首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using characters from mitochondrial DNA to construct maximum parsimony and maximum likelihood trees, we performed a phylogenetic analysis on representative species of 14 genera: 12 that belong to the treefrog family Rhacophoridae and two, Amolops and Rana, that are not rhacophorids. Our results support a phylogenetic hypothesis that depicts a monophyletic family Rhacophoridae. In this family, the Malagasy genera Aglyptodactylus, Boophis, Mantella, and Mantidactylus form a well-supported sister clade to all other rhacophorid genera, and Mantella is the sister taxon to Mantidactylus. Within the Asian/African genera, the genus Buergeria forms a well-supported clade of four species. The genera, except for Chirixalus, are generally monophyletic. An exception to this is that Polypedates dennysii clusters with species of Rhacophorus, suggesting that the taxonomy of the rhacophorids should be revised to reflect this relationship. Chirixalus is not monophyletic. Unexpectedly, there is strong support for Chirixalus doriae from Southeast Asia forming a clade with species of the African genus Chiromantis, suggesting that Chiromantis dispersed to Africa from Asia. Also, there is strong support for the sister taxon relationship of Chirixalus eiffingeri and Chirixalus idiootocus apart from other congeners.  相似文献   

2.
Most examples of intercontinental dispersal events after the Miocene contact between Africa and Asia involve mammal lineages. Among amphibians, a number of probably related groups are known from both continents, but their phylogenies are so far largely unresolved. To test the hypothesis of Miocene dispersal against a Mesozoic vicariance scenario in the context of Gondwana fragmentation, we analyzed fragments of the mitochondrial 16S rRNA gene (572 bp) in 40 specimens of 34 species of the anuran family Ranidae. Results corroborated the monophyly of tiger frogs (genus Hoplobatrachus), a genus with representatives in Africa and Asia. The African H. occipitalis was the sister group of the Asian H. crassus, H. chinensis, and H. tigerinus. Hoplobatrachus was placed in a clade also containing the Asian genera Euphlyctis and Nannophrys. Combined analysis of sequences of 16S and 12S rRNA genes (total 903 bp) in a reduced set of taxa corroborated the monophyly of the lineage containing these three genera and identified the Asian genus Fejervarya as its possible sister group. The fact that the African H. occipitalis is nested within an otherwise exclusively Asian clade indicates its probable Oriental origin. Rough molecular clock estimates did not contradict the assumption that the dispersal event took place in the Miocene. Our data further identified a similar molecular divergence between closely related Asian and African species of Rana (belonging to the section Hylarana), indicating that Neogene intercontinental dispersal also may have taken place in this group and possibly in rhacophorid treefrogs.  相似文献   

3.
The Pycnonotidae (bulbuls and greenbuls) comprise approximately 130 species and are widely distributed across Africa and Asia, mainly in evergreen thickets and forest. Recent molecular findings suggest a basal split between the African and the Asian species, although the three African Pycnonotus species are part of the Asian radiation and represent a relative recent immigration to Africa. In this study we investigate the phylogenetic relationships within the African clade, which with the exclusion of Pycnonotus contains approximately 50 species, of which the majority are placed in three large genera Andropadus , Phyllastrephus and Chlorocichla . We use three nuclear markers (myoglobin intron 2, ODC introns 6 and 7 along with intervening exon 7, and β-fibrinogen intron 5), together encompassing 2072 aligned positions, to infer the relationships within the African clade. The resulting tree is generally well supported and indicates that none of the three largest currently recognized genera are monophyletic. For instance, the species included in Andropadus represent three different clades that are not each other's closest relatives. The montane species currently placed in that genus form a strongly supported clade, which is sister to Ixonotus , Thescelocichla, Baeopogon and Chlorocichla , although within this clade the genus Chlorocichla is polyphyletic. The remaining Andropadus species fall into two groups, one of these with A . importunus and A . gracilirostris , which along with Calyptocichla serina form a basal branch in the African greenbul radiation. In support of some previous studies the Leaf-love ( Pyrrhurus scandens ) is placed within Phyllastrephus . We also propose a new classification that reflects the phylogenetic relationships among African greenbuls.  相似文献   

