首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have demonstrated that AKT1 and AKT3 are activated by heat shock and oxidative stress via both phosphatidylinositol 3-kinase-dependent and -independent pathways. However, the activation and role of AKT2 in the stress response have not been fully elucidated. In this study, we show that AKT2 in epithelial cells is activated by UV-C irradiation, heat shock, and hyperosmolarity as well as by tumor necrosis factor alpha (TNFalpha) through a phosphatidylinositol 3-kinase-dependent pathway. The activation of AKT2 inhibits UV- and TNF alpha-induced c-Jun N-terminal kinase (JNK) and p38 activities that have been shown to be required for stress- and TNF alpha-induced programmed cell death. Moreover, AKT2 interacts with and phosphorylates I kappa B kinase alpha. The phosphorylation of I kappa B kinase alpha and activation of NF kappa B mediates AKT2 inhibition of JNK but not p38. Furthermore, phosphatidylinositol 3-kinase inhibitor or dominant negative AKT2 significantly enhances UV- and TNF alpha-induced apoptosis, whereas expression of constitutively active AKT2 inhibits programmed cell death in response to UV and TNFalpha -induced apoptosis by inhibition of stress kinases and provide the first evidence that AKT inhibits stress kinase JNK through activation of the NF kappa B pathway.  相似文献   

2.
3.
The promyelocytic leukemia protein (PML) plays an essential role in multiple pathways of apoptosis. Our previous study showed that PML enhances tumor necrosis factor-induced apoptosis by inhibiting the NFkappaB survival pathway. To continue exploring the mechanism of PML-induced apoptosis, we performed a DNA microarray screening of PML target genes using a PML-inducible stable cell line. We found that Survivin was one of the downstream target genes of PML. Cotransfection experiments demonstrated that PML4 repressed transactivation of the Survivin promoter in an isoform-specific manner. Western blot analysis demonstrated that induced PML expression down-regulated Survivin. Inversely, PML knockdown by siRNA up-regulated Survivin expression. A substantial increase in Survivin expression was found in PML-deficient cells. Re-expression of PML in PML-/- mouse embryo fibroblasts down-regulated the expression of Survivin. Furthermore, cells arrested at the G2/M cell cycle phase expressed a high level of Survivin and a significantly lower level of PML. Overexpression of PML in A549 cells reduced Survivin expression leading to massive apoptotic cell death associated with activation of procaspase 9, caspase 3, and caspase 7. Together, our results demonstrate a novel mechanism of PML-induced apoptosis by down-regulation of Survivin.  相似文献   

4.
Tumor necrosis factor‐alpha (TNFα) induces cancer development and metastasis, which is prominently achieved by nuclear factor‐kappa B (NF‐κB) activation. TNFα‐induced NF‐κB activation enhances cellular mechanisms including proliferation, migration, and invasion. KiSS1, a key regulator of puberty, was initially discovered as a tumor metastasis suppressor. The expression of KiSS1 was lost or down‐regulated in different metastatic tumors. However, it is unclear whether KiSS1 regulates TNFα‐induced NF‐κB activation and further tumor cell migration. In this study, we demonstrate that KiSS1 suppresses the migration of breast cancer cells by inhibiting TNFα‐induced NF‐κB pathway and RhoA activation. Both KiSS1 overexpression and KP10 (kisspeptin‐10) stimulation inhibited TNFα‐induced NF‐κB activity, suppressed TNFα‐induced cell migration and cell attachment to fibronectin in breast cancer cells while KP10 has little effect on cancer cell proliferation. Furthermore, KP10 inhibited TNFα‐induced cell migration and RhoA GTPase activation. Therefore, our data demonstrate that KiSS1 inhibits TNFα‐induced NF‐κB activation via downregulation of RhoA activation and suppression of breast cancer cell migration and invasion. J. Cell. Biochem. 107: 1139–1149, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
6.
Suppression of NF kappa B activation has been involved in the elimination of survival programs during endothelial cell (EC) apoptosis. We used alpha-tocopheryl succinate (alpha-TOS) to trigger apoptosome formation and the subsequent activation of executioner caspases. The level of bcl-2 was reduced by alpha-TOS, and its downregulation potentiated and its overexpression suppressed pro-apoptotic effects of alpha-TOS, indicating a mitochondrial role in alpha-TOS-induced apoptosis in EC. alpha-TOS treatment was associated with induction of TUNEL-positive apoptosis in EC with a high but not with a low proliferation index. The use of the pan-caspase inhibitor z-VAD.fmk suggested the involvement of caspases in cleavage of p65, and in inhibition of nuclear translocation of p65 and NF kappa B-dependent transactivation of a gene construct encoding the green fluorescence protein elicited by TNF alpha in contact-arrested EC. The suppression by alpha-TOS of inflammatory EC responses induced by TNF alpha such as VCAM-1 mRNA and surface protein expression and shear-resistant arrest of monocytic cells were also reversed by z-VAD.fmk. NF kappa B-dependent transactivation was preserved in alpha-TOS-treated EC stably transfected with a caspase-noncleavable p65 mutant but not with its truncated form, thus establishing a direct link between alpha-TOS-induced effects and p65 cleavage. Our data infer a pathway by which caspase activation in EC inhibits NF kappa B-dependent inflammatory activation and monocyte recruitment, and provide evidence for a relationship between pro-apoptotic and anti-inflammatory pathways.  相似文献   

7.
8.
9.
A recent report suggested that platelet-derived growth factor (PDGF) activates nuclear factor-kappa B (NF-kappa B) by phosphorylation of the protein kinase Akt [Romashkova and Makarov, Nature 401 (1999) 86-90]. The present study investigates the role of Akt in the activation of NF-kappa B by tumor necrosis factor-alpha (TNF alpha, 10 ng/ml) and PDGF-BB (20 ng/ml) in human vascular smooth muscle cells (SMC), skin and foreskin fibroblasts. TNF alpha stimulated serine phosphorylation and degradation of the inhibitory protein I kappa B alpha and strongly induced nuclear NF-kappa B translocation and binding activity. PDGF did not induce serine phosphorylation or degradation of I kappa B alpha and did not enhance binding activity of NF-kappa B. In contrast, stimulation with PDGF resulted in a marked phosphorylation of Akt, but no Akt phosphorylation occurred after stimulation with TNF alpha. These data suggest that Akt phosphorylation is not involved in NF-kappa B activation in human SMC and fibroblasts.  相似文献   

10.
Vascular cell adhesion molecule-1 (VCAM-1) was first identified as a protein that appears on the surface of endothelial cells after exposure to inflammatory cytokines. Through interaction with its integrin counter receptor VLA-4, VCAM-1 mediates cell-cell interactions important for immune function. We have cloned and begun characterization of the promoter for the VCAM-1 gene. In a series of transfection assays into human umbilical vein endothelial cells (HUVECs), we find that silencers between positions -1.641 kilobases and -288 base pairs restrict promoter activity, and that treatment with tumor necrosis factor-alpha overcomes this inhibition and activates the promoter through two NF kappa B sites located at positions -77 and -63 base pairs of the VCAM-1 gene. This responsiveness appears cell-specific since constructs containing the VCAM-1 NF kappa B sites are not responsive to tumor necrosis factor alpha in the T-cell line Jurkat. The two VCAM-1 NF kappa B sites, which differ slightly in their sequence, form distinct complexes in gel retardation assays, suggesting that they interact with different NF kappa B-site binding proteins. The distribution of these proteins could then control activity of the NF kappa B sites. We conclude that the pattern of VCAM-1 expression in HUVECs is controlled by a combination of these silencers and NF kappa B sites.  相似文献   

11.
12.
Smac mimetics are potential anticancer therapeutics selectively killing cancer cells through autocrine tumor necrosis factor (TNF)‐mediated apoptosis pathway. Our recent study reveal that the Smac mimetic compound 3 (SMC3)‐activated NF‐κB protects cancer cells against apoptosis, thus blunting SMC3's anticancer activity. Based on our previous observations that the nutrient flavonoid luteolin potently blocks TNF‐induced NF‐κB activation in cancer cells, we investigated if the combination of SMC3 and luteolin would achieve a synergistic anticancer activity. The results show that luteolin had no effect on autocrine TNF but it effectively blocked SMC3‐induced nuclear factor kappa B (NF‐κB) activation and expression of anti‐apoptotic NF‐κB targets. When SMC3 and luteolin were combined in treating cancer cells derived from lung and liver tumors, the activation of TNF‐dependent apoptosis was markedly sensitized and a synergistic cytotoxic effect was achieved. In addition, the SMC3 and luteolin co‐treatment had marginal effect on immortalized normal human bronchial epithelial cells. The results suggest that combination of SMC3 and luteolin is an effective approach for improving the anticancer value of SMC3, which has implications in cancer prevention and therapy. J. Cell. Biochem. 108: 1125–1131, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
14.
15.
The roles of tumor necrosis factor alpha (TNF‐alpha) and its mediators in cellular processes related to intestinal diseases remain elusive. In this study, we aimed to determine the biological role of activated Cdc42‐associated kinase 1 (ACK1) in TNF‐alpha‐mediated apoptosis and proliferation in Caco‐2 cells. ACK1 expression was knocked down using ACK1‐specific siRNAs, and ACK1 activity was disrupted using a small molecule ACK1 inhibitor. The Terminal deoxynucleotidyl transferase biotin‐dUTP Nick End Labeling (TUNEL) and the BrdU incorporation assays were used to measure apoptosis and cell proliferation, respectively. ACK1‐specific siRNA and the pharmacological ACK1 inhibitor significantly abrogated the TNF‐alpha‐mediated anti‐apoptotic effects and proliferation of Caco‐2 cells. Interestingly, TNF‐alpha activated ACK1 at tyrosine 284 (Tyr284), and the ErbB family of proteins was implicated in ACK1 activation in Caco‐2 cells. ACK1‐Tyr284 was required for protein kinase B (AKT) activation, and ACK1 signaling was mediated through recruiting and phosphorylating the down‐stream adaptor protein AKT, which likely promoted cell proliferation in response to TNF‐alpha. Moreover, ACK1 activated AKT and Src enhanced nuclear factor‐кB (NF‐кB) activity, suggesting a correlation between NF‐кB signaling and TNF‐alpha‐mediated apoptosis in Caco‐2 cells. Our results demonstrate that ACK1 plays an important role in modulating TNF‐alpha‐induced aberrant cell proliferation and apoptosis, mediated in part by ACK1 activation. ACK1 and its down‐stream effectors may hold promise as therapeutic targets in the prevention and treatment of gastrointestinal cancers, in particular, those induced by chronic intestinal inflammation.  相似文献   

16.
17.
18.
Acute promyelocytic leukemia (APL), a subtype of acute myeloid leukemia, is the prototype of a cancer that can be cured by differentiation therapy using combined retinoic acid (RA) and chemotherapy. Acute promyelocytic leukemia is caused by chromosomal translocations, which in the large majority of cases generate the prototypic promyelocytic leukemia-retinoic-acid receptor alpha (PML-RARalpha) an oncogenic fusion protein formed from the retinoic-acid receptor alpha and the so-called PML protein. The fusion protein leads to the deregulation of wild type PML and RARalpha function, thus inducing the differentiation block and an altered survival capacity of promyelocytes of affected patients. A plethora of studies have revealed molecular details that account for the oncogenic properties of acute promyelocytic leukemia fusion proteins and the events that contribute to the therapy-induced differentiation and apoptosis of patients' blasts. Illustrating the beneficial mechanisms of action of retinoids for acute promyelocytic leukemia patients this review goes on to discuss a plethora of recently recognized molecular paradigms by which retinoids and rexinoids, alone or in combination with other compounds, regulate growth, differentiation and apoptosis also in non-acute promyelocytic leukemia cells, highlighting their potential as drugs for cancer therapy and prevention.  相似文献   

19.
The cyclooxygenase 2 (COX-2) inhibitor celecoxib (also called celebrex), approved for the treatment of colon carcinogenesis, rheumatoid arthritis, and other inflammatory diseases, has been shown to induce apoptosis and inhibit angiogenesis. Because NF-kappa B plays a major role in regulation of apoptosis, angiogenesis, carcinogenesis, and inflammation, we postulated that celecoxib modulates NF-kappa B. In the present study, we investigated the effect of this drug on the activation of NF-kappa B by a wide variety of agents. We found that celecoxib suppressed NF-kappa B activation induced by various carcinogens, including TNF, phorbol ester, okadaic acid, LPS, and IL-1 beta. Celecoxib inhibited TNF-induced I kappa B alpha kinase activation, leading to suppression of I kappa B alpha phosphorylation and degradation. Celecoxib suppressed both inducible and constitutive NF-kappa B without cell type specificity. Celecoxib also suppressed p65 phosphorylation and nuclear translocation. Akt activation, which is required for TNF-induced NF-kappa B activation, was also suppressed by this drug. Celecoxib also inhibited the TNF-induced interaction of Akt with I kappa B alpha kinase (IKK). Celecoxib abrogated the NF-kappa B-dependent reporter gene expression activated by TNF, TNF receptor, TNF receptor-associated death domain, TNF receptor-associated factor 2, NF-kappa B-inducing kinase, and IKK, but not that activated by p65. The COX-2 promoter, which is regulated by NF-kappa B, was also inhibited by celecoxib, and this inhibition correlated with suppression of TNF-induced COX-2 expression. Besides NF-kappa B, celecoxib also suppressed TNF-induced JNK, p38 MAPK, and ERK activation. Thus, overall, our results indicate that celecoxib inhibits NF-kappa B activation through inhibition of IKK and Akt activation, leading to down-regulation of synthesis of COX-2 and other genes needed for inflammation, proliferation, and carcinogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号