首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostaglandin H synthases (PGHSs) have been identified in the majority of vertebrate and invertebrate animals, and most recently in the red alga Gracilaria vermiculophylla. Here we report on the cloning, expression and characterization of the algal PGHS, which shares only about 20% of the amino acid sequence identity with its animal counterparts, yet catalyzes the conversion of arachidonic acid into prostaglandin-endoperoxides, PGG2 and PGH2. The algal PGHS lacks structural elements identified in all known animal PGHSs, such as epidermal growth factor-like domain and helix B in the membrane binding domain. The key residues of animal PGHS, like catalytic Tyr-385 and heme liganding His-388 are conserved in the algal enzyme. However, the amino acid residues shown to be important for substrate binding and coordination, and the target residues for nonsteroidal anti-inflammatory drugs (Arg-120, Tyr-355, and Ser-530) are not found at the appropriate positions in the algal sequences. Differently from animal PGHSs the G. vermiculophylla PGHS easily expresses in Escherichia coli as a fully functional enzyme. The recombinant protein was identified as an oligomeric (evidently tetrameric) ferric heme protein. The preferred substrate for the algal PGHS is arachidonic acid with cyclooxygenase reaction rate remarkably higher than values reported for mammalian PGHS isoforms. Similarly to animal PGHS-2, the algal enzyme is capable of metabolizing ester and amide derivatives of arachidonic acid to corresponding prostaglandin products. Algal PGHS is not inhibited by non-steroidal anti-inflammatory drugs. A single copy of intron-free gene encoding for PGHS was identified in the red algae G. vermiculophylla and Coccotylus truncatus genomes.  相似文献   

2.
Prostaglandin endoperoxide H synthase (PGHS) is a key enzyme for the synthesis of prostaglandins (PGs) which play important roles in inflammation and carcinogenesis. Because the extract from Psidium guajava is known to have a variety of beneficial effects on our body including the anti-inflammatory, antioxidative and antiproliferative activities, we investigated whether the extract inhibited the catalytic activity of the two PGHS isoforms using linoleic acid as an alternative substrate. The guava leaf extract inhibited the cyclooxygenase reaction of recombinant human PGHS-1 and PGHS-2 as assessed by conversion of linoleic acid to 9- and 13-hydroxyoctadecadienoic acids (HODEs). The guava leaf extract also inhibited the PG hydroperoxidase activity of PGHS-1, which was not affected by nonsteroidal anti-inflammatory drugs (NSAIDs). Quercetin which was one of the major components not only inhibited the cyclooxygenase activity of both isoforms but also partially inhibited the PG hydroperoxidase activity. Overexpression of human PGHS-1 and PGHS-2 in the human colon carcinoma cells increased the DNA synthesis rate as compared with mock-transfected cells which did not express any isoforms. The guava leaf extract not only inhibited the PGE2 synthesis but also suppressed the DNA synthesis rate in the PGHS-1- and PGHS-2-expressing cells to the same level as mock-transfected cells. These results demonstrate the antiproliferative activity of the guava leaf extract which is at least in part caused by inhibition of the catalytic activity of PGHS isoforms.  相似文献   

3.
By using the technique of site-directed spin labeling combined with EPR spectroscopy, we have observed that binding of arachidonic acid and nonsteroidal anti-inflammatory drugs induces conformational changes in the human prostaglandin endoperoxide H(2) synthase enzyme (PGHS-2). Line shape broadening resulting from spin-spin coupling of nitroxide pairs introduced into the membrane-binding helices of PGHS-2 was used to calculate the inter-helical distances and changes in these distances that occur in response to binding various ligands. The inter-residue distances determined for the PGHS-2 holoenzyme using EPR were 1-7.9 A shorter than those of the crystal structure of the PGHS-2 holoenzyme. However, inter-helical distances calculated and determined by EPR for PGHS-2 complexed with arachidonic acid, flurbiprofen, and SC-58125 were in close agreement with those obtained from the cognate crystal structures. These results indicate that the structure of the solubilized PGHS-2 holoenzyme measured in solution differs from the crystal structure of PGHS-2 holoenzyme obtained by x-ray analysis. Furthermore, binding of ligands induces a conformational change in the holo-PGHS-2, converting it to a structure similar to those obtained by x-ray analysis. Proteolysis protection assays had previously provided circumstantial evidence that binding of heme and non-steroidal anti-inflammatory drugs alters the conformation of PGHS, but the present experiments are the first to directly measure such changes. The finding that arachidonate can also induce a conformational change in PGHS-2 was unexpected, and the magnitude of changes suggests this structural flexibility may be integral to the cyclooxygenase catalytic mechanism.  相似文献   

4.
Prostaglandin endoperoxide H synthases 1 and 2 (PGHS-1 and -2) are the major targets of nonsteroidal anti-inflammatory drugs. Both isozymes are integral membrane proteins but lack transmembrane domains. X-ray crystallographic studies have led to the hypothesis that PGHS-1 and -2 associate with only one face of the membrane bilayer through a novel, monotopic membrane binding domain (MBD) that is comprised of four short, consecutive, amphipathic alpha-helices (helices A-D) that include residues 74-122 in ovine PGHS-1 (oPGHS-1) and residues 59-108 in human PGHS-2 (hPGHS-2). Previous biochemical studies from our laboratory showed that the MBD of oPGHS-1 lies somewhere between amino acids 25 and 166. In studies reported here, membrane-associated forms of oPGHS-1 and hPGHS-2 were labeled using the hydrophobic, photoactivable reagent 3-trifluoro-3-(m-[(125)I]iodophenyl)diazirine, isolated, and cleaved with AspN and/or GluC, and the photolabeled peptides were sequenced. The results establish that the MBDs of oPGHS-1 and hPGHS-2 reside within residues 74-140 and 59-111, respectively, and thus provide direct provide biochemical support for the hypothesis that PGHS-1 and -2 do associate with membranes through a monotopic MBD. We also prepared HelA, HelB, and HelC mutants of oPGHS-1, in which, for each helix, three or four hydrophobic residues expected to protrude into the membrane were replaced with small, neutral residues. When expressed in COS-1 cells, HelA and HelC mutants exhibited little or no catalytic activity and were present, at least in part, as misfolded aggregates. The HelB mutant retained about 20% of the cyclooxygenase activity of native oPGHS-1 and partitioned in subcellular fractions like native oPGHS-1; however, the HelB mutant exhibited an extra site of N-glycosylation at Asn(104). When this glycosylation site was eliminated (HelB/N104Q mutation), the mutant lacked cyclooxygenase activity. Thus, our mutational analyses indicate that the amphipathic character of each helix is important for the assembly and folding of oPGHS-1 to a cyclooxygenase active form.  相似文献   

5.
Prostanoids are a large family of lipid mediators originating from prostaglandin H synthase (PGHS) activity on the 20-carbon polyunsaturated fatty acids dihomo-γ-linolenic acid (DGLA), arachidonic acid (AA) and eicosapentaenoic acid. The two mouse PGHS isoforms, PGHS-1 and PGHS-2, were expressed in Saccharomyces cerevisiae (yeast), as was a signal-peptide-deleted version of PGHS-1 (PGHS-1MA). PGHS-1 showed high activity with both AA and DGLA as substrate, whereas PGHS-2 activity was high with DGLA but low with AA. Signal peptide removal reduced the activity of PGHS-1MA by >50% relative to PGHS-1, but the residual activity indicated that correct targeting to the lumen of the endoplasmic reticulum may not be necessary for enzyme function. Coexpression of PGHS-1 with cDNAs encoding mouse prostaglandin I synthase and thromboxane A synthase, and with Trypanosoma brucei genomic DNA encoding prostaglandin F synthase in AA-supplemented yeast cultures resulted in production of the corresponding prostanoids, prostaglandin I2, thromboxane A2 and prostaglandin F. The inhibitory effects of nonsteroidal anti-inflammatory drugs (NSAIDs) on prostanoid production were tested on yeast cells expressing PGHS-1 in AA-supplemented culture. Dose-dependent inhibition of prostaglandin H2 production by aspirin, ibuprofen and indomethacin demonstrated the potential utility of this simple expression system in screening for novel NSAIDs.  相似文献   