4.
The snake family Lamprophiidae Fitzinger (Serpentes: Elapoidea) is a putatively Late Eocene radiation of nocturnal snakes endemic to the African continent. It incorporates many of the most characteristic and prolific of Africa's non-venomous snake species, including the widespread type genus Lamprophis Fitzinger, 1843 (house snakes). We used approximately 2500 bases of mitochondrial and nuclear DNA sequence data from 28 (41%) of the approximately 68 recognised lamprophiid species in nine of the eleven genera to investigate phylogenetic structure in the family and to inform taxonomy at the generic level. Cytochrome b, ND4 and tRNA gene sequences (mitochondrial) and c-mos sequences (nuclear) were analysed using Maximum Likelihood, Bayesian Inference and Maximum Parsimony methods. The genus Mehelya Csiki, 1903 was paraphyletic with respect to Gonionotophis Boulenger, 1893. To address this, the concept of Gonionotophis is expanded to include all current Mehelya species. The genus Lamprophis emerged polyphyletic: the enigmatic Lamprophis swazicus was sister to Hormonotus modestus from West Africa, and not closely related to its nominal congeners. It is moved to a new monotypic genus (Inyoka gen. nov.). The remaining Lamprophis species occur in three early-diverging lineages. (1) Lamprophis virgatus and the widely distributed Lamprophis fuliginosus species complex (which also includes Lamprophis lineatus and Lamprophis olivaceus) formed a clade for which the generic name Boaedon Duméril, Bibron & Duméril, 1854 is resurrected. (2) The water snakes (Lycodonomorphus) were nested within Lamprophis (sensu lato), sister to Lamprophis inornatus. We transfer this species to the genus Lycodonomorphus Fitzinger, 1843. (3) We restrict Lamprophis (sensu strictissimo) to a small clade of four species endemic to southern Africa: the type species of Lamprophis Fitzinger, 1843 (Lamprophis aurora) plus Lamprophis fiskii, Lamprophis fuscus and Lamprophis guttatus.  相似文献   

5.
The molecular phylogeny of the globally distributed golden orb spider genus Nephila (Nephilidae) was reconstructed to infer its speciation history, with a focus on SE Asian/W Pacific species. Five Asian, two Australian, four African, and one American species were included in the phylogenetic analyses. Other species in Nephilidae, Araneidae, and Tetragnathidae were included to assess their relationships with the genus Nephila, and one species from Uloboridae was used as the outgroup. Phylogenetic trees were reconstructed from one nuclear (18S) and two mitochondrial (COI and 16S) markers. Our molecular phylogeny shows that the widely distributed Asian/Australian species, N. pilipes, and an African species, N. constricta, form a clade that is sister to all other Nephila species. Nested in this Nephila clade are one clade with tropical and subtropical/temperate Asian/Australian species, and the other containing African and American species. The estimated divergence times suggest that diversification events within Nephila occurred during mid-Miocene to Pliocene (16 Mya-2 Mya), and these time periods were characterized by cyclic global warming/cooling events. According to Dispersal and Vicariance Analysis (DIVA), the ancestral range of the Asian/Australian clade was tropical Asia, and the ancestral range of the genus Nephila was either tropical Asia or Africa. We conclude that the speciation of the Asian/Australian Nephila species was driven by Neogene global cyclic climate changes. However, further population level studies comparing diversification patterns of sister species are needed to determine the mode of speciation of these species.  相似文献   

6.
The continental distributions of freshwater fishes in the family Notopteridae (Osteoglossomorpha) across Africa, India, and Southeast Asia constitute a long standing and enigmatic problem of freshwater biogeography. The migrational pathway of the Asian notopterids has been discussed in light of two competing schemes: the first posits recent transcontinental dispersal while the second relies on distributions being shaped by ancient vicariance associated with plate-tectonic events. In this study, we determined complete mitochondrial DNA sequences from 10 osteoglossomorph fishes to estimate phylogenetic relationships using partitioned Bayesian and maximum likelihood methods and divergence dates of the family Notopteridae with a partitioned Bayesian approach. We used six species representing the major lineages of the Notopteridae and seven species from the remaining osteoglossomorph families. Fourteen more-derived teleosts, nine basal actinopterygians, two coelacanths, and one shark were used as outgroups. Phylogenetic analyses indicated that the African and Asian notopterids formed a sister group to each other and that these notopterids were a sister to a clade comprising two African families (Mormyridae and Gymnarchidae). Estimated divergence time between the African and Asian notopterids dated back to the early Cretaceous when India–Madagascar separated from the African part of Gondwanaland. Thus, estimated time of divergence based on the molecular evidence is at odds with the recent dispersal model. It can be reconciled with the geological and paleontological evidence to support the vicariance model in which the Asian notopterids diverged from the African notopterids in Gondwanaland and migrated into Eurasia on the Indian subcontinent from the Cretaceous to the Tertiary. However, we could not exclude an alternative explanation that the African and Asian notopterids diverged in Pangea before its complete separation into Laurasia and Gondwanaland, to which these two lineages were later confined, respectively.  相似文献   

7.
The wide geographic distribution of Schistosoma mansoni, a digenetic trematode and parasite of humans, is determined by the occurrence of its intermediate hosts, freshwater snails of the genus Biomphalaria (Preston 1910). We present phylogenetic analyses of 23 species of Biomphalaria, 16 Neotropical and seven African, including the most important schistosome hosts, using partial mitochondrial ribosomal 16S and complete nuclear ribosomal ITS1 and ITS2 nucleotide sequences. A dramatically better resolution was obtained by combining the data sets as opposed to analyzing each separately, indicating that there is additive congruent signal in each data set. Neotropical species are basal, and all African species are derived, suggesting an American origin for the genus. We confirm that a proto-Biomphalaria glabrata gave rise to all African species through a trans-Atlantic colonization of Africa. In addition, genetic distances among African species are smaller compared with those among Neotropical species, indicating a more recent origin. There are two species-rich clades, one African with B. glabrata as its base, and the other Neotropical. Within the African clade, a wide-ranging tropical savannah species, B. pfeifferi, and a Nilotic species complex, have both colonized Rift Valley lakes and produced endemic lacustrine forms. Within the Neotropical clade, two newly acquired natural hosts for S. mansoni (B. straminea and B. tenagophila) are not the closest relatives of each other, suggesting two separate acquisition events. Basal to these two species-rich clades are several Neotropical lineages with large genetic distances between them, indicating multiple lineages within the genus. Interesting patterns occur regarding schistosome susceptibility: (1) the most susceptible hosts belong to a single clade, comprising B. glabrata and the African species, (2) several susceptible Neotropical species are sister groups to apparently refractory species, and (3) some basal lineages are susceptible. These patterns suggest the existence of both inherent susceptibility and resistance, but also underscore the ability of S. mansoni to adapt to and acquire previously unsusceptible species as hosts. Biomphalaria schrammi appears to be distantly related to other Biomphalaria as well as to Helisoma, and may represent a separate or intermediate lineage.  相似文献   

8.
Published molecular phylogenetic studies of elapid snakes agree that the marine and Australo-Melanesian forms are collectively monophyletic. Recent studies, however, disagree on the relationships of the African, American, and Asian forms. To resolve the relationships of the African, American, and Asian species to each other and to the marine/Australo-Melanesian clade, we sequenced the entire cytochrome b gene for 28 elapids; 2 additional elapid sequences from GenBank were also included. This sample includes all African, American, and Asian genera (except for the rare African Pseudohaje), as well as a representative sample of marine/Australo-Melanesian genera. The data were analyzed by the methods of maximum-parsimony and maximum-likelihood. Both types of analyses yielded similar trees, from which the following conclusions can be drawn: (1) Homoroselaps falls outside a clade formed by the remaining elapids; (2) the remaining elapids are divisible into two broad sister clades, the marine/Australo-Melanesian species vs the African, American, and Asian species; (3) American coral snakes cluster with Asian coral snakes; and (4) the "true" cobra genus Naja is probably not monophyletic as the result of excluding such genera as Boulengerina and Paranaja.  相似文献   

9.
The phylogenetic relationships of 27 north-eastern Atlantic and Mediterranean blennioids are analysed based on a total of 1001 bp from a combined fragment of the 12S and 16S mitochondrial rDNA. The most relevant results with implications in current blenniid taxonomy are: (1) Lipophrys pholis and Lipophrys (=  Paralipophrys ) trigloides are included in a well-supported clade that by the rule of precedence must be named Lipophrys ; (2) the sister species of this clade are not the remaining species of the genus Lipophrys but instead a monotypic genus comprising Coryphoblennius galerita ; (3) the smaller species of Lipophrys were recovered in another well-supported and independent clade, which we propose to be recognized as Microlipophrys ; (4) although some authors included the genera Salaria and Lipophrys in a single group we have never recovered such a relationship. Instead, Salaria is more closely related to the genera Scartella and Parablennius ; (5) the genus Parablennius , which was never recovered as a monophyletic clade, is very diverse and may include several distinct lineages; (6) the relative position of Aidablennius sphynx casts some doubts on the currently recognized relationships between the different blenniid tribes. Meristic, morphological, behavioural and ecological characters support our results and are also discussed. The possible roles of the tropical West African coast and the Mediterranean in the diversification of blenniids are discussed.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 283–295.  相似文献   

10.
The bee-eaters (family Meropidae) comprise a group of brightly colored, but morphologically homogeneous, birds with a wide variety of life history characteristics. A phylogeny of bee-eaters was reconstructed using nuclear and mitochondrial DNA sequence data from 23 of the 25 named bee-eater species. Analysis of the combined data set provided a well-supported phylogenetic hypothesis for the family. Nyctiornis is the sister taxon to all other bee-eaters. Within the genus Merops, we recovered two well-supported clades that can be broadly separated into two groups along geographic and ecological lines, one clade with mostly African resident species and the other clade containing a mixture of African and Asian taxa that are mostly migratory species. The clade containing resident African species can be further split into two groups along ecological lines by habitat preference into lowland forest specialists and montane forest and forest edge species. Intraspecific sampling in several of the taxa revealed moderate to high (3.7-6.5%, ND2) levels of divergence in the resident taxa, whereas the lone migratory taxon showed negligible levels of intraspecific divergence. This robust molecular phylogeny provides the phylogenetic framework for future comparative tests of hypotheses about the evolution of plumage patterns, sociality, migration, and delayed breeding strategies.  相似文献   

11.
A major question in rhinocerotid phylogenetics concerns the position of the Sumatran rhinoceros (Dicerorhinus sumatrensis) with regard to the other extant Asian (Rhinoceros unicornis and R. sondaicus) and African (Diceros bicornis and Ceratotherium simum) species. We have examined this particular question through the phylogenetic analysis of the complete sequences of the mitochondrial 12S rRNA and cytochrome b genes. Three additional perissodactyls (one tapir and two equids) plus several outgroup cetartiodactyls were included in the analysis. The analysis identified a basal rhinocerotid divergence between the African and the Asian species, with the Sumatran rhinoceros forming the sister group of the genus Rhinoceros. We estimate the Asian and African lineages to have diverged at about 26 million years before present.  相似文献   

12.
Monkey beetles (Hopliini) are a large clade of flower and leaf feeding species within the Scarabaeidae (chafers) with greatest diversity in southern Africa. Their internal relationships and sister group affinities have not been studied with DNA methods. We used partial gene sequences for 28S rRNA, cytochrome oxidase I (cox1) and 16S rRNA (rrnL) for 158 species, representing most recognized subfamilies of Scarabaeidae, including 46 species of Hopliini. Combined analyses using maximum likelihood and Bayesian inference under the two preferred alignment parameters recovered the Hopliini as monophyletic. Hopliines were inserted at the base of a clade of Cetoniinae+Rutelinae+Dynastinae, being either recovered as their immediate sister group, or as part of an expanded set of basal branches that also includes the tribe Macrodactylini which has been classified as part of the Melolonthinae (may chafers). At the level of subtribes, we found Hopliina paraphyletic with respect to Pachycnemina which also includes the monophyletic clade of Heterochelina and Gymnolomina. Trait mapping under parsimony on the preferred tree resulted in inferences of three independent origins of sexual dimorphism, which coincided with shifts to 'flower-embedding' pollination. In contrast, night active taxa, which are general phyllophages as other pleurostict chafers, never show clear sexual dimorphism. South African lineages include several deep-branching lineages. The exceptional morphological and phylogenetic diversity of the South African fauna may therefore be due to their antiquity, in addition to sexual selection in the day-active lineages. Phylogenetic studies of the endemic South African plant radiations have demonstrated the repeated evolutionary shift to beetle pollination, but it remains to be investigated if this is driven by the hopliine pollinators present in the bioregion or by a propensity of the local plant lineages favoring this pollination syndrome.  相似文献   

13.
Previous studies have suggested that bird populations in east Asia were less affected by Pleistocene climatic fluctuations than those in Europe and North America. However, this is mainly based on comparisons among species. It would be more relevant to analyse geographical populations of widespread species or species complexes. We analyzed two mitochondrial genes and two nuclear introns for all taxa of Pica to investigate 1) which Earth history factors have shaped the lineage divergence, and 2) whether different geographical populations were differently affected by the Pleistocene climatic changes. Our mitochondrial tree recovered three widespread lineages, 1) in east Asia, 2) across north Eurasia, and 3) in North America, respectively, with three isolated lineages in northwest Africa, Arabia and the Qinghai‐Tibet Plateau, respectively. Divergences among lineages took place 1.4–3.1 million yr ago. The northwest African population was sister to the others, which formed two main clades. In one of these, Arabia was sister to Qinghai‐Tibet, and these formed the sister clade to the east Asia clade. The other main clade comprised the North American and north Eurasian clades. There was no or very slight structure within these six geographical clades, including a lack of differentiation between the two North American species black‐billed magpie P. hudsonia and yellow‐billed magpie P. nutalli. Demographic expansion was recorded in the three most widespread lineages after 0.06 Ma. Asymmetric gene flow was recorded in the north Eurasian clade from southwestern Europe eastward, whereas the east Asian clade was rooted in south central China. Our results indicate that the fragmentation of the six clades of Pica was related to climatic cooling and aridification during periods of the Pliocene–Pleistocene. Populations on both sides of the Eurasian continent were similarly influenced by the Pleistocene climate changes and expanded concomitantly with the expansion of steppes. Based on results we also propose a revised taxonomy recognising seven species of Pica.  相似文献   

14.
We evaluated the status of 16 of 22 recognized Sri Lankan Cnemaspis Strauch species, and flagged overlooked diversity with two mitochondrial (cyt b & ND2) and two nuclear markers (RAG1 & PDC) totalling 2829 base pairs. A fossil-calibrated timetree and sampling of other South Asian Cnemaspis provide insights into the diversification of the genus in peninsular India and Sri Lanka. Phylogenetic analyses consistently inferred two broad clades within South Asian Cnemaspis, with Sri Lankan species in two clades, which we call the podihuna and kandiana clades. Each Sri Lankan clade as a whole is sister to Indian taxa and nested within Indian lineages. Cnemaspis modigliani Das from Indonesia is a member of the kandiana clade. This suggests a minimum of two dispersal events between India and Sri Lanka and one between Sri Lanka/India and South-east Asia. South Asian Cnemaspis date back to at least the Eocene, in Sri Lanka to the early Miocene, with late Miocene diversification in the kandiana clade. All but one of the named species we sampled is likely to be valid, and 10 divergent unnamed lineages may warrant specific recognition. A resolution of Sri Lankan Cnemaspis taