首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding factors that influence population connectivity and the spatial distribution of genetic variation is a major goal in molecular ecology. Improvements in the availability of high-resolution geographic data have made it increasingly possible to quantify the effects of landscape features on dispersal and genetic structure. However, most studies examining such landscape effects have been conducted at very fine (e.g. landscape genetics) or broad (e.g. phylogeography) spatial scales. Thus, the extent to which processes operating at fine spatial scales are linked to patterns at larger scales remains unclear. Here, we test whether factors impacting wood frog dispersal at fine spatial scales are correlated with genetic structure at regional scales. Using recently developed methods borrowed from electrical circuit theory, we generated landscape resistance matrices among wood frog populations in eastern North America based on slope, a wetness index, land cover and absolute barriers to wood frog dispersal. We then determined whether these matrices are correlated with genetic structure based on six microsatellite markers and whether such correlations outperform a landscape-free model of isolation by resistance. We observed significant genetic structure at regional spatial scales. However, topography and landscape variables associated with the intervening habitat between sites provide little explanation for patterns of genetic structure. Instead, absolute dispersal barriers appear to be the best predictor of regional genetic structure in this species. Our results suggest that landscape variables that influence dispersal, microhabitat selection and population structure at fine spatial scales do not necessarily explain patterns of genetic structure at broader scales.  相似文献   

2.
Styela clava, a solitary ascidian native to the NW Pacific, has become a conspicuous member of fouling communities in NW European waters. As its natural dispersal appears to be limited, the wide distribution of S. clava along coasts within its introduced range may be attributed to secondary spread assisted by human activities. Here, we used six microsatellite loci to examine the genetic diversity and extent of gene flow among S. clava populations in its European introduced range. Samples were collected from 21 populations within Europe (N = 808), 4 populations within the USA and two populations within the native range (Japan). Large variation in genetic diversity was observed among the European populations but were not explained either by the geographic distance from the first introduction area (i.e. Plymouth, UK) nor by the time elapsed since the introduction. No founder effect was observed in the introduced populations, except possibly in Puget Sound (USA). At least two different introductions occurred in Europe, identified as distinct genetic clusters: northern Danish populations (resembling one Japanese population), and the rest of Europe; a sample from Shoreham (England) possibly represents a third introduction. In North America, the population from the Atlantic was genetically similar to the majority of European populations, suggesting a European origin for populations on this seaboard, while populations from the Pacific coast were genetically similar to the same Japanese population as the Danish populations.  相似文献   

3.
Over the past 30 years southern New England, USA has been invaded by several species of ascidians, including Botrylloides violaceus, Diplosoma listerianum, Styela clava, and Ascidiella aspersa. These species have become dominate in coastal embayments and marinas but are usually absent from more open water coastal areas. A colonial ascidian, Didemnum sp. has invaded southern New England during the past 10 years and we first observed this species in eastern Long Island Sound in 2000. It has become the dominant at several field sites while remaining in low abundance at others. We conducted an experiment at two places, a protected marina and an open coast site, to examine its ability to compete with the established fouling community. Small colonies of Didemnum were transplanted onto panels with communities that varied in age from one to four weeks old and these treatments along with controls with only Didemnum were exposed at both sites. In most treatments Didemnum became a dominant species in the communities at both sites but it reached higher abundances at the open coast site. Potential causes of the observed differences are predation on other species of ascidians at the open coast site reducing recruitment of these species and competition, lower tolerance for elevated temperatures at the marina site, or other environmental parameters that might affect growth rates.  相似文献   

4.
Distinguishing natural versus anthropogenic dispersal of organisms is essential for determining the native range of a species and implementing an effective conservation strategy. For cryptogenic species with limited historical records, molecular data can help to identify introductions. Nematostella vectensis is a small, burrowing estuarine sea anemone found in tidally restricted salt marsh pools. This species’ current distribution extends over three coast lines: (i) the Atlantic coast of North America from Nova Scotia to Georgia, (ii) the Pacific coast of North America from Washington to central California, and (iii) the southeast coast of England. The 1996 IUCN Red List designates N. vectensis as “vulnerable” in England. Amplified fragment length polymorphism (AFLP) fingerprinting of 516 individuals from 24 N. vectensis populations throughout its range and mtDNA sequencing of a subsample of these individuals strongly suggest that anthropogenic dispersal has played a significant role in its current distribution. Certain western Atlantic populations of N. vectensis exhibit greater genetic similarity to Pacific populations or English populations than to other western Atlantic populations. At the same time, F-statistics showing high degrees of genetic differentiation between geographically proximate populations support a low likelihood for natural dispersal between salt marshes. Furthermore, the western Atlantic harbors greater genetic diversity than either England or the eastern Pacific. Collectively, these data clearly imply that N. vectensis is native to the Atlantic coast of North America and that populations along the Pacific coast and in England are cases of successful introduction.  相似文献   

5.
Studying population structure and genetic diversity at fine spatial scales is key for a better understanding of demographic processes that influence population connectivity. This is particularly important in marine benthic organisms that rely on larval dispersal to maintain connectivity among populations. Here, we report the results of a genetic survey of the ascidian Pyura chilensis from three localities along the southeastern Pacific. This study follows up on a previous report that described a genetic break in this region among localities only 20 km apart. By implementing a hierarchical sampling design at four spatial levels and using ten polymorphic microsatellite markers, we test whether differences in fine‐scale population structure explain the previously reported genetic break. We compared genetic spatial autocorrelations, as well as kinship and relatedness distributions within and among localities adjacent to the genetic break. We found no evidence of significant autocorrelation at the scale up to 50 m despite the low dispersal potential of P. chilensis that has been reported in the literature. We also found that the proportion of related individuals in close proximity (<1 km) was higher than the proportion of related individuals further apart. These results were consistent in the three localities. Our results suggest that the spatial distribution of related individuals can be nonrandom at small spatial scales and suggests that dispersal might be occasionally limited in this species or that larval cohorts can disperse in the plankton as clustered groups. Overall, this study sheds light on new aspects of the life of this ascidian as well as confirms the presence of a genetic break at 39°S latitude. Also, our data indicate there is not enough evidence to confirm that this genetic break can be explained by differences in fine‐scale genetic patterns among localities.  相似文献   

6.
Dokulil  Martin T.  Teubner  Katrin 《Hydrobiologia》2003,503(1-3):29-35
We studied the genetic structure of populations of the Atlanto-Mediterranean ascidian Clavelina lepadiformis (Müller, 1776). A 369 bp segment of the COI mitochondrial gene was sequenced in Mediterranean and Atlantic populations from inside harbours, marinas and fjords (interior populations), and from the open rocky littoral (exterior populations). Previous work identified genetic differences between C. lepadiformis inhabiting Mediterranean harbours and the Mediterranean rocky littoral, however, the origin of these two clades remained speculative. Here we compared the Mediterranean populations with four Atlantic populations (two interior and two exterior). Gene differentiation and maximum likelihood analyses showed that the Atlantic forms were not divided into interior and exterior clades, and were closely related to the interior clade in the Mediterranean. The results support the hypothesis that both clades evolved allopatrically in the two seas, and that a recent colonisation of Mediterranean marinas from the Atlantic was caused by ship-hull transport. Colonisation of habitats by new genetic variants, morphologically indistinguishable from local populations, may be common among benthic invertebrates, and only genetic tools can uncover these cryptic invasions.  相似文献   

7.
Since its first occurrence at Plymouth, southern England, in 1952 the East Asiatic ascidianStyela clava has spread to many localities along the coasts of the south and west British Isles, Ireland, northern France, Belgium, the Netherlands, Denmark and Germany. While some dispersal may occur by natural means, spreading over long distances is probably due to transfer along with oysters when relaid elsewhere. Transport while attached to the hulls of ships or driftingSargassum is also possible.Styela clava is a large, hardy and fast-growing species with a tough, leathery tunic, and has no recorded enemies or native analogues among the NW European ascidian fauna. At many sites it has established dense populations of 500–1000 specimens/m2 and in some cases has nearly outcompeted some of the native ascidian species.  相似文献   

