首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The wet oxidation process of wheat straw has been studied as a pretreatment method to attain our main goal: To break down cellulose to glucose enzymatic, and secondly, to dissolve hemicellulose (e.g., for fermentation) without producing microbial inhibitors. Wet oxidation combined with base addition readily oxidizes lignin from wheat straw facilitating the polysaccharides for enzymatic hydrolysis. By using a specially constructed autoclave system, the wet oxidation process was optimized with respect to both reaction time and temperature. The best conditions (20 g/L straw, 170 degrees C, 5 to 10 min) gave about 85% w/w yield of converting cellulose to glucose. The process water, containing dissolved hemicellulose and carboxylic acids, has proven to be a direct nutrient source for the fungus Aspergillus niger producing exo-beta-xylosidase. Furfural and hydroxymethyl-furfural, known inhibitors of microbial growth when other pretreatment systems have been applied, were not observed following the wet oxidation treatment. (c) 1996 John Wiley & Sons, Inc.  相似文献   

2.
Effectively releasing the locked polysaccharides from recalcitrant lignocellulose to fermentable sugars is among the greatest technical and economic barriers to the realization of lignocellulose biorefineries because leading lignocellulose pre-treatment technologies suffer from low sugar yields, and/or severe reaction conditions, and/or high cellulase use, narrow substrate applicability, and high capital investment, etc. A new lignocellulose pre-treatment featuring modest reaction conditions (50 degrees C and atmospheric pressure) was demonstrated to fractionate lignocellulose to amorphous cellulose, hemicellulose, lignin, and acetic acid by using a non-volatile cellulose solvent (concentrated phosphoric acid), a highly volatile organic solvent (acetone), and water. The highest sugar yields after enzymatic hydrolysis were attributed to no sugar degradation during the fractionation and the highest enzymatic cellulose digestibility ( approximately 97% in 24 h) during the hydrolysis step at the enzyme loading of 15 filter paper units of cellulase and 60 IU of beta-glucosidase per gram of glucan. Isolation of high-value lignocellulose components (lignin, acetic acid, and hemicellulose) would greatly increase potential revenues of a lignocellulose biorefinery.  相似文献   

3.
It is recognized that some form of post‐treatment will usually be required if reasonable hydrolysis yields (>60%) of steam pretreated softwood are to be achieved when using low enzyme loadings (5 FPU/g cellulose). In the work reported here we modified/removed lignin from steam pretreated softwood while investigating the influence that the severity of pretreatment might have on the effectiveness of subsequent post‐treatments. Although treatment at a lower severity could provide better overall hemicellulose recovery, post‐treatment was not as effective on the cellulosic component. Pretreatment at medium severity resulted in the best compromise, providing reasonable recovery of the water soluble hemicellulose sugars and the use of post‐treatment conditions that significantly increased the enzymatic hydrolysis of the water insoluble cellulosic component. Post‐treatment with alkaline hydrogen peroxide or neutral sulfonation resulted in 62% cellulose hydrolysis at an enzyme loading of 5 FPU/g cellulose, which was four times greater than was obtained when the cellulosic fraction was not post‐treated. When the enzyme loading was increased to 15 FPU/g cellulose, the post‐treated cellulosic fraction was almost completely hydrolyzed to glucose. Despite the higher lignin content (44%) of the sulfonated substrate, similar hydrolysis yields to those achieved after alkaline peroxide post‐treatment (14% lignin content) indicated that, in addition to lignin removal, lignin modification also plays an important role in influencing the effectiveness of hydrolysis when low enzyme loadings are used. Biotechnol. Bioeng. 2011;108: 2300–2311. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
Summary Supplementing oat straw in SSF by Polyporus sp A-336 with xylose, mannose, glucose and arabinogalactan at levels of 5 and 10% of straw weight stimulated lignin degradation and cellulose hydrolysis. Degradation of lignin, hemicellulose and cellulose was monitored for 30 days in plain straw, and straw plus xylose and showed that xylose shortened the lag in lignin breakdown and slowed hemicellulose utilization. At 24 days, similar polymer losses occurred in both systems and enzymatic cellulose hydrolysis had reached a maximum of 47% weight loss.  相似文献   

5.
Alkaline wet oxidation pre-treatment (water, sodium carbonate, oxygen, high temperature and pressure) of wheat straw was performed as a 2(4-1) fractional factorial design with the process parameters: temperature, reaction time, sodium carbonate and oxygen. Alkaline wet oxidation was an efficient pre-treatment of wheat straw that resulted in solid fractions with high cellulose recovery (96%) and high enzymatic convertibility to glucose (67%). Carbonate and temperature were the most important factors for fractionation of wheat straw by wet oxidation. Optimal conditions were 10 min at 195 degrees C with addition of 12 bar oxygen and 6.5 g l(-1) Na2CO3. At these conditions the hemicellulose fraction from 100 g straw consisted of soluble hemicellulose (16 g), low molecular weight carboxylic acids (11 g), monomeric phenols (0.48 g) and 2-furoic acid (0.01 g). Formic acid and acetic acid constituted the majority of degradation products (8.5 g). The main phenol monomers were 4-hydroxybenzaldehyde, vanillin, syringaldehyde. acetosyringone (4-hydroxy-3,5-dimethoxy-acetophenone), vanillic acid and syringic acid, occurring in 0.04-0.12 g per 100 g straw concentrations. High lignin removal from the solid fraction (62%) did not provide a corresponding increase in the phenol monomer content but was correlated to high carboxylic acid concentrations. The degradation products in the hemicellulose fractions co-varied with the pre-treatment conditions in the principal component analysis according to their chemical structure, e.g. diacids (oxalic and succinic acids), furan aldehydes, phenol aldehydes, phenol ketones and phenol acids. Aromatic aldehyde formation was correlated to severe conditions with high temperatures and low pH. Apart from CO2 and water, carboxylic acids were the main degradation products from hemicellulose and lignin.  相似文献   

6.
Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid   总被引:1,自引:0,他引:1  
Kim JW  Kim KS  Lee JS  Park SM  Cho HY  Park JC  Kim JS 《Bioresource technology》2011,102(19):8992-8999
Liberation of fermentable sugars from recalcitrant lignocellulosic biomass is one of the key challenges in production of cellulosic ethanol. Here we developed a two-stage pretreatment process using aqueous ammonia and dilute sulfuric acid in a percolation mode to improve production of fermentable sugars from rice straw. Aqueous NH? was used in the first stage which removed lignin selectively but left most of cellulose (97%) and hemicellulose (77%). Dilute acid was applied in the second stage which removed most of hemicellulose, partially disrupted the crystalline structure of cellulose, and thus enhanced enzymatic digestibility of cellulose in the solids remaining. Under the optimal pretreatment conditions, the enzymatic hydrolysis yields of the two-stage treated samples were 96.9% and 90.8% with enzyme loadings of 60 and 15FPU/g of glucan, respectively. The overall sugar conversions of cellulose and hemicellulose into glucose and xylose by enzymatic and acid hydrolysis reached 89.0% and 71.7%, respectively.  相似文献   

7.
Wheat straw used in this study contained 44.24 +/- 0.28% cellulose and 25.23 +/- 0.11% hemicellulose. Alkaline H(2)O(2) pretreatment and enzymatic saccharification were evaluated for conversion of wheat straw cellulose and hemicellulose to fermentable sugars. The maximum yield of monomeric sugars from wheat straw (8.6%, w/v) by alkaline peroxide pretreatment (2.15% H(2)O(2), v/v; pH 11.5; 35 degrees C; 24 h) and enzymatic saccharification (45 degrees C, pH 5.0, 120 h) by three commercial enzyme preparations (cellulase, beta-glucosidase, and xylanase) using 0.16 mL of each enzyme preparation per g of straw was 672 +/- 4 mg/g (96.7% yield). During the pretreatment, no measurable quantities of furfural and hydroxymethyl furfural were produced. The concentration of ethanol (per L) from alkaline peroxide pretreated enzyme saccharified wheat straw (66.0 g) hydrolyzate by recombinant Escherichia coli strain FBR5 at pH 6.5 and 37 degrees C in 48 h was 18.9 +/- 0.9 g with a yield of 0.46 g per g of available sugars (0.29 g/g straw). The ethanol concentration (per L) was 15.1 +/- 0.1 g with a yield of 0.23 g/g of straw in the case of simultaneous saccharification and fermentation by the E. coli strain at pH 6.0 and 37 degrees C in 48 h.  相似文献   

8.
Pressurized low polarity water (PLPW) fractionation of triticale straw was optimized to maximize hemicellulose and lignin yield, and to produce a cellulose rich fraction for biofuels production. The optimum PLPW conditions for hemicellulose yield was determined to be 165 °C, with a flow rate of 115 mL/min, and a solvent-to-solid ratio of 60 mL/g. Hemicellulose and lignin yield generally increased with increasing temperature and solvent-to-solid ratio. There was a small decrease in hemicellulose yield with an increase in flow rate. Minimum lignin content of the triticale straw residue after extraction was predicted to occur at a processing condition of 206 °C, 160 mL/min, and 67 mL/g. PLPW was successful in removing 73-78% of the hemicellulose, leaving a cellulose rich fraction (65% glucose concentration). Lignin was equally distributed between the solid residues and the extracts and most of the hemicellulose was extracted in oligomer form. Remaining solid residues after fractionation were highly digestible by cellulase enzymes.  相似文献   

9.
Hydrolysis of the straw material Paja Brava, a sturdy grass characteristic for the high plains of Bolivia, was studied in order to find suitable conditions for hydrolysis of the hemicellulose and cellulose parts. Dried Paja Brava material was pre-steamed, impregnated with dilute sulfuric acid (0.5% or 1.0% by wt), and subsequently hydrolyzed in a reactor at temperatures between 170 and 230 degrees C for a reaction time between 3 and 10 min. The highest yield of xylose (indicating efficient hydrolysis of hemicellulose) were found at a temperature of 190 degrees C, and a reaction time of 5-10 min, whereas considerably higher temperatures (230 degrees C) were needed for hydrolysis of cellulose. Fermentability of hemicellulose hydrolyzates was tested using the xylose-fermenting yeast species Pichia stipitis, Candida shehatae and Pachysolen tannophilus. The fermentability of hydrolyzates decreased strongly for hydrolyzates produced at temperatures higher than 200 degrees C.  相似文献   

10.
Wheat and rye straws were pretreated with ozone to increase the enzymatic hydrolysis extent of potentially fermentable sugars. Through a 2(5-1) factorial design, this work studies the influence of five operating parameters (moisture content, particle size, ozone concentration, type of biomass and air/ozone flow rate) on ozonization pretreatment of straw in a fixed bed reactor under room conditions. The acid insoluble lignin content of the biomass was reduced in all experiments involving hemicellulose degradation. Near negligible losses of cellulose were observed. Enzymatic hydrolysis yields of up to 88.6% and 57% were obtained compared to 29% and 16% in non-ozonated wheat and rye straw respectively. Moisture content and type of biomass showed the most significant effects on ozonolysis. Additionally, ozonolysis experiments in basic medium with sodium hydroxide evidenced a reduction in solubilization and/or degradation of lignin and reliable cellulose and hemicellulose degradation.  相似文献   

11.
Cyathus stercoreus (Schw.) de Toni NRRL 6473, isolated from aged and fragmented cattle dung collected from a Michigan pasture, effected substantial losses in lignin (45%) from wheat straw during a 62-day fermentation (25 degrees C). The basidiomycete also improved wheat straw digestibility by freeing alpha-cellulose for enzymatic hydrolysis to glucose (230 mg of glucose per 1,000 mg of fermented residue). The rationale for selecting C. stercoreus in attempting to biologically modify the lignin and cellulose components in wheat straw or other gramineous agricultural residues was based on the expectation that this organism is ecologically specialized to enzymatically attack the substructures of native lignins in grasses.  相似文献   

12.
Efficient bioconversion of rice straw to ethanol with TiO2/UV pretreatment   总被引:1,自引:0,他引:1  
Rice straw is a lignocellulosic biomass that constitutes a renewable organic substance and alternative source of energy; however, its structure confounds the liberation of monosaccharides. Pretreating rice straw using a TiO(2)/UV system facilitated its hydrolysis with Accellerase 1000(?), suggesting that hydroxyl radicals (OH·) from the TiO(2)/UV system could degrade lignin and carbohydrates. TiO(2)/UV pretreatment was an essential step for conversion of hemicellulose to xylose; optimal conditions for this conversion were a TiO(2) concentration of 0.1% (w/v) and an irradiation time of 2 h with a UV-C lamp at 254 nm. After enzymatic hydrolysis, the sugar yields from rice straw pretreated with these parameters were 59.8 ± 0.7% of the theoretical for glucose (339 ± 13 mg/g rice straw) and 50.3 ± 2.8% for xylose (64 ± 3 mg/g rice straw). The fermentation of enzymatic hydrolysates containing 10.5 g glucose/L and 3.2 g xylose/L with Pichia stipitis produced 3.9 g ethanol/L with a corresponding yield of 0.39 g/g rice straw. The maximum possible ethanol conversion rate is 76.47%. TiO(2)/UV pretreatment can be performed at room temperature and atmospheric pressure and demonstrates potential in large-scale production of fermentable sugars.  相似文献   

13.
Wheat, barley and oat straws were treated by steam explosion (SE) and then washed with 50g/l NaOH solution. The SE treatment was optimized at batch scale on the basis of carbohydrate recovery. Stocks of fodder (300kg) were produced at 198 degrees C for 2.5min by a continuous reactor and used for in vivo digestibility tests carried out on sheep. The flow-sheet and the mass balances were obtained for the entire process. For the three straws, the water consumption has been 7.3kg/kg of straw. To delignify and improve the digestibility of the straws, 20g of NaOH/kg straw was used. The yield of fodder, lignin and hemicellulose is dependant on the nature of the starting straw. Delignified fodder (insoluble fraction) can be produced with a yield of 0.64, 0.59, 0.55, respectively, from wheat, barley and oat straw. SE improved the digestibility of the straw by 25%; alkaline washing further increased it by 9%. Balanced rations containing, on a DM basis, 1/4 of treated straw, had digestibility coefficients similar to those of commercial rations based on alfalfa.  相似文献   

14.
Rice hulls, a complex lignocellulosic material with high lignin (15.38 +/- 0.2%) and ash (18.71 +/- 0.01%) content, contain 35.62 +/- 0.12% cellulose and 11.96 +/- 0.73% hemicellulose and has the potential to serve as a low-cost feedstock for production of ethanol. Dilute H2SO4 pretreatments at varied temperature (120-190 degrees C) and enzymatic saccharification (45 degrees C, pH 5.0) were evaluated for conversion of rice hull cellulose and hemicellulose to monomeric sugars. The maximum yield of monomeric sugars from rice hulls (15%, w/v) by dilute H2SO4 (1.0%, v/v) pretreatment and enzymatic saccharification (45 degrees C, pH 5.0, 72 h) using cellulase, beta-glucosidase, xylanase, esterase, and Tween 20 was 287 +/- 3 mg/g (60% yield based on total carbohydrate content). Under this condition, no furfural and hydroxymethyl furfural were produced. The yield of ethanol per L by the mixed sugar utilizing recombinant Escherichia colistrain FBR 5 from rice hull hydrolyzate containing 43.6 +/- 3.0 g fermentable sugars (glucose, 18.2 +/- 1.4 g; xylose, 21.4 +/- 1.1 g; arabinose, 2.4 +/- 0.3 g; galactose, 1.6 +/- 0.2 g) was 18.7 +/- 0.6 g (0.43 +/- 0.02 g/g sugars obtained; 0.13 +/- 0.01 g/g rice hulls) at pH 6.5 and 35 degrees C. Detoxification of the acid- and enzyme-treated rice hull hydrolyzate by overliming (pH 10.5, 90 degrees C, 30 min) reduced the time required for maximum ethanol production (17 +/- 0.2 g from 42.0 +/- 0.7 g sugars per L) by the E. coli strain from 64 to 39 h in the case of separate hydrolysis and fermentation and increased the maximum ethanol yield (per L) from 7.1 +/- 2.3 g in 140 h to 9.1 +/- 0.7 g in 112 h in the case of simultaneous saccharification and fermentation.  相似文献   

15.
Pretreatment of bagasse by autohydrolysis at 200 degrees C for 4 min and explosive defibration resulted in the solubilization of 90% of the hemicellulose (a heteroxylan) and in the production of a pulp that was highly susceptible to hydrolysis by cellulases from Trichoderma reesei C-30 and QM 9414, and by a comercial preparation, Meicelase. Saccharification yields of 50% resulted after 24 h at 50 degrees C (pH 5.0) in enzymic digests containing 10% (w/v) bagasse pulps and 20 filter paper cellulase units (FPU). Saccharifications could be increased to more than 80% at 24 h by the addition of exogenous beta-glucosidase from Aspergillus niger. The crystallinity of cellulose in bagasse remained unchanged following autohydrolysis-explosion and did not appear to hinder the rate or extent of hydrolysis of cellulose. Autohydrolysis-exploded pulps extracted with alkali or ethanol to remove lignin resulted in lowere conversions of cellulose (28-36% after 25 h) than unextracted pulps. Alkali extracted pulps arising from autohydrolysis times of more than 10 min at 200 degrees C were less susceptible to enzymic hydrolysis than unextracted pulps and alkali-extracted pulps arising from short autohydrolysis times (e.g., 2 min at 200 degrees C). Autohydrolysis-explosion was as effective a pretreatment method as 0.25M NaOH (70 degrees C/2 h) both yielded pulps that resulted in high cellulose conversions with T. reesei cellulase preparations and Meicelase. Supplementation of T. reesei C-30 cellulose preparations with A. niger beta-glucosidases was effective in promoting the conversion of cellulose into glucose. A ration of FPU to beta-glucosidase of 1:1.25 was the minimum requirement to achieve more than 80% conversion of cellulose into glucose within 24 h. Other factors which influenced the extent of saccharification of autohydrolysis-exploded bagasse pulps were the enzyme-substrate ratio, the substrate concentration, and the saccharification mode.  相似文献   

16.
Liquid hot (LHW) water pretreatment (LHW) of lignocellulosic material enhances enzymatic conversion of cellulose to glucose by solubilizing hemicellulose fraction of the biomass, while leaving the cellulose more reactive and accessible to cellulase enzymes. Within the range of pretreatment conditions tested in this study, the optimized LHW pretreatment conditions for a 15% (wt/vol) slurry of hybrid poplar were found to be 200oC, 10 min, which resulted in the highest fermentable sugar yield with minimal formation of sugar decomposition products during the pretreatment. The LHW pretreatment solubilized 62% of hemicellulose as soluble oligomers. Hot‐washing of the pretreated poplar slurry increased the efficiency of hydrolysis by doubling the yield of glucose for a given enzyme dose. The 15% (wt/vol) slurry of hybrid poplar, pretreated at the optimal conditions and hot‐washed, resulted in 54% glucose yield by 15 FPU cellulase per gram glucan after 120 h. The hydrolysate contained 56 g/L glucose and 12 g/L xylose. The effect of cellulase loading on the enzymatic digestibility of the pretreated poplar is also reported. Total monomeric sugar yield (glucose and xylose) reached 67% after 72 h of hydrolysis when 40 FPU cellulase per gram glucan were used. An overall mass balance of the poplar‐to‐ethanol process was established based on the experimentally determined composition and hydrolysis efficiencies of the liquid hot water pretreated poplar. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

17.
研究了白腐菌及纤维素复合酶对稻草秸秆的协同生物降解。结果表明,利用黄孢原毛平革菌固态发酵稻草秸秆的过程中,LiP和MnP的最大活力可以达到28.3U/g和12.6U/g,同时,秸秆中的木质素能被有效降解,但纤维素、半纤维素降解率较低。添加黑曲霉所产的纤维素复合酶能有效地促进秸秆腐熟程度。在接入白腐菌培养10天后,每克稻草添加3 IU纤维素酶液并酶解48h可以使稻草秸秆中纤维素降解53.8%,半纤维素降解57.8%,木质素降解44.5%,干物质损失46.3%。此时细胞壁出现大范围破损,整个组织变得松散,秸秆完全腐熟。  相似文献   

18.
Phalaris aquatica L., a rich in holocellulose (69.80 %) and deficient in lignin (6.70 %) herbaceous, perennial grass species, was utilized in a two-step (biomass pretreatment-enzymatic hydrolysis) saccharification process for sugars recovery. The Taguchi methodology was employed to determine the dilute acid pretreatment and enzymatic hydrolysis conditions that optimized hemicellulose conversion (75.04 %), minimized the production of inhibitory compounds (1.41 g/L), and maximized the cellulose to glucose yield (69.69 %) of mixed particulate biomass (particles <1000 μm) under batch conditions. The effect of biomass particle size on saccharification process efficiency was also investigated. It was found that small-size biomass particles (53–106 μm) resulted in maximum hemicellulose conversion (81.12 %) and cellulose to glucose yield (93.24 %). The determined optimal conditions were then applied to a combined batch pretreatment process followed by a fed-batch enzymatic hydrolysis process that maximized glucose concentration (62.24 g/L) and yield (92.48 %). The overall efficiency of the saccharification process was 88.13 %.  相似文献   

19.
Treatment of wheat straw with 1N trifluoroacetic acid (TFA) for 7 h at reflux temperature yielded 23% xylose based upon initial straw weight. This corresponds to about an 80% xylose yield based on the xylan content of the hemicellulose. The cellulose component of wheat straw was largely unaffected, as evidenced by low glucose yields. Decomposition of xylose by prolonged refluxing (23 h) was minimal in 1N TFA compared to 1N HCl. Treatment of wheat straw with refluxing 1N TFA converts about 10% of the lignin initially present in straw into water-soluble lignin fragments. Fermentation of the xylose-rich wheat straw hydrolyzate to ethanol with Pachysolen tannophilus was comparable to the fermentation of reagent grade xylose, indicating that furfural and toxic lignin by-products were not produced by 1N TFA in sufficient amounts to impair cell growth and ethanol production. Cellulase treatment of the wheat straw residue after TFA hydrolysis resulted in a 70-75% conversion of the cellulose into glucose.  相似文献   

20.
To improve process economics of the lignocellulose to ethanol process a reactor system for enzymatic liquefaction and saccharification at high-solids concentrations was developed. The technology is based on free fall mixing employing a horizontally placed drum with a horizontal rotating shaft mounted with paddlers for mixing. Enzymatic liquefaction and saccharification of pretreated wheat straw was tested with up to 40% (w/w) initial DM. In less than 10 h, the structure of the material was changed from intact straw particles (length 1-5 cm) into a paste/liquid that could be pumped. Tests revealed no significant effect of mixing speed in the range 3.3-11.5 rpm on the glucose conversion after 24 h and ethanol yield after subsequent fermentation for 48 h. Low-power inputs for mixing are therefore possible. Liquefaction and saccharification for 96 h using an enzyme loading of 7 FPU/g.DM and 40% DM resulted in a glucose concentration of 86 g/kg. Experiments conducted at 2%-40% (w/w) initial DM revealed that cellulose and hemicellulose conversion decreased almost linearly with increasing DM. Performing the experiments as simultaneous saccharification and fermentation also revealed a decrease in ethanol yield at increasing initial DM. Saccharomyces cerevisiae was capable of fermenting hydrolysates up to 40% DM. The highest ethanol concentration, 48 g/kg, was obtained using 35% (w/w) DM. Liquefaction of biomass with this reactor system unlocks the possibility of 10% (w/w) ethanol in the fermentation broth in future lignocellulose to ethanol plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号