6.
Prostaglandin H synthase-1 and -2 (PGHS-1 and PGHS-2, EC 1.14.99.1) are membrane associated glycoproteins that catalyze the first two steps in prostaglandin synthesis. As the enzymes play an important regulatory role in several physiological and pathophysiological processes, recombinant PGHS isoforms are widely used in biomedical research. In the present study, we expressed human PGHS-2 (hPGHS-2) with and without a six histidine sequence tag (His(6) tag) near the amino- or carboxy-terminus of the protein in the Pichia pastoris (P. pastoris) expression system using native or yeast signal sequences. The recombinant His(6) tagged hPGHS-2 was purified using Ni-affinity and anion exchange chromatography, whereas the purification of the C-terminally His(6) tagged hPGHS-2 was more efficient. K(m), k(cat) and IC(50) values were determined to characterize the protein. The data obtained indicate that both the N- and C-terminally His(6) tagged hPGHS-2 are functional and the catalytic properties of the recombinant protein and the enzyme produced in other expression systems are comparable. As the yeast culture is easy to handle, the P. pastoris system could serve as an alternative to the most commonly used baculovirus-insect cell expression system for the production of the recombinant PGHS-2.  相似文献   

7.
Secretory leukocyte protease inhibitor (SLPI) is a 11.7 kDa mucosal protein with potent anti-microbial, anti-inflammatory, and wound healing activities. Previous efforts to express and purify the non-glycosylated cationic protein as a recombinant protein in bacteria required extensive denaturation and renaturation to refold the disulfide-rich protein into its biologically active form. To overcome this limitation, we have expressed human SLPI as a polyhistidine-tagged protein (bvHisSLPI) using a recombinant baculovirus expression system. Studies were conducted to determine the timing of maximal protein production following baculovirus infection of Sf21 cells. The 16.4kDa-tagged protein was then overexpressed in Sf21 cells following a 48-h infection with bvHisSLPI-encoding baculovirus, purified by nickel-chelating affinity chromatography under non-denaturing conditions, and analyzed by Coomassie-stained SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot. Purified bvHisSLPI was further characterized by enterokinase digestion to remove the polyhistidine tag from its N-terminus. In serine protease inhibition assays, purified bvHisSLPI blocked substrate cleavage by two serine proteases, chymotrypsin and cathepsin G, comparable to bacterially expressed SLPI. The baculovirus expression and affinity purification strategy described here will facilitate further studies of the structural and biological properties of this important multifunctional protein.  相似文献   

8.
Arg-120 is located near the mouth of the hydrophobic channel that forms the cyclooxygenase active site of prostaglandin endoperoxide H synthases (PGHSs)-1 and -2. Replacement of Arg-120 of ovine PGHS-1 with a glutamine increases the apparent Km of PGHS-1 for arachidonate by 1,000-fold (Bhattacharyya, D. K., Lecomte, M., Rieke, C. J., Garavito, R. M., and Smith, W. L. (1996) J. Biol. Chem. 271, 2179-2184). This and other evidence indicate that the guanido group of Arg-120 forms an ionic bond with the carboxylate group of arachidonate and that this interaction is an important contributor to the overall strength of arachidonate binding to PGHS-1. In contrast, we report here that R120Q human PGHS-2 (hPGHS-2) and native hPGHS-2 have very similar kinetic properties, but R120L hPGHS-2 catalyzes the oxygenation of arachidonate inefficiently. Our data indicate that the guanido group of Arg-120 of hPGHS-2 interacts with arachidonate through a hydrogen bond rather than an ionic bond and that this interaction is much less important for arachidonate binding to PGHS-2 than to PGHS-1. The Km values of PGHS-1 and -2 for arachidonate are the same, and all but one of the core residues of the active sites of the two isozymes are identical. Thus, the results of our studies of Arg-120 of PGHS-1 and -2 imply that interactions involved in the binding of arachidonate to PGHS-1 and -2 are quite different and that residues within the hydrophobic cyclooxygenase channel must contribute more significantly to arachidonate binding to PGHS-2 than to PGHS-1. As observed previously with R120Q PGHS-1, flurbiprofen was an ineffective inhibitor of R120Q hPGHS-2. PGHS-2-specific inhibitors including NS398, DuP-697, and SC58125 had IC50 values for the R120Q mutant that were up to 1,000-fold less than those observed for native hPGHS-2; thus, the positively charged guanido group of Arg-120 interferes with the binding of these compounds. NS398 did not cause time-dependent inhibition of R120Q hPGHS-2, whereas DuP-697 and SC58125 were time-dependent inhibitors. Thus, Arg-120 is important for the time-dependent inhibition of hPGHS-2 by NS398 but not by DuP-697 or SC58125.  相似文献   