8.
Nematostella vectensis is an infaunal anemone occurring in salt marshes, lagoons and other estuarine habitats in North America and the United Kingdom. Although it is considered rare and receives protection in England, it is widely distributed and abundant in the United States, particularly along the Atlantic coast. Recent studies suggest that both anthropogenic dispersal and reproductive plasticity may significantly influence the genetic structure of N. vectensis populations. Amplified fragment length polymorphism (AFLP) fingerprinting of individuals from nine populations in the northeastern United States indicates that stable populations are maintained by both asexual and sexual reproduction; in some cases asexually reproducing lineages exist within sexually reproducing populations. F statistics reveal extraordinarily high degrees of genetic differentiation between populations, even those separated by very short distances (less than 100 m). Genetic distances show little to no correlation with geographical distances, consistent with a role for sporadic, geographically discontinuous dispersal coupled with limited gene flow. No single genotype was found at more than one site, despite apparent homogeneity of habitat. In contrast with reported genotypic distributions for Nematostella in the United Kingdom, where a single clonal genotype dominates at multiple sites through southern England, our data thus fail to support the hypothesis of a general-purpose genotype in the northeastern United States. However, they are consistent with important roles for reproductive plasticity, sporadic introductions and complex local population dynamics in determining the global and regional distribution of this species.  相似文献   

9.
The solitary ascidian Styela clava Herdman, 1882 is considered to be native to Japan, Korea, northern China and the Russian Federation in the NW Pacific, but it has spread globally over the last 80 years and is now established as an introduced species on the east and west coasts of North America, Europe, Australia and New Zealand. In eastern Canada it reaches sufficient density to be a serious pest to aquaculture concerns. We sequenced a fragment of the cytochrome oxidase subunit I mitochondrial gene (COI) from a total of 554 individuals to examine the genetic relationships of 20 S. clava populations sampled throughout the introduced and native ranges, in order to investigate invasive population characteristics. The data presented here show a moderate level of genetic diversity throughout the northern hemisphere. The southern hemisphere (particularly New Zealand) displays a greater amount of haplotype and nucleotide diversity in comparison. This species, like many other invasive species, shows a range of genetic diversities among introduced populations independent of the age of incursion. The successful establishment of this species appears to be associated with multiple incursions in many locations, while other locations appear to have experienced rapid expansion from a potentially small population with reduced genetic diversity. These contrasting patterns create difficulties when attempting to manage and mitigate a species that continues to spread among ports and marinas around the world.  相似文献   

10.
Examining population genetic structure can reveal patterns of reproductive isolation or population mixing and inform conservation management. Some avian species are predicted to exhibit minimal genetic differentiation among populations as a result of the species high mobility, with habitat specialists tending to show greater fine‐scale genetic structure. To explore the relationship between habitat specialization and gene flow, we investigated the genetic structure of a saltmarsh specialist with high potential mobility across a wide geographical range of fragmented habitat. Little variation among mitochondrial sequences (620 bp from ND2) was observed among 149 individual Clapper Rails Rallus crepitans sampled along the Atlantic coast of the USA, with the majority of individuals at all sampling sites sharing a single haplotype. Genotyping of nine microsatellite loci across 136 individuals revealed moderate genetic diversity, no evidence of bottlenecks and a weak pattern of genetic differentiation that increased with geographical distance. Multivariate analyses, Bayesian clustering and an AMOVA all suggested a lack of genetic structuring across the Atlantic coast of the USA, with all individuals grouped into a single interbreeding population. Spatial autocorrelation analyses showed evidence of weak female philopatry and a lack of male philopatry. We conclude that high gene flow connecting populations of this habitat specialist may result from the interaction of ecological and behavioural factors that promote dispersal and limit natal philopatry and breeding‐site fidelity. As climate change threatens saltmarshes, the genetic diversity and population connectivity of Clapper Rails may promote resilience of their populations. This finding helps inform about potential fates of other similarly behaving saltmarsh specialists on the Atlantic coast.  相似文献   

