, nonlabeled sucrose, glucose, and amino acids from the bulk of the tissue was reduced in a similar manner. The data suggest that phloem unloading in cut stem segments is consistent with passive efflux of sucrose from the phloem to the apoplast and that sucrose exchange via a membrane carrier may be involved. This is consistent with the known conductive function of the stem tissues, and contrasts with the apparent nature and function of unloading in developing seeds.  相似文献   

19.
The hypothesis that Zn and Mn are transported within the grain in a similar manner to sucrose was investigated in the developing wheat grain. Detached ears were cultured in solution containing 65Zn, 54Mn and [14C]-sucrose for 10 to 120 min at 18–22 days post-anthesis. At different times the grain was cut transversely into 1-mm sections and the radioactivity in each section determined The embryo region was damaged in some grains to investigate the effect of reduced accumulation rate on the transport of 65Za, 54Mn and [14C]-sucrose to the embryo. The distribution of 65Zn. 54Mn and [14C]-sucrose between the endosperm cavity sap. endosperm, embryo and pericarp in grains labelled for 2.5 and 6 h at 18–22 days post-anthesis was also determined. [14C]-su-crose was initially high in the first, embryo-containing section of the grain but decreased progressively to the distal end of the grain. The amount of 65Zn along the longitudinal axis of the grain was distributed evenly in each 1-mm section, whilst 54Mn accumulated exponentially in the first proximal 1-mm section of the grain and was distributed evenly in the remaining sections. Damaging the embryo had no effect on 65Zn and 54Mn transport to the section containing the embryo. The pericarp contained almost all of the grain 65Za and 54Mn, with small amounts found in the embryo, endosperm and endosperm cavity sap. Increasing amounts of [14C]-sucrose were found in the endosperm as time progressed. The rate of accumulation of 65Zn, 54Mn and [14C]-sucrose was much higher in the embiyo than the endosperm: the difference between the embryo and endosperm was especially large for 65Zn and 54Mn. It is suggested that 65Zn and 54Mn are not transported within the grain in the same way as [14C]-sucrose. [14C]-sucrose moves laterally out of the vascular system of the crease into the endosperm cavity and is subsequently taken up and stored in the endosperm. In contrast, 65Zn and 54Mn appear to be retained within the vascular system of the crease and may be transported more slowly to grain parts such as the embryo and pericarp tissue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号