9.
The cyclooxygenase activity of the bifunctional enzyme prostaglandin H(2) synthase-2 (PGHS-2) is the target of non-steroidal anti-inflammatory drugs. Inhibition of the peroxidase activity of PGHS has been less studied. Using Soret absorption changes, the binding of aromatic hydroxamic acids to the peroxidase site of PGHS-2 was examined to investigate the structural determinants of inhibition. Typical of mammalian peroxidases, the K(d) for benzhydroxamic acid (42mM) is much greater than that for salicylhydroxamic acid (475microM). Binding of the hydroxamic acid tepoxalin (25microM) resulted in only minor Soret changes. However, tepoxalin is an efficient reducing cosubstrate, indicating that it is an alternative electron donor rather than an inhibitor of the peroxidase activity. Aromatic hydrazides are metabolically activated inhibitors of peroxidases. 2-Naphthoichydrazide (2-NZH) caused the time- and concentration-dependent inhibition of both PGHS-2 peroxidase and cyclooxygenase activities. H(2)O(2) was required for the inactivation of both PGHS-2 activities and indomethacin (which binds at the cyclooxygenase site) did not affect the peroxidase inhibitory potency of 2-NZH. A series of aromatic hydrazides were found to be potent inhibitors of PGHS-2 peroxidase activity with IC(50) values in the 6-100microM range for 13 of the 18 hydrazides examined. Selective inhibition of PGHS-2 over myeloperoxidase and horseradish peroxidase isozyme C was increased by certain ring substitutions. In particular, a chloro group para to the hydrazide moiety increased the PGHS-2 selectivity relative to both myeloperoxidase and horseradish peroxidase isozyme C.  相似文献   

10.
Prostaglandin E2 increases growth and motility of colorectal carcinoma cells   总被引:36,自引:0,他引:36  
Chronic use of nonsteroidal anti-inflammatory drugs results in a significant reduction of risk and mortality from colorectal cancer in humans. All of the mechanism(s) by which nonsteroidal anti-inflammatory drugs exert their protective effects are not completely understood, but they are known to inhibit cyclooxygenase activity. The cyclooxygenase enzymes catalyze a key reaction in the conversion of arachidonic acid to prostaglandins, such as prostaglandin E(2) (PGE(2)). Here we demonstrate that PGE(2) treatment of LS-174 human colorectal carcinoma cells leads to increased motility and changes in cell shape. The prostaglandin EP(4) receptor signaling pathway appears to play a role in transducing signals which regulate these effects. PGE(2) treatment results in an activation of phosphatidylinositol 3-kinase/protein kinase B pathway that is required for the PGE(2)-induced changes in carcinoma cell motility and colony morphology. Our results suggest that PGE(2) might enhance the invasive potential of colorectal carcinoma cells via activation of major intracellular signal transduction pathways not previously reported to be regulated by prostaglandins.  相似文献   

11.
Large quantities of recombinant human aldose reductase were produced using Spodoptera frugiperda cells and properties of the enzyme were characterized. Direct purification of the recombinant aldose reductase by affinity column chromatography using Matrex gel orange A yielded a single 36 kDa band, similar in size to the purified human muscle aldose reductase, on a sodium dodecyl sulfate-polyacrylamide gel after silver staining. The isoelectric point of the recombinant enzyme was 5.85 which is identical to the human muscle aldose reductase. Following the treatment with an acylamino-acid releasing enzyme, the blocked NH2-terminal amino acid was identified to be acetylalanine. The successive NH2-terminal sequence and that of the COOH-terminal peptide concurred with the expected translated sequence. Kinetic analyses of the recombinant enzyme activity for various substrates and the cofactor, NADPH, demonstrated a good agreement with the previously reported kinetic data on the purified human aldose reductase. A high concentration of (NH4)2SO4 elicited a significant increase in both Km and Kcat for DL-glyceraldehyde as well as D-glucose. Although IC50 values for most of the aldose reductase inhibitors with recombinant enzyme were found to fall within the comparable range of those obtained with nonhuman mammalian enzymes, the IC50 value for epalrestat was more than 10-fold higher in the recombinant enzyme. These results indicate that the recombinant human aldose reductase expressed in the baculovirus system possesses structurally and enzymatically similar properties as those reported for the native human enzyme and should serve as a superior enzyme preparation to nonhuman mammalian enzymes for the screening of the efficacy and potency of newly developed aldose reductase inhibitors.  相似文献   

12.
Prostaglandin endoperoxide H synthases 1 and 2, also known as cyclooxygenases (COXs) 1 and 2, convert arachidonic acid (AA) to prostaglandin endoperoxide H(2). Prostaglandin endoperoxide H synthases are targets of nonspecific nonsteroidal anti-inflammatory drugs and COX-2-specific inhibitors called coxibs. PGHS-2 is a sequence homodimer. Each monomer has a peroxidase and a COX active site. We find that human PGHS-2 functions as a conformational heterodimer having a catalytic monomer (E(cat)) and an allosteric monomer (E(allo)). Heme binds tightly only to the peroxidase site of E(cat), whereas substrates, as well as certain inhibitors (e.g. celecoxib), bind the COX site of E(cat). E(cat) is regulated by E(allo) in a manner dependent on what ligand is bound to E(allo). Substrate and nonsubstrate fatty acids (FAs) and some COX inhibitors (e.g. naproxen) preferentially bind to the COX site of E(allo). AA can bind to E(cat) and E(allo), but the affinity of AA for E(allo) is 25 times that for E(cat). Palmitic acid, an efficacious stimulator of human PGHS-2, binds only E(allo) in palmitic acid/murine PGHS-2 co-crystals. Nonsubstrate FAs can potentiate or attenuate actions of COX inhibitors depending on the FA and whether the inhibitor binds E(cat) or E(allo). Our studies suggest that the concentration and composition of the free FA pool in the environment in which PGHS-2 functions in cells, the FA tone, is a key factor regulating PGHS-2 activity and its responses to COX inhibitors. We suggest that differences in FA tone occurring with different diets will likely affect both base-line prostanoid synthesis and responses to COX inhibitors.  相似文献   

13.
Prostaglandin E(2) (PGE(2)) production involves the activity of a multistep biosynthetic pathway. The terminal components of this cascade, two PGE(2) synthases (PGES), have very recently been identified as glutathione-dependent proteins. cPGES is cytoplasmic, apparently identical to the hsp90 chaperone, p23, and associates functionally with prostaglandin-endoperoxide H synthase-1 (PGHS-1), the constitutive cyclooxygenase. A second synthase, designated mPGES, is microsomal and can be regulated. Here we demonstrate that mPGES and PGHS-2 are expressed at very low levels in untreated human orbital fibroblasts. Interleukin (IL)-1beta treatment elicits high levels of PGHS-2 and mPGES expression. The induction of both enzymes occurs at the pretranslational level, is the consequence of enhanced gene promoter activities, and can be blocked by dexamethasone (10 nm). SC58125, a PGHS-2-selective inhibitor, could attenuate the induction of mPGES, suggesting a dependence of this enzyme on PGHS-2 activity. IL-1beta treatment activates p38 and ERK mitogen-activated protein kinases. Induction of both mPGES and PGHS-2 was susceptible to either chemical inhibition or molecular interruption of these pathways with dominant negative constructs. These results indicate that the induction of PGHS-2 and mPGES by IL-1beta underlies robust PGE(2) production in orbital fibroblasts.  相似文献   

14.
Triacylglycerol hydrolase mobilizes stored triacylglycerol some of which is used for very-low-density lipoprotein assembly in the liver. A full-length cDNA coding for a human triacylglycerol hydrolase (hTGH) was isolated from a human liver cDNA library. The cDNA has an open reading frame of 576 amino acids with a cleavable 18-amino-acid signal sequence. The deduced amino acid sequence shows that the protein belongs to the carboxylesterase family. The hTGH was highly expressed in Escherichia coli as a 6xHis-tagged fusion protein, with the tag at the N-terminus in place of the signal peptide. However, the expressed protein was insoluble and inactive. Expression was confirmed by immunoblotting and N-terminal amino acid sequencing of the purified protein. Expression of hTGH with its native signal sequence and a C-terminal 6xHis-tag in Sf9 cells using the baculovirus expression system yielded active enzyme. N-terminal amino acid sequencing of the purified expressed protein showed correct processing of the signal peptide. The enzyme also undergoes glycosylation within the endoplasmic reticulum lumen. The results suggest that hTGH expressed in insect cells is properly folded. Therefore, baculovirus expression of hTGH and facile purification of the His-tagged enzyme will allow detailed characterization of the structure/activity relationship.  相似文献   

15.
Long-chain fatty acids can be metabolized to C(n)(-1) aldehydes by alpha-oxidation in plants. The reaction mechanism of the enzyme has not been elucidated. In this study, a complete nucleotide sequence of fatty acid alpha-oxygenase gene in rice plants (Oryza sativa) was isolated. The deduced amino acid sequence showed some similarity with those of mammalian prostaglandin H synthases (PGHSs). The gene was expressed in Escherichia coli and purified to apparently homogeneous state. It showed the highest activity with linoleic acid and predominantly formed 2-hydroperoxide of the fatty acid (C(n)), which is then spontaneously decarboxylated to form corresponding C(n)(-1) aldehyde. With linoleic or linoleic acids as a substrate, rice alpha-oxygenase formed no product having a lambda(max) at approximately 234 nm, which indicated that the enzyme could not oxygenize the pentadiene system in the substrate. The spectroscopic feature of the purified enzyme in its ferrous state is similar to that of mammalian PGHS, whereas that of dithionite-reduced state showed significant difference. Site-directed mutagenesis revealed that His-158, Tyr-380, and Ser-558 were essential for the alpha-oxygenase activity. These residues are conserved in PGHS and known as a heme ligand, a source of a radical species to initiate oxygenation reaction and a residue involved in substrate binding, respectively. This finding suggested that the initial step of the oxygenation reaction in alpha-oxygenase has a high similarity with that of PGHS. The rice alpha-oxygenase activity was inhibited by imidazole but hardly inhibited by nonsteroidal anti-inflammatory drugs, such as aspirin, ibuprofen, and flurbiprofen, which are known as typical PGHS inhibitors. In addition, peroxidase activity could not be detected with alpha-oxygenase when palmitic acid 2-hydroperoxide was used as a substrate. From these findings, the catalytic resemblance between alpha-oxygenase and PGHS seems to be evident, although there still are differences in their substrate recognitions and peroxidation activities.  相似文献   