11.
Despite having winged queens, female dispersal in the monogynous ant Cataglyphis cursor is likely to be restricted because colonies reproduce by fission. We investigated the pattern of population genetic structure of this species using eight microsatellite markers and a mitochondrial DNA (mtDNA) sequence, in order to examine the extent of female and nuclear gene flow in two types of habitat. Sampling was carried out at a large spatial scale (16 sites from 2.5 to 120 km apart) as well as at a fine spatial scale (two 4.5-km transects, one in each habitat type). The strong spatial clustering of mtDNA observed at the fine spatial scale strongly supported a restricted effective female dispersal. In agreement, patterns of the mtDNA haplotypes observed at large and fine spatial scales suggested that new sites are colonized by nearby sites. Isolation by distance and significant nuclear genetic structure have been detected at all the spatial scales investigated. The level of local genetic differentiation for mitochondrial marker was 15 times higher than for the nuclear markers, suggesting differences in dispersal pattern between the two sexes. However, male gene flow was not sufficient to prevent significant nuclear genetic differentiation even at short distances (500 m). Isolation-by-distance patterns differed between the two habitat types, with a linear decrease of genetic similarities with distance observed only in the more continuous of the two habitats. Finally, despite these low dispersal capacities and the potential use of parthenogenesis to produce new queens, no signs of reduction of nuclear genetic diversity was detected in C. cursor populations.  相似文献   

12.
Clinus cottoides is a fish endemic to the coast of South Africa, predominantly inhabiting rock pools. All South African clinids are viviparous, but probably breed throughout the year; as such, their dispersal may be limited, unlike species with pelagic larval stages. We analysed 343 fish from 14 localities on the west, south and east coasts using two mitochondrial genes and the second intron of the S7 ribosomal gene. Mitochondrial DNA analyses recovered significant genetic differentiation between fish populations from the east coast and other sampling locations, with a second break found between Gansbaai and Cape Agulhas on the south coast. Nuclear DNA recovered shallower, but significant, levels of population structure. Coalescent analyses suggested remarkably asymmetrical gene flow between sampling locations, suggesting that the cold Atlantic Benguela Current and Indian Ocean Agulhas counter‐current play important roles in facilitating dispersal. There was no gene flow between the east coast and the other sites, suggesting that these populations are effectively isolated. Divergence times between them were estimated to at least 68 000 years. Neutrality tests and mismatch distributions suggest recent population expansions, with the exception of peripheral western and eastern populations (possibly a consequence of environmental extremes at the edge of the species distribution). Analyses of the current South African marine protected areas network show that it is not connected and that De Hoop, one of South Africa's largest marine reserves, appears to be an important source population of recruits to both the south and southwest coasts.  相似文献   

13.
Eight nuclear polymorphic microsatellite markers were characterized from the ascidian Ciona intestinalis whole genome sequence. The behaviour of these loci was investigated against two geographically distinct populations: one from Plymouth, UK the other from the Fusaro Lagoon, Italy, both belonging to the type A Ciona cryptic species. The markers exhibited six to 29 alleles and average observed heterozygosity ranging from 0.06 to 0.73. These new microsatellite loci demonstrated to be valuable tools for both population genetic analysis at different scales and genetic identification of mutant phenotypes frequently encountered in Mediterranean populations of C. intestinalis.  相似文献   

14.
Avicennia germinans L. is a widespread mangrove species occupying the west coast of Africa and the Atlantic and Pacific coasts of the Americas from the Bahamas to Brazil and Baja California to Peru. An amplified fragment length polymorphism (AFLP) molecular analysis was carried out to assess genetic architecture within this species and to evaluate the effects of the Atlantic Ocean and the Central American Isthmus (CAI) on population and regional genetic diversity and differentiation. In total, 349 polymorphic AFLP fragments were identified among 144 individuals from 14 populations from the east Atlantic, west Atlantic and east Pacific. Levels of genetic diversity varied considerably among populations, but were generally higher in populations from the east Atlantic. Regional differentiation between the Pacific coast and Atlantic populations was greater than between east and west Atlantic populations, suggesting that the CAI has had an important influence on population genetic structure in this species. The lower level of divergence of east Atlantic from west Atlantic populations suggests some dispersal across the Atlantic Ocean, although migration rates are probably low; Nm from GST equal to 0.41 and accumulation of private and rare alleles in the east Atlantic. Population differentiation did not appear to follow an isolation by distance model and has probably resulted from complex patterns of population bottlenecks, and founder events due to landscape changes during the Pleistocene, particularly in the west Atlantic. The molecular data provide no support for the treatment of east Atlantic populations as a separate species A. africana.  相似文献   

15.
Understanding population genetic structure can help us to infer dispersal patterns, predict population resilience and design effective management strategies. For sessile species with limited dispersal, this is especially pertinent because genetic diversity and connectivity are key aspects of their resilience to environmental stressors. Here, we describe the population structure of Ircinia campana, a common Caribbean sponge subject to mass mortalities and disease. Microsatellites were used to genotype 440 individuals from 19 sites throughout the Greater Caribbean. We found strong genetic structure across the region, and significant isolation by distance across the Lesser Antilles, highlighting the influence of limited larval dispersal. We also observed spatial genetic structure patterns congruent with oceanography. This includes evidence of connectivity between sponges in the Florida Keys and the southeast coast of the United States (>700 km away) where the oceanographic environment is dominated by the strong Florida Current. Conversely, the population in southern Belize was strongly differentiated from all other sites, consistent with the presence of dispersal-limiting oceanographic features, including the Gulf of Honduras gyre. At smaller spatial scales (<100 km), sites showed heterogeneous patterns of low-level but significant genetic differentiation (chaotic genetic patchiness), indicative of temporal variability in recruitment or local selective pressures. Genetic diversity was similar across sites, but there was evidence of a genetic bottleneck at one site in Florida where past mass mortalities have occurred. These findings underscore the relationship between regional oceanography and weak larval dispersal in explaining population genetic patterns, and could inform conservation management of the species.Subject terms: Genetic variation, Ecology  相似文献   

16.
Dispersal in marine systems is a critical component of the ecology, evolution, and conservation of such systems; however, estimating dispersal is logistically difficult, especially in coral reef fish. Juvenile bicolor damselfish (Stegastes partitus) were sampled at 13 sites along the Mesoamerican Barrier Reef System (MBRS), the barrier reefs on the east coast of Central America extending from the Yucatan, Mexico to Honduras, to evaluate genetic structure among recently settled cohorts. Using genotype data at eight microsatellite loci genetic structure was estimated at large and small spatial scales using exact tests for allele frequency differences and hierarchical analysis of molecular variance (AMOVA). Isolation-by-distance models of divergence were assessed at both spatial scales. Results showed genetic homogeneity of recently settled S. partitus at large geographic scales with subtle, but significant, genetic structure at smaller geographic scales. Genetic temporal stability was tested for using archived juvenile S. partitus collected earlier in the same year (nine sites), and in the previous year (six sites). The temporal analyses indicated that allele frequency differences among sites were not generally conserved over time, nor were pairwise genetic distances correlated through time, indicative of temporal instability. These results indicate that S. partitus larvae undergo high levels of dispersal along the MBRS, and that the structure detected at smaller spatial scales is likely driven by stochastic effects on dispersal coupled with microgeographic effects. Temporal variation in juvenile cohort genetic signature may be a fundamental characteristic of connectivity patterns in coral reef fishes, with various species and populations differing only in the magnitude of that instability. Such a scenario provides a basis for the reconciliation of conflicting views regarding levels of genetic structuring in S. partitus and possibly other coral reef fish species.  相似文献   

17.
Gall-inducing insects seem to have a diversity pattern distinct from the usual latitudinal decrease in species, with more species occurring in xeric environments instead. Many questions regarding galler diversity over geographical scales remain unanswered: for example, little is known about beta diversity, and the role super host plants play in local/regional richness. Our aim was to compare galling insect and host plant diversity in different biogeographical regions, but under similar environmental conditions. We sampled short stature coastal woodlands on sandy soils of the Atlantic coast in both USA (Florida) and Brazil (Rio Grande do Sul, RS), between 25° and 30° latitude. Little-used 200-m long trails were searched during 90 min for galls; there were four trails in USA and five in Brazil. Gall functional traits (galled plant organ, gall shape and colour) proportions were not different between Florida and RS. Local galling and host plant species richness also did not differ, and neither did regional galling diversity. The beta diversity pattern, however, was distinct: sites in Florida have more similar galling faunas than sites in RS. Common diversity patterns indicate common environmental biotic (plant diversity, vegetation structure) and abiotic (climate, soil) factors might be contributing to these similar responses. As Brazilian sites are in the Atlantic forest hotspot, a high galling insect beta diversity might be caused by a higher heterogeneity at larger scales—sample-based rarefaction curves were ascending for Brazil, but not for USA. Myrtaceans were super hosts in Brazil, but not in Florida, where oaks take up this role.  相似文献   

18.
The Atlantic sand fiddler crab Uca pugilator is an extremely abundant crab found along the eastern coast of the United States. Fiddler crabs have a life cycle with an obligatory planktonic larval phase of 30-90 days, which might be expected to lead to widespread larval dispersal and consequent genetic homogeneity over considerable distances. However, a large amount of morphological and behavioral variation is found between northern and southern populations along the eastern coast. This study was undertaken to determine the population genetic structure of U.pugilator and to determine whether these differences may have a genetic basis. The population structure of the fiddler crab was analyzed using 472 individuals collected from 12 sites along the eastern coast. PCR-based single stand conformation polymorphism (SSCP) was used to investigate between-site variation in the mitochondrial 16S rRNA gene of these individuals. Analysis of genetic variation indicated frequent gene flow between nearby localities, but much reduced levels between populations separated by larger geographic distances. Thus, despite the potential for high dispersal by planktonic larvae, population differentiation and isolation by distance is evident between northern and southern populations of U.pugilator. A high amount of genetic differentiation (FST=0.3468) was found between northern and southern regions suggesting that the morphological and behavioral differences between these two regions have a genetic basis and may represent subspecies [Current Zoology 55(2):150-157,2009].  相似文献   

19.
A detailed understanding of the genetic structure of populations and an accurate interpretation of processes driving contemporary patterns of gene flow are fundamental to successful spatial conservation management. The field of seascape genetics seeks to incorporate environmental variables and processes into analyses of population genetic data to improve our understanding of forces driving genetic divergence in the marine environment. Information about barriers to gene flow (such as ocean currents) is used to define a resistance surface to predict the spatial genetic structure of populations and explain deviations from the widely applied isolation-by-distance model. The majority of seascape approaches to date have been applied to linear coastal systems or at large spatial scales (more than 250 km), with very few applied to complex systems at regional spatial scales (less than 100 km). Here, we apply a seascape genetics approach to a peripheral population of the broadcast-spawning coral Acropora spicifera across the Houtman Abrolhos Islands, a high-latitude complex coral reef system off the central coast of Western Australia. We coupled population genetic data from a panel of microsatellite DNA markers with a biophysical dispersal model to test whether oceanographic processes could explain patterns of genetic divergence. We identified significant variation in allele frequencies over distances of less than 10 km, with significant differentiation occurring between adjacent sites but not between the most geographically distant ones. Recruitment probabilities between sites based on simulated larval dispersal were projected into a measure of resistance to connectivity that was significantly correlated with patterns of genetic divergence, demonstrating that patterns of spatial genetic structure are a function of restrictions to gene flow imposed by oceanographic currents. This study advances our understanding of the role of larval dispersal on the fine-scale genetic structure of coral populations across a complex island system and applies a methodological framework that can be tailored to suit a variety of marine organisms with a range of life-history characteristics.  相似文献   

20.
Colson I  Hughes RN 《Molecular ecology》2004,13(8):2223-2233
The dogwhelk Nucella lapillus is a predatory marine gastropod populating North Atlantic rocky shores. As with many other gastropod species, N. lapillus was affected by tributyltin (TBT) pollution during the 1970s and 1980s, when local populations became extinct. After a partial ban on TBT in the United Kingdom in 1987, vacant sites have been recolonized. N. lapillus lacks a planktonic larval stage and is therefore expected to have limited dispersal ability. Relatively fast recolonization of some sites, however, contradicts this assumption. We compared levels of genetic diversity and genetic structuring between recolonized sites and sites that showed continuous population at three localities across the British Isles. No significant genetic effects of extinction/recolonization events were observed in SW Scotland and NE England. In SW England we observed a decrease in genetic diversity and an increase in genetic structure in recolonized populations. This last result could be an artefact, however, due to the superposition of other local factors influencing the genetic structuring of dogwhelk populations. We conclude that recolonization of vacant sites was accomplished by a relatively high number of individuals originating from several source populations (the 'migrant-pool' model of recolonization), implying that movements are more widespread than expected on the basis of development mode alone. Comparison with published data on genetic structure of marine organisms with contrasted larval dispersal supports this hypothesis. Our results also stress the importance of local factors (geographical or ecological) in determining genetic structure of dogwhelk populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号