首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A force balance between the ligaments, articular contact, muscles and body weight maintains knee joint stability. Thus, it is important to study anterior cruciate ligament (ACL) biomechanics, in vivo, under weightbearing conditions. Our objective was to compare the ACL strain response under weightbearing and non-weightbearing conditions and in combination with three externally applied loadings: (1) anterior-posterior shear forces, (2) internal-external torques, and (3) varus-valgus moments. A strain transducer was implanted on the ACL of 11 subjects. All joint loadings were performed with the knee at 20 degrees of flexion. A significant increase in ACL strain was observed as the knee made the transition from non-weightbearing to weightbearing. During anterior shear loading, the strain values produced during weightbearing were greater than those of the non-weightbearing knee (shear loads <40N). At higher shear loads, the strain values became equal. During axial torsion, an internal torque of 10Nm strained the ACL when the knee was non-weightbearing while an equivalent external torque did not. Weightbearing significantly increased ACL strain values in comparison to non-weightbearing with the application of external torques and low internal torques (<3Nm). The strains became equal for higher internal torques. For V-V loading, the ACL was not strained in the non-weightbearing knee. However, weightbearing increased the ACL strain values over the range of moments tested. These data have important clinical ramifications in the development of rehabilitation protocols following ACL reconstruction since weightbearing has been previously thought to provide a protective mechanism to the healing graft.  相似文献   

2.
This study determined in-vitro anterior cruciate ligament (ACL) force patterns and investigated the effect of external tibial loads on the ACL force patterns during simulated weight-bearing knee flexions. Nine human cadaveric knee specimens were mounted on a dynamic knee simulator, and weight-bearing knee flexions with a 100N of ground reaction force were simulated; while a robotic/universal force sensor (UFS) system was used to provide external tibial loads during the movement. Three external tibial loading conditions were simulated, including no external tibial load (termed BW only), a 50N anterior tibial force (ATF), and a 5Nm internal rotation tibial torque (ITT). The tibial and femoral kinematics was measured with an ultrasonic motion capture system. These movement paths were then accurately reproduced on a robotic testing system, and the in-situ force in the ACL was determined via the principle of superposition. The results showed that the ATF significantly increased the in-situ ACL force by up to 60% during 0-55 degrees of flexion, while the ITT did not. The magnitude of ACL forces decreased with increasing flexion angle for all loading conditions. The tibial anterior translation was not affected by the application of ATF, whereas the tibial internal rotation was significantly increased by the application of ITT. These data indicate that, in a weight-bearing knee flexion, ACL provides substantial resistance to the externally applied ATF but not to the ITT.  相似文献   

3.
A two-dimensional dynamical model of the human body was developed and used to simulate muscle and knee-ligament loading during a fast rising movement. The hip, ankle, and toes were each modeled as a simple hinge joint. Relative movements of the femur, tibia, and patella in the sagittal plane were described using a more detailed representation of the knee. The geometry of the model bones was adapted from cadaver data. Eleven elastic elements described the geometric and mechanical properties of the knee ligaments and joint capsule. The patella was assumed to be massless. Smooth hypersurfaces were constructed and used to calculate the position and orientation of the patella during a forward integration of the model. Each hypersurface was formed by applying the principle of static equilibrium to approximate patellofemoral mechanics during the simulation. The model was actuated by 22 musculotendinous units, each unit represented as a three-element muscle in series with tendon. A first-order process was assumed to model muscle excitation-contraction dynamics. Dynamic optimization theory was used to calculate the pattern of muscle excitations that produces a coordinated rising movement from an initial squatting position in minimum time. The calculations support the contention that squatting is a relatively safe exercise for rehabilitation following ACL reconstruction. ACL forces remain less than 20 N for the duration of the task.  相似文献   

4.
A golf-related ACL injury can be linked with excessive golf play or practice because such over-use by repetitive golf swing motions can increase damage accumulation to the ACL bundles. In this study, joint angular rotations, forces, and moments, as well as the forces and strains on the ACL of the target-side knee joint, were investigated for ten professional golfers using the multi-body lower extremity model. The fatigue life of the ACL was also predicted by assuming the estimated ACL force as a cyclic load. The ACL force and strain reached their maximum values within a short time just after ball-impact in the follow-through phase. The smaller knee flexion, higher internal tibial rotation, increase of the joint compressive force and knee abduction moment in the follow-through phase were shown as to lead an increased ACL loading. The number of cycles to fatigue failure (fatigue life) in the ACL might be several thousands. It is suggested that the excessive training or practice of swing motion without enough rest may be one of factors to lead to damage or injury in the ACL by the fatigue failure. The present technology can provide fundamental information to understand and prevent the ACL injury for golf players.  相似文献   

5.
Gastrocnemius is a premier muscle crossing the knee, but its role in knee biomechanics and on the anterior cruciate ligament (ACL) remains less clear when compared to hamstrings and quadriceps. The effect of changes in gastrocnemius force at late stance when it peaks on the knee joint response and ACL force was initially investigated using a lower extremity musculoskeletal model driven by gait kinematics—kinetics. The tibiofemoral joint under isolated isometric contraction of gastrocnemius was subsequently analyzed at different force levels and flexion angles (0°–90°). Changes in gastrocnemius force at late stance markedly influenced hamstrings forces. Gastrocnemius acted as ACL antagonist by substantially increasing its force. Simulations under isolated contraction of gastrocnemius confirmed this role at all flexion angles, in particular, at extreme knee flexion angles (0° and 90°). Constraint on varus/valgus rotations substantially decreased this effect. Although hamstrings and gastrocnemius are both knee joint flexors, they play opposite roles in respectively protecting or loading ACL. Although the quadriceps is also recognized as antagonist of ACL, at larger joint flexion and in contrast to quadriceps, activity in gastrocnemius substantially increased ACL forces (anteromedial bundle). The fact that gastrocnemius is an antagonist of ACL should help in effective prevention and management of ACL injuries.  相似文献   

6.
Anterior cruciate ligament (ACL) injury risk is likely increased under unexpected loading conditions. Such situations may arise from mid-air contact with another athlete, or misjudgments in landing height, stride length or surface compliance resulting in an unbalanced landing and unexpected changes in the ground reaction forces (GRFs). The purpose this study was to identify how GRF perturbations influence ACL loading during sidestep cutting. Muscle-actuated simulations of sidestep cutting were generated and analyzed for 20 subjects. Perturbations of 20, 40 and 60% of the nominal value were applied to the posterior, vertical, and medial GRF. Open-loop, forward dynamics simulations were run with no feedback or correction mechanism which allowed deviations from the experimentally measured kinematics as a result of the GRF perturbations. Posterior and vertical GRF perturbations significantly increased ACL loading, although the change was more pronounced with posterior perturbations. These changes were primarily due to the sagittal plane component of ACL loading regardless of perturbation direction. Peak ACL loading occurred almost immediately after initial ground contact, and was thus predicated on initial joint configuration. The results of this study give merit to including knee flexion angle at initial ground contact in the evolving neuromuscular training modalities aimed at preventing non-contact ACL injury.  相似文献   

7.
As one of the most complex and vulnerable structures of body, the human knee joint should maintain dynamic equilibrium and stability in occupational and recreational activities. The evaluation of its stability and factors affecting it is vital in performance evaluation/enhancement, injury prevention and treatment managements. Knee stability often manifests itself by pain, hypermobility and giving-way sensations and is usually assessed by the passive joint laxity tests. Mechanical stability of both the human knee joint and the lower extremity at early stance periods of gait (0% and 5%) were quantified here for the first time using a hybrid musculoskeletal model of the lower extremity. The roles of muscle coactivity, simulated by setting minimum muscle activation at 0–10% levels and ACL deficiency, simulated by reducing ACL resistance by up to 85%, on the stability margin as well as joint biomechanics (contact/muscle/ligament forces) were investigated. Dynamic stability was analyzed using both linear buckling and perturbation approaches at the final deformed configurations in gait. The knee joint was much more stable at 0% stance than at 5% due to smaller ground reaction and contact forces. Muscle coactivity, when at lower intensities (<3% of its maximum active force), increased dynamic stability margin. Greater minimum activation levels, however, acted as an ineffective strategy to enhance stability. Coactivation also substantially increased muscle forces, joint loads and ACL force and hence the risk of further injury and degeneration. A deficiency in ACL decreases total ACL force (by 31% at 85% reduced stiffness) and the stability margin of the knee joint at the heel strike. It also markedly diminishes forces in lateral hamstrings (by up to 39%) and contact forces on the lateral plateau (by up to 17%). Current work emphasizes the need for quantification of the lower extremity stability margin in gait.  相似文献   

8.
A custom knee loading apparatus (KLA), when used in conjunction with magnetic resonance imaging, enables in vivo measurement of the gross anterior laxity of the knee joint. A numerical model was applied to the KLA to understand the contribution of the individual joint structures and to estimate the stiffness of the anterior-cruciate ligament (ACL). The model was evaluated with a cadaveric study using an in situ knee loading apparatus and an ElectroForce test system. A constrained optimization solution technique was able to predict the restraining forces within the soft-tissue structures and joint contact. The numerical model presented here allowed in vivo prediction of the material stiffness parameters of the ACL in response to applied anterior loading. Promising results were obtained for in vivo load sharing within the structures. The numerical model overestimated the ACL forces by 27.61–92.71%. This study presents a novel approach to estimate ligament stiffness and provides the basis to develop a robust and accurate measure of in vivo knee joint laxity.  相似文献   

9.
Anterior Cruciate Ligament (ACL) injury is one of the most serious and costly injuries of the lower extremity, occurring more frequently in females than males. Injury prevention training programs have reported the ability to reduce non-contact ACL injury occurrence. These programs have also been shown to alter an athletes' lower extremity position at initial contact with the ground and throughout the deceleration phase of landing. The purpose of this study was to determine the influence of single-leg landing technique on ACL loading in recreationally active females. Participants were asked to perform "soft" and "stiff" drop landings. A series of musculoskeletal models were then used to estimate muscle, joint, and ACL forces. Dependent t-tests were conducted to investigate differences between the two landing techniques (p<0.05). Instructing participants to land 'softly' resulted in a significant decrease in peak ACL force (p=0.05), and a significant increase in hip and knee flexion both at initial contact (IC) and the time of peak ACL force (F(PACL)). These findings suggest that altering landing technique using simple verbal instruction may result in lower extremity alignment that decreases the resultant load on the ACL. Along with supporting the findings of reduced ACL force with alterations in sagittal plane landing mechanics in the current literature, the results of this study suggest that simple verbal instruction may reduce the ACL force experienced by athletes when landing.  相似文献   

10.
The knee is one of the most frequently injured joints in the human body. Approximately 91% of ACL injuries occur during sporting activities, usually from a non-contact event. The most common kinetic scenarios related with ACL injuries are internal twisting of the tibia relative to the femur or combined torque and compression during a hard landing. The hypothesis of this study was that the magnitudes and types of motion observed after ACL rupture would significantly change from the relative joint displacements present just before ACL injury. Compression or torsion experiments were conducted on 7 pairs of knee joints with repetitive tests at increasing intensity until catastrophic failure. ACL injury was documented in all cases at 5.4±2 kN of TF compression or 33±13 Nm of internal tibial torque. The femur displaced posteriorly relative to the tibia in pre-failure and with a higher magnitude in failure tests under both loading conditions. In compression experiments there was internal rotation of the tibia in pre-failure tests, but external rotation of the tibia after the ACL failed. In torsion experiments, failure occurred at 58±19° of internal tibial rotation, and valgus rotation of the femur increased significantly after ACL injury. These new data show that the joint motions can vary in magnitude and direction before and after failure of the ACL. Video-based studies consistently document external rotation of the tibia combined with valgus knee bending as the mechanism of ACL injury although these motions could be occurring after ACL rupture.  相似文献   

11.
In this study, designed to determine the effect of lower extremity inertia manipulation on joint kinetics and segment energetics during the swing phase, 15 male distance runners were filmed as they performed treadmill running (3.35 m s-1) under five load conditions: no added load and loads of 0.25 kg and 0.50 kg added to each thigh or each foot. Results of this study demonstrated that the energetics of the lower extremity movements during the swing phase of the running cycle were dominated by mechanical energy transfers between adjacent segments attributed to the joint reaction forces, which acted to redistribute mechanical energy within the system. These contributions were considerably greater than those of the net joint moments, which primarily reflected muscular generation and dissipation of mechanical energy. Lower extremity loading caused little change in the movement pattern of the swing leg. However, increases in the joint reaction forces and net moments and in the amount of work done and the energy transfer attributed to the reaction forces and moments were observed, but were limited to the joints proximal to the location of the added load. These results were consistent with the increased aerobic demand associated with increases in lower extremity inertia that have been reported elsewhere and also have implications for the manner in which the neuromuscular system controls the motion of the legs during running.  相似文献   

12.
Coactivation of knee flexors during knee extension assists in joint stability by exerting an opposing torque to the anterior tibial displacement induced by the quadriceps. This opposing torque is believed to be generated by eccentric muscle actions that stiffen the knee, thereby attenuating strain to joint ligaments, particularly the anterior cruciate ligament (ACL). However, as the lengths of knee muscles vary with changes in joint position, the magnitude of flexor/extensor muscle force coupling may likewise vary, possibly affecting the capacity for active knee stabilization. The purpose of this study was to assess the effect of changes in movement speed and joint position on eccentric/concentric muscle action relationships in the knees of uninjured (UNI) and post-ACL-surgery (INJ) subjects (n = 14). All subjects were tested for maximum eccentric and concentric torque of the contralateral knee flexors and extensor muscles at four isokinetic speeds (15 degrees-60 degrees x s(-1)) and four joint position intervals (20 degrees-60 degrees of knee flexion). Eccentric flexor torque was normalized to the percentage of concentric flexor torque generated at each joint position interval for each speed tested (flexor E-C ratio). In order to estimate the capacity of the knee flexors to resist active knee extension, the eccentric-flexor/concentric-extensor ratios were also computed for each joint position interval and speed (flexor/extensor E-C ratio). The results revealed that eccentric torque surpassed concentric torque by 3%-144% across movement speeds and joint position intervals. The magnitude of the flexor E-C ratio and flexor/extensor E-C increased significantly with speed in both groups of subjects (P < 0.05) and tended to rise with muscle length as the knee was extended; peak values were generated at the most extended joint position (20 degrees-30 degrees). Although torque development patterns were symmetrical between the contralateral limbs in both groups, between-group comparisons revealed significantly higher flexor/extensor E-C ratios for the INJ group compared to the UNI group (P < 0.05), particularly at the fastest speed tested (60 degrees x s(-1)). The results indicate that joint position and movement speed influence the eccentric/concentric relationships of knee flexors and extensors. The INJ subjects appeared to accommodate to surgery by developing the eccentric function of their ACL and normal knee flexors, particularly at higher speeds and at more extended knee joint positions. This may assist in the dynamic stabilization of the knee at positions where ACL grafts have been reported to be most vulnerable to strain.  相似文献   

13.
This paper examined if an electromyography (EMG) driven musculoskeletal model of the human knee could be used to predict knee moments, calculated using inverse dynamics, across a varied range of dynamic contractile conditions. Muscle-tendon lengths and moment arms of 13 muscles crossing the knee joint were determined from joint kinematics using a three-dimensional anatomical model of the lower limb. Muscle activation was determined using a second-order discrete non-linear model using rectified and low-pass filtered EMG as input. A modified Hill-type muscle model was used to calculate individual muscle forces using activation and muscle tendon lengths as inputs. The model was calibrated to six individuals by altering a set of physiologically based parameters using mathematical optimisation to match the net flexion/extension (FE) muscle moment with those measured by inverse dynamics. The model was calibrated for each subject using 5 different tasks, including passive and active FE in an isokinetic dynamometer, running, and cutting manoeuvres recorded using three-dimensional motion analysis. Once calibrated, the model was used to predict the FE moments, estimated via inverse dynamics, from over 200 isokinetic dynamometer, running and sidestepping tasks. The inverse dynamics joint moments were predicted with an average R(2) of 0.91 and mean residual error of approximately 12 Nm. A re-calibration of only the EMG-to-activation parameters revealed FE moments prediction across weeks of similar accuracy. Changing the muscle model to one that is more physiologically correct produced better predictions. The modelling method presented represents a good way to estimate in vivo muscle forces during movement tasks.  相似文献   

14.
The force-length-relation (F-l-r) is an important property of skeletal muscle to characterise its function, whereas for in vivo human muscles, torque-angle relationships (T-a-r) represent the maximum muscular capacity as a function of joint angle. However, since in vivo force/torque-length data is only available for rotational single-joint movements the purpose of the present study was to identify torque-angle-relationships for multi-joint leg extension. Therefore, inverse dynamics served for calculation of ankle and knee joint torques of 18 male subjects when performing maximum voluntary isometric contractions in a seated leg press. Measurements in increments of 10° knee angle from 30° to 100° knee flexion resulted in eight discrete angle configurations of hip, knee and ankle joints. For the knee joint we found an ascending-descending T-a-r with a maximum torque of 289.5° ± 43.3 Nm, which closely matches literature data from rotational knee extension. In comparison to literature we observed a shift of optimum knee angle towards knee extension. In contrast, the T-a-r of the ankle joint vastly differed from relationships obtained for isolated plantar flexion. For the ankle T-a-r derived from multi-joint leg extension subjects operated over different sections of the force-length curve, but the ankle T-a-r derived from isolated joint efforts was over the ascending limb for all subjects. Moreover, mean maximum torque of 234.7 ± 56.6 Nm exceeded maximal strength of isolated plantar flexion (185.7 ± 27.8 Nm). From these findings we conclude that muscle function between isolated and more physiological multi-joint tasks differs. This should be considered for ergonomic and sports optimisation as well as for modelling and simulation of human movement.  相似文献   

15.
In sports analytics, an understanding of accurate on-field 3D knee joint moments (KJM) could provide an early warning system for athlete workload exposure and knee injury risk. Traditionally, this analysis has relied on captive laboratory force plates and associated downstream biomechanical modeling, and many researchers have approached the problem of portability by extrapolating models built on linear statistics. An alternative approach would be to capitalize on recent advances in deep learning. In this study, using the pre-trained CaffeNet convolutional neural network (CNN) model, multivariate regression of marker-based motion capture to 3D KJM for three sports-related movement types were compared. The strongest overall mean correlation to source modeling of 0.8895 was achieved over the initial 33% of stance phase for sidestepping. The accuracy of these mean predictions of the three critical KJM associated with anterior cruciate ligament (ACL) injury demonstrate the feasibility of on-field knee injury assessment using deep learning in lieu of laboratory embedded force plates. This multidisciplinary research approach significantly advances machine representation of real-world physical models with practical application for both community and professional level athletes.  相似文献   

16.
Pattern of anterior cruciate ligament force in normal walking   总被引:6,自引:0,他引:6  
The goal of this study was to calculate and explain the pattern of anterior cruciate ligament (ACL) loading during normal level walking. Knee-ligament forces were obtained by a two-step procedure. First, a three-dimensional (3D) model of the whole body was used together with dynamic optimization theory to calculate body-segmental motions, ground reaction forces, and leg-muscle forces for one cycle of gait. Joint angles, ground reaction forces, and muscle forces obtained from the gait simulation were then input into a musculoskeletal model of the lower limb that incorporated a 3D model of the knee. The relative positions of the femur, tibia, and patella and the forces induced in the knee ligaments were found by solving a static equilibrium problem at each instant during the simulated gait cycle. The model simulation predicted that the ACL bears load throughout stance. Peak force in the ACL (303 N) occurred at the beginning of single-leg stance (i.e., contralateral toe off). The pattern of ACL force was explained by the shear forces acting at the knee. The balance of muscle forces, ground reaction forces, and joint contact forces applied to the leg determined the magnitude and direction of the total shear force acting at the knee. The ACL was loaded whenever the total shear force pointed anteriorly. In early stance, the anterior shear force from the patellar tendon dominated the total shear force applied to the leg, and so maximum force was transmitted to the ACL at this time. ACL force was small in late stance because the anterior shear forces supplied by the patellar tendon, gastrocnemius, and tibiofemoral contact were nearly balanced by the posterior component of the ground reaction.  相似文献   

17.
ACL damage is one the most frequent causes of knee injuries and thus has long been the focus of research in biomechanics and sports medicine. Due to the anisometric geometry and functional complexity of the ACL in the knee joint, it is usually difficult to experimentally study the biomechanics of ACLs. Anatomically ACL geometry was obtained from both MR images and anatomical observations. The optimal material parameters of the ACL were obtained by using an optimization-based material identification method that minimized the differences between experimental results from ACL specimens and FE simulations. The optimal FE model simulated biomechanical responses of the ACL during complex combined injury-causing knee movements, it predicted stress concentrations on the top and middle side of the posterolateral (PL) bundles. This model was further validated by a clinical case of ACL injury diagnosed by MRI and arthroscope, it demonstrated that the locations of rupture in the patient’s knee corresponded to those where the stresses and moments were predicted to be concentrated. The result implies that varus rotation played a contributing but secondary role in injury under combined movements, the ACL elevation angle, is positive correlated with the tensional loading tolerance of the ACL.  相似文献   

18.
The purpose of this study was to develop a method for identifying subject-specific passive elastic joint moment-angle relationships in the lower extremity, which could subsequently be used to estimate passive contributions to joint kinetics during gait. Twenty healthy young adults participated in the study. Subjects were positioned side-lying with their dominant limb supported on a table via low-friction carts. A physical therapist slowly manipulated the limb through full sagittal hip, knee, and ankle ranges of motion using two hand-held 3D load cells. Lower extremity kinematics, measured with a passive marker motion capture system, and load cell readings were used to compute joint angles and associated passive joint moments. We formulated a passive joint moment-angle model that included eight exponential functions to account for forces generated via the passive stretch of uni-articular structures and bi-articular muscles. Model parameters were estimated for individual subjects by minimizing the sum of squared errors between model predicted and experimentally measured moments. The model predictions closely replicated measured joint moments with average root-mean-squared errors of 2.5, 1.4, and 0.7 Nm about the hip, knee, and ankle respectively. We show that the models can be coupled with gait kinematics to estimate passive joint moments during walking. Passive hip moments were substantial from terminal stance through initial swing, with energy being stored as the hip extended and subsequently returned during pre- and initial swing. We conclude that the proposed methodology could provide quantitative insights into the potentially important role that passive mechanisms play in both normal and abnormal gait.  相似文献   

19.
Approximately 320,000 anterior cruciate ligament (ACL) injuries in the United States each year are non-contact injuries, with many occurring during a single-leg jump landing. To reduce ACL injury risk, one option is to improve muscle strength and/or the activation of muscles crossing the knee under elevated external loading. This study?s purpose was to characterize the relative force production of the muscles supporting the knee during the weight-acceptance (WA) phase of single-leg jump landing and investigate the gastrocnemii forces compared to the hamstrings forces. Amateur male Western Australian Rules Football players completed a single-leg jump landing protocol and six participants were randomly chosen for further modeling and simulation. A three-dimensional, 14-segment, 37 degree-of-freedom, 92 muscle-tendon actuated model was created for each participant in OpenSim. Computed muscle control was used to generate 12 muscle-driven simulations, 2 trials per participant, of the WA phase of single-leg jump landing. A one-way ANOVA and Tukey post-hoc analysis showed both the quadriceps and gastrocnemii muscle force estimates were significantly greater than the hamstrings (p<0.001). Elevated gastrocnemii forces corresponded with increased joint compression and lower ACL forces. The elevated quadriceps and gastrocnemii forces during landing may represent a generalized muscle strategy to increase knee joint stiffness, protecting the knee and ACL from external knee loading and injury risk. These results contribute to our understanding of how muscle?s function during single-leg jump landing and should serve as the foundation for novel muscle-targeted training intervention programs aimed to reduce ACL injuries in sport.  相似文献   

20.
The purpose of this study was to predict and explain the pattern of shear force and ligament loading in the ACL-deficient knee during walking, and to compare these results to similar calculations for the healthy knee. Musculoskeletal modeling and computer simulation were combined to calculate ligament forces in the ACL-deficient knee during walking. Joint angles, ground-reaction forces, and the corresponding lower-extremity muscle forces obtained from a whole-body dynamic optimization simulation of walking were input into a second three-dimensional model of the lower extremity that represented the knee as a six degree-of-freedom spatial joint. Anterior tibial translation (ATT) increased throughout the stance phase of gait when the model ACL was removed. The medial collateral ligament (MCL) was the primary restraint to ATT in the ACL-deficient knee. Peak force in the MCL was three times greater in the ACL-deficient knee than in the ACL-intact knee; however, peak force sustained by the MCL in the ACL-deficient knee was limited by the magnitude of the total anterior shear force applied to the tibia. A decrease in anterior tibial shear force was brought about by a decrease in the patellar tendon angle resulting from the increase in ATT. These results suggest that while the MCL acts as the primary restraint to ATT in the ACL-deficient knee, changes in patellar tendon angle reduce total anterior shear force at the knee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号