首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High resolution two-dimensional PAGE was used to analyse protein variation among serotype 1 poliovirus isolates. Viruses isolated from patients with recent histories of vaccination with live attenuated poliovirus were compared with prototype serotype 1 poliovaccine. The nonvaccine Mahoney and Brunenders strains of serotype 1 poliovirus were also analysed. The overall protein profile was conserved but the structural protein VP3 varied in its net charge among the viruses. Eight out of 14 clinical virus isolates had VP3 with a net basic charge identical to serotype 1 polio vaccine, whereas the remaining clinical isolates had an acidic VP3 similar to the nonvaccine type 1 strains. The altered VP3 mobility correlated with a change in antigenicity as determined by monoclonal antibodies directed to the neutralization site located on VP3. The data clearly illustrated the suitability of two-dimensional PAGE in analysing protein mutations in attenuated vaccine virus excreted by vaccinees.  相似文献   

2.
3.
Guanidine-resistant (gr) mutants of poliovirus were previously categorized into four groups by electrophoretic properties and peptide maps of nonstructural virus protein 2C. Growth of mutants in the presence of guanidine depends upon temperature of incubation. The four groups of gr variants respond differently to temperature when guanidine is included in the culture medium. The data suggest clustering of gr mutations at several sites in the guanidine locus.  相似文献   

4.
Hepatitis B virus X protein (pX) is implicated in hepatocarcinogenesis by an unknown mechanism. Employing a cellular model linked to pX-mediated transformation, we investigated the role of the previously reported Stat3 activation by pX in hepatocyte transformation. Our model is composed of a differentiated hepatocyte (AML12) 3pX-1 cell line that undergoes pX-dependent transformation and a dedifferentiated hepatocyte (AML12) 4pX-1 cell line that does not exhibit transformation by pX. We report that pX-dependent Stat3 activation occurs only in non-pX-transforming 4pX-1 cells and conclude that Stat3 activation is not linked to pX-mediated transformation. Maximum Stat3 transactivation requires Ser727 phosphorylation, mediated by mitogenic pathway activation. Employing dominant negative mutants and inhibitors of mitogenic pathways, we demonstrate that maximum, pX-dependent Stat3 transactivation is inhibited by the p38 mitogen-activated protein kinase (MAPK)-specific inhibitor SB 203580. Using transient-transreporter and in vitro kinase assays, we demonstrate for the first time that pX activates the p38 MAPK pathway only in 4pX-1 cells. pX-mediated Stat3 and p38 MAPK activation is Ca(2+) and c-Src dependent, in agreement with the established cellular action of pX. Importantly, pX-dependent activation of p38 MAPK inactivates Cdc25C by phosphorylation of Ser216, thus initiating activation of the G(2)/M checkpoint, resulting in 4pX-1 cell growth retardation. Interestingly, pX expression in the less differentiated hepatocyte 4pX-1 cells activates signaling pathways known to be active in regenerating hepatocytes. These results suggest that pX expression in the infected liver effects distinct mitogenic pathway activation in less differentiated versus differentiated hepatocytes.  相似文献   

5.
Poliovirus polysomal RNA is naturally uncapped, and as such, its translation must bypass any 5' cap-dependent ribosome recognition event. To elucidate the manner by which poliovirus mRNA is translated, we have determined the translational efficiencies of a series of deletion mutants within the 5' noncoding region of the mRNA. We found striking differences in translatability among the altered mRNAs when assayed in mock-infected and poliovirus-infected HeLa cell extracts. The results identify a functional cis-acting element within the 5' noncoding region of the poliovirus mRNA which enables it to translate in a cap-independent fashion. The major determinant of this element maps between nucleotides 320 and 631 of the 5' end of the poliovirus mRNA. We also show that this region (320 to 631), when fused to a heterologous mRNA, can function in cis to render the mRNA cap independent in translation.  相似文献   

6.
In the current model of poliovirus entry, the initial interaction of the native virion with its cellular receptor is followed by a transition to an altered form, which then acts as an intermediate in viral entry. While the native virion sediments at 160S in a sucrose gradient, the altered particle sediments at 135S, has lost the coat protein VP4, and has become more hydrophobic. Altered particles can be found both associated with cells and in the culture medium. It has been hypothesized that the cell-associated 135S particle releases the viral genome into the cell cytoplasm and that nonproductive transitions to the 135S form are responsible for the high particle-to-PFU ratio observed for polioviruses. At 25 degrees C, a temperature at which the transition to 135S particles does not occur, the P1/Mahoney strain of poliovirus was unable to replicate, and cold-adapted (ca) mutants were selected from the population. These mutants have not gained the ability to convert to 135S particles at 25 degrees C, and the block to wild-type (wt) infection at low temperatures is not at the level of cellular entry. The particle-to-PFU ratio of poliovirus does not change at 25 degrees C in the absence of alteration. Three independent amino acid changes in the 2C coding region were identified in ca mutants, at positions 218 (Val to Ile), 241 (Arg to Ala), and 309 (Met to Val). Introduction of any of these mutations individually into wt poliovirus by site-directed mutagenesis confers the ca phenotype. All three serotypes of the Sabin vaccine strains and the P3/Leon strain of poliovirus also exhibit the ca phenotype. These results do not support a model of poliovirus entry into cells that includes an obligatory transition to the 135S particle.  相似文献   

7.
Park SH  Oh HB  Seong WK  Kim CW  Cho SY  Yoo CK 《Proteomics》2007,7(20):3743-3758
Bacillus anthracis is a gram-positive bacterial organism responsible for anthrax. This organism has two pathogenic plasmids: pX01 and pX02. The genetic function of pX01, which comprises about 198 kb, is not known, except for a region called the pathogenic island, which contains three genes-pag, lef, and cya-that code for three toxic proteins. A 2-D difference gel electrophoresis (2-D DIGE) system was used to verify the existence of proteins controlled by the pX01 plasmid, and protein regulation data were obtained using DeCyder software. A total of 1728 proteins were identified in the wild-type strain of this organism and 1684 in the pX01 plasmid. Twenty-seven of these proteins disappeared and eight appeared when the pX01 plasmid was removed. An additional 52 proteins were downregulated and 15 were upregulated when this plasmid was removed. A total of 102 proteins have been identified using the MALDI-TOF method of analysis, including 49 whose functions are unknown. Among these, 31 participate in metabolic processes, two in cellular processes, 15 in the processing of genetic information, and five in the processing of extracellular information. Another seven proteins participate in bacterial virulence and pathogenesis. We investigated the functions of these proteins in other bacteria, particularly the B. anthracis derivative H9041. Bacterial growth differed between pX01+/pX02+ B. anthracis and its pX01-/pX02+ derivative as did the cytotoxicity of macrophages infected by pX01+/pX02+ B. anthracis and the pX01-pX02+ derivative. We also found that S100B protein levels increased in the host infected with pX01+/pX02+ B. anthracis or its pX01-/pX02+ derivative. These data suggest that the pX01 plasmid plays a key role in the regulation of protein functions in B. anthracis.  相似文献   

8.
Genome replication of poliovirus, as yet unsolved, involves numerous viral polypeptides that arise from proteolysis of the viral polyprotein. One of these proteins is 3AB, an RNA-binding protein with multiple functions, that serves also as the precursor for the genome-linked protein VPg (= 3B). Eight clustered charged amino acid-to-alanine mutants in the 3AB coding region of poliovirus were constructed and analyzed, together with three additional single-amino acid exchange mutants in VPg, for viral phenotypes. All mutants expressed severe inhibition in RNA synthesis, but none were temperature sensitive (ts). The 3AB polypeptides of mutants with a lethal phenotype were overexpressed in Escherichia coli, purified to near homogeneity, and studied with respect to four functions: (1) ribonucleoprotein complex formation with 3CDpro and the 5'-terminal cloverleaf of the poliovirus genome; (2) binding to the genomic and negative-sense RNA; (3) stimulation of 3CDpro cleavage; and (4) stimulation of RNA polymerase activity of 3Dpol. The results have allowed mapping of domains important for RNA binding and the formation of certain protein-protein complexes, and correlation of these processes with essential steps in viral genome replication.  相似文献   

9.
Most poliovirus strains infect only primates. The host range (HR) of poliovirus is thought to be primarily determined by a cell surface molecule that functions as poliovirus receptor (PVR), since it has been shown that transgenic mice are made poliovirus sensitive by introducing the human PVR gene into the genome. The relative levels of neurovirulence of polioviruses tested in these transgenic mice were shown to correlate well with the levels tested in monkeys (H. Horie et al., J. Virol. 68:681-688, 1994). Mutants of the virulent Mahoney strain of poliovirus have been generated by disruption of nucleotides 128 to 134, at stem-loop II within the 5' noncoding region, and four of these mutants multiplicated well in human HeLa cells but poorly in mouse TgSVA cells that had been established from the kidney of the poliovirus-sensitive transgenic mouse. Neurovirulence tests using the two animal models revealed that these mutants were strongly attenuated only in tests with the mouse model and were therefore HR mutants. The virus infection cycle in TgSVA cells was restricted by an internal ribosomal entry site (IRES)-dependent initiation process of translation. Viral protein synthesis and the associated block of cellular protein synthesis were not observed in TgSVA cells infected with three of four HR mutants and was evident at only a low level in the remaining mutant. The mutant RNAs were functional in a cell-free protein synthesis system from HeLa cells but not in those from TgSVA and mouse neuroblastoma NS20Y cells. These results suggest that host factor(s) affecting IRES-dependent translation of poliovirus differ between human and mouse cells and that the mutant IRES constructs detect species differences in such host factor(s). The IRES could potentially be a host range determinant for poliovirus infection.  相似文献   

10.
To identify determinants of attenuation in the poliovirus type 1 Sabin vaccine strain, a series of recombinant viruses were constructed by using infectious cDNA clones of the virulent type 1 poliovirus P1/Mahoney and the attenuated type 1 vaccine strain P1/Sabin. Intracerebral inoculation of these viruses into transgenic mice which express the human receptor for poliovirus identified regions of the genome that conferred reduced neurovirulence. Exchange of smaller restriction fragments and site-directed mutagenesis were used to identify the nucleotide changes responsible for attenuation. P1/Sabin mutations at nucleotides 935 of VP4, 2438 of VP3, and 2795 and 2879 of VP1 were all shown to be determinants of attenuation. The recombinant viruses and site-directed mutants were also used to identify the nucleotide changes which are involved in the temperature sensitivity of P1/Sabin. Determinants of this phenotype in HeLa cells were mapped to changes at nucleotides 935 of VP4, 2438 of VP3, and 2741 of VP1. The 3Dpol gene of P1/Sabin, which contains three amino acid differences from its parent P1/Mahoney, also contributes to the temperature sensitivity of P1/Sabin; however, mutants containing individual amino acid changes grew as well as P1/Mahoney at elevated temperatures, suggesting that either some combination or all three changes are required for temperature sensitivity. In addition, the 3'-noncoding region of P1/Sabin augments the temperature-sensitive phenotype conferred by 3Dpol. Although nucleotide 2741, 3Dpol, and the 3'-noncoding region of P1/Sabin contribute to the temperature sensitivity of P1/Sabin, they do not contribute to attenuation in transgenic mice expressing the poliovirus receptor, demonstrating that determinants of attenuation and temperature sensitivity can be genetically separated.  相似文献   

11.
D Trono  R Andino    D Baltimore 《Journal of virology》1988,62(7):2291-2299
Twenty-one mutations were engineered in the 5' noncoding region of poliovirus type 1 RNA, using an infectious cDNA copy of the viral genome. RNA was made from these constructs and used to transfect HeLa cells. Viable virus was recovered from 12 of these transfection experiments, including six strains with a recognizable phenotype, mapping in four different regions. One mutant of each site was studied in more detail. Mutant 5NC-11, having a 4-base insertion at nucleotide 70, was dramatically deficient in RNA synthesis, suggesting that the far 5' end of the genome is primarily involved in one or more steps of RNA replication. Mutants 5NC-13, 5NC-114, and 5NC-116, mapping at nucleotides 224, 270, and 392, respectively, showed a similar behavior; they made very little viral protein, they did not inhibit host cell translation, and they synthesized a significant amount of viral RNA, although with some delay compared with wild type. These three mutants were efficiently complemented by all other poliovirus mutants tested, except those with lesions in protein 2A. Our results imply that these three mutants map in a region (region P) primarily involved in viral protein synthesis and that their inability to shut off host cell translation is secondary to a quantitative defect in protein 2A. The exact function of region P is still to be determined, but our data supports the hypothesis of a single functional module allowing viral protein synthesis and extending over several hundred nucleotides.  相似文献   

12.
13.
Sequence analysis of the genomic RNA of interstrain guanidine-resistant and antibody-resistant variant recombinants of poliovirus type 1 mapped the resistance of mutants capable of growth in 2.0 mM guanidine hydrochloride to a region located 3' of nucleotide 4444. This region of the viral genome specifies the nonstructural protein 2C. The sequence of genomic RNA encoding 2C from six independently isolated mutants resistant to 2.0 mM guanidine was determined. All six isolates contained a mutation in 2C at the same position in all cases, resulting in two types of amino acid changes. Dependent mutants were examined and found to contain two amino acid changes each within 2C. Mutants resistant to 0.53 mM guanidine were isolated and found to lack the mutations seen in variants resistant to 2.0 mM guanidine. A comparison of the amino acid sequences of the 2C proteins of poliovirus, foot-and-mouth disease virus, rhinovirus types 2 and 14, and encephalomyocarditis virus revealed a strong homology over regions totaling 115 residues. All of the mutations observed in guanidine-selected mutants were contained within this region. The amino acid region containing the mutations observed in poliovirus mutants resistant to 2.0 mM guanidine was compared with the homologous region in the other picornaviruses; a strong correlation was found between the amino acid present at this position and the sensitivity of the virus to 2.0 mM guanidine.  相似文献   

14.
DX particles of poliovirus are deletion mutants that do not induce synthesis of capsid proteins or the precursor of capsid proteins (NCVPla) during infection. However, cells infected with DX particles synthesize two proteins, p68 and p25, that are not detected during growth of standard virus, and a protein of 27 000 (p27) which is comparable in molecular weight to VP3. Peptide maps of these proteins were obtained by partial digestion with Staphylococcus aureus V8 protease and elastase. The peptide map of p68 corresponded approximately 70% with the peptide map of NCVPla, and antiserum against virions reacted with p68. These data suggest that p68 is a large fragment of NCVPla. Digestion of purified structural proteins VP1, VP2, and VP3 yielded distinct peptide maps, but p25 was resistant to both V8 protease and elastase and did not react noticeably with anticapsid antibody. Peptide maps obtained for in vivo viral proteins migrating with a molecular weight of 27 000 were complex, indicating the presence of at least two and possibly three proteins. Cells infected with standard gs and gr viruses produced authentic VP3, but cells infected with defective interfering particles did not. However, one gr variant of standard virus contained a mutation in structural protein VP2.  相似文献   

15.
Comparative biochemical studies of type 3 poliovirus   总被引:8,自引:5,他引:3       下载免费PDF全文
A study of the biochemistry of type 3 poliovirus strains which involves the examination of the virus-coded polypeptides in infected cells and the preparation of oligonucleotide maps is reported. The polypeptide patterns were shown to be a relatively stable property of virus strains and distinguished Sabin vaccine strains from wild strains of poliovirus type 3. This approach may be of value in deciding the origin (vaccine or nonvaccine) of field isolates of poliovirus. Oligonucleotide maps were found to be sensitive indicators of differences among strains and appear to form a basis for determining genetic relationships among strains. The nucleotide maps of two viruses isolated from human cases of paralytic poliomyelitis temporally associated with the administration of attenuated vaccine suggested a vaccine origin for the strain. In one case the nucleotide map was indistinguishable from that of the vaccine strain.  相似文献   

16.
17.
In previous work in our laboratory, 12 guanidine-resistant (gr) mutants of poliovirus were selected from 12 separate stocks of plaque-purified guanidine-sensitive (gs) viruses (K. Anderson-Sillman, S. Bartal, and D. R. Tershak, J. Virol. 50:922-928, 1984). Peptide mapping of protein 2C and evaluation of virus growth at different temperatures enabled us to subdivide these mutants into several distinct groups (D. R. Tershak, Can. J. Microbiol. 31:1166-1168, 1985; Anderson-Sillman et al., J. Virol.). Studies by Pincus et al. indicate that two nucleotide changes in codon 179 of protein 2C leads to an Asn-to-Gly or Asn-to-Ala change and that these missense modifications account for guanidine resistance (S. E. Pincus, H. Rohl, and E. Wimmer, Virology 157:83-88, 1987; S. E. Pincus and E. Wimmer, J. Virol. 60:793-796, 1986). In the present report, we confirm their findings but also show that a single amino acid change of Phe to Tyr in residue 164 of protein 2C or a Met-to-Leu replacement in amino acid 187 coupled with mutations in codons 233 or 295 and 309 could confer guanidine resistance.  相似文献   

18.
Li H  Chi CY  Lee S  Andrisani OM 《Journal of virology》2006,80(21):10554-10564
The hepatitis B virus (HBV) X protein (pX) is implicated in hepatocarcinogenesis by an unknown mechanism. pX variants encoded by HBV genomes found integrated in genomic DNA from liver tumors of patients with hepatocellular carcinoma (HCC) generally lack amino acids 134 to 154. Since deregulation of mitogenic pathways is linked to oncogenic transformation, herein we define the pX region required for mitogenic pathway activation. A series of pX deletions was used to construct tetracycline-regulated pX-expressing cell lines. The activation of the mitogenic pathways by these pX deletions expressed in the constructed cell lines was measured by transient transreporter assays, effects on endogenous cyclin A expression, and apoptosis. Conditional expression of pX51-140 in AML12 clone 4 cell line activates the mitogenic pathways, induces endogenous cyclin A expression, and sensitizes cells to apoptosis, similar to wild-type (WT) pX. By contrast, pX1-115 is inactive, supporting the idea that amino acids 116 to 140 are required for mitogenic pathway activation. Moreover, this pX deletion analysis demonstrates that WT pX function is modulated by two regions spanning amino acids 1 to 78 and 141 to 154. The N-terminal X1-78, expressed via a retroviral vector in WT pX-expressing 4pX-1 cells, coimmunoprecipitates with WT pX, indicating this pX region participates in protein-protein interactions leading to pX oligomerization. Interestingly, pX1-78 interferes with WT pX in mediating mitogenic pathway activation, endogenous gene expression, and apoptosis. The C-terminal pX region spanning amino acids 141 to 154 decreases pX stability, determined by pulse-chase studies of WT pX and pX1-140, suggesting that increased stability of naturally occurring pX variants lacking amino acids 134 to 154 may play a role in HCC development.  相似文献   

19.
Investigation of 15 poliovirus temperature-sensitive (ts) mutants by using physiological tests [formation of virus-specific antigen and ribonucleic acid (RNA) under nonpermissive conditions] permitted us to divide them into three groups. From each group, one mutant was selected (ts 2, 5, 11), and a comparative study of poliovirus-related particle (5, 10, 73, and 150S) formation under permissive (36 C) and nonpermissive (40 C) conditions was carried out. The ts 2 and ts 11 are mutants with greatly reduced RNA synthesis which at 40 C produce particles with a sedimentation constant of 5S, and the ts 5 (RNA(+)) mutant produces both 5 and 10S particles. The relationship between different temperature-sensitive defects in the mutants is discussed. The results obtained indicate a possible role of 5S protein structures in morphogenesis of poliovirus.  相似文献   

20.
In this study we used site-directed mutagenesis to test the hypothesis that substrate channeling in the bifunctional thymidylate synthase-dihydrofolate reductase enzyme from Leishmania major occurs via electrostatic interactions between the negatively charged dihydrofolate produced at thymidylate synthase and a series of lysine and arginine residues on the surface of the protein. Accordingly, 12 charge reversal or charge neutralization mutants were made, with up to 6 putative channel residues changed at once. The mutants were assessed for impaired channeling using two criteria: a lag in product formation at dihydrofolate reductase and an increase in dihydrofolate accumulation. Surprisingly, none of the mutations produced changes consistent with impaired channeling, so our findings do not support the electrostatic channeling hypothesis. Burst experiments confirmed that the mutants also did not interfere with intermediate formation at thymidylate synthase. One mutant, K282E/R283E, was found to be thymidylate synthase-dead because of an impaired ability to form the covalent enzyme-methylene tetrahydrofolate-deoxyuridate complex prerequisite for chemical catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号