16.
The cyclooxygenase (COX) activity of prostaglandin endoperoxide H synthases (PGHSs) converts arachidonic acid and O2 to prostaglandin G2 (PGG2). PGHS peroxidase (POX) activity reduces PGG2 to PGH2. The first step in POX catalysis is formation of an oxyferryl heme radical cation (Compound I), which undergoes intramolecular electron transfer forming Intermediate II having an oxyferryl heme and a Tyr-385 radical required for COX catalysis. PGHS POX catalyzes heterolytic cleavage of primary and secondary hydroperoxides much more readily than H2O2, but the basis for this specificity has been unresolved. Several large amino acids form a hydrophobic "dome" over part of the heme, but when these residues were mutated to alanines there was little effect on Compound I formation from H2O2 or 15-hydroperoxyeicosatetraenoic acid, a surrogate substrate for PGG2. Ab initio calculations of heterolytic bond dissociation energies of the peroxyl groups of small peroxides indicated that they are almost the same. Molecular Dynamics simulations suggest that PGG2 binds the POX site through a peroxyl-iron bond, a hydrogen bond with His-207 and van der Waals interactions involving methylene groups adjoining the carbon bearing the peroxyl group and the protoporphyrin IX. We speculate that these latter interactions, which are not possible with H2O2, are major contributors to PGHS POX specificity. The distal Gln-203 four residues removed from His-207 have been thought to be essential for Compound I formation. However, Q203V PGHS-1 and PGHS-2 mutants catalyzed heterolytic cleavage of peroxides and exhibited native COX activity. PGHSs are homodimers with each monomer having a POX site and COX site. Cross-talk occurs between the COX sites of adjoining monomers. However, no cross-talk between the POX and COX sites of monomers was detected in a PGHS-2 heterodimer comprised of a Q203R monomer having an inactive POX site and a G533A monomer with an inactive COX site.  相似文献   

17.
Prostaglandin H2 synthase (PGHS) synthesizes PGH2, a prostaglandin precursor, from arachidonic acid and was the first monotopic enzyme to have its structure experimentally determined. Both isozymes of PGHS are inhibited by nonsteroidal antiinflammatory drugs, an important class of drugs that are the primary means of relieving pain and inflammation. Selectively inhibiting the second isozyme, PGHS-2, minimizes the gastrointestinal side-effects. This had been achieved by the new PGHS-2 selective NSAIDs (i.e., COX-2 inhibitors) but it has been recently suggested that they suffer from additional side-effects. The design of these drugs only made use of static structures from x-ray crystallographic experiments. Investigating the dynamics of both PGHS-1 and PGHS-2 using classical molecular dynamics is expected to generate new insight into the differences in behavior between the isozymes, and therefore may allow improved PGHS-2 selective inhibitors to be designed. We describe a molecular dynamics protocol that integrates PGHS monomers into phospholipid bilayers, thereby producing in silico atomistic models of the PGHS system. Our protocol exploits the vacuum created beneath the protein when several lipids are removed from the top leaflet of the bilayer. The protein integrates into the bilayer during the first 5 ns in a repeatable process. The integrated PGHS monomer is stable and forms multiple hydrogen bonds between the phosphate groups of the lipids and conserved basic residues (Arg, Lys) on the protein. These interactions stabilize the system and are similar to interactions observed for transmembrane proteins.  相似文献   

18.
A number of studies have demonstrated that prostacyclin and nitric oxide (NO) regulate blood pressure, blood flow and platelet aggregation. In this paper, we have examined the possible relationship between NO and prostaglandin endoperoxide H synthase (PGHS)-1 and -2 activities in cultured bovine aortic endothelial cells. In the non-activated condition endothelial cells expressed PGHS-1 activity alone. When these cells were pretreated with aspirin to inactivate their PGHS-1 and then activated by serum and phorbol ester (TPA) for 6 h, the cells expressed PGHS-2 activity alone. The PGHS activity was assessed by the generation of 6-ketoprostaglandin F1alpha (6-ketoPGF1alpha), a stable metabolite of prostacyclin, after the treatment of these cells with arachidonic acid. The simultaneous addition of NOC-7, a NO donor, with arachidonic acid did not affect the production of 6-ketoPGF1alpha in PGHS-1 expressed cells, but attenuated it in PGHS-2-expressed cells. The inhibitory effect of NOC-7 on PGHS-2 activity was dose dependent, and the different effects of NOC-7 on the activities of PGHS isozymes were also observed in other NO donors. To confirm the different effect of NO on PGHS isozymes demonstrated in the cultured endothelial cells, we carried out an ex vivo perfusion assay in aorta isolated from normal and lipopolysaccharide (LPS)-treated rats. In the aortae isolated from normal rats, where dominant expression of PGHS-1 was expected, the NO donor did not affect the PGHS activity, while in aortae isolated from LPS-treated rats, where PGHS-2 was dominantly expressed, the NO donor dramatically inhibited the PGHS activity, suggesting that NO suppressed PGHS-2 activity alone. The inhibitory effect of NO on PGHS-2 activity was not mediated by cyclic GMP (cGMP), since (a) methylene blue, an inhibitor of soluble guanylate cyclase did not abolish the inhibitory effect of the NO donor on PGHS-2 activity, and (b) 8-Br-cGMP, a permeable cGMP analogue, failed to mimic the effect of NO donors. These data suggest that the effect of NO on prostacyclin production in endothelial cells was dependent on the expression rate of PGHS-1 and PGHS-2 in the cells.  相似文献   

19.
The recent identification and cloning of two glutathione-dependent prostaglandin E(2) synthase (PGES) genes has yielded important insights into the terminal step of PGE(2) synthesis. These enzymes form efficient functional pairs with specific members of the prostaglandin-endoperoxide H synthase (PGHS) family. Microsomal PGES (mPGES) is inducible and works more efficiently with PGHS-2, the inflammatory cyclooxygenase, while the cytoplasmic isoform (cPGES) pairs functionally with PGHS-1, the cyclooxygenase that ordinarily exhibits constitutive expression. KAT-50, a well differentiated thyroid epithelial cell line, expresses high levels of PGHS-2 but surprisingly low levels of PGE(2) when compared with human orbital fibroblasts. Moreover, PGHS-1 protein cannot be detected in KAT-50. We report here that KAT-50 cells express high basal levels of cPGES but mPGES mRNA and protein are undetectable. Thus, KAT-50 cells express the inefficient PGHS-2/cPGES pair, and this results in modest PGE(2) production. The high levels of cPGES and the absence of mPGES expression result from dramatic differences in the activities of their respective gene promoters. When mPGES is expressed in KAT-50 by transiently transfecting the cells, PGE(2) production is up-regulated substantially. These observations indicate that naturally occurring cells can express a suboptimal profile of PGHS and PGES isoforms, resulting in diminished levels of PGE(2) generation.  相似文献   

20.
Cloning and expression of human aldose reductase   总被引:5,自引:0,他引:5  
The complete amino acid sequence of human retina and muscle aldose reductase was determined by nucleotide analysis of cDNA clones isolated using synthetic oligonucleotide probes based on partial amino acid sequences of purified human psoas muscle aldose reductase. The cDNA sequence differs substantially in the noncoding and coding regions of recently published sequences of this enzyme. The mRNA for aldose reductase was abundantly expressed in HeLa cells, but only scarcely in a neuroblastoma cell line. Recombinant baculovirus containing one of the muscle cDNA clones was constructed and used to infect Spodoptera frugiperda (SF9) cells. A prominent protein with an apparent molecular size of 36 kDa was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the culture medium as well as in the homogenate of SF9 cells after 2 days of infection. Culture medium or the supernatant fraction of cell homogenates containing this protein had high aldose reductase activity which showed characteristics of the reported human enzyme. These findings indicate that the amino acid sequence reported in this paper represents human retina and muscle aldose reductase and that functional human aldose reductase can be expressed in large amounts in a baculovirus expression system. The result should facilitate refined structural analysis and the development of new specific aldose reductase inhibitors for the treatment of diabetic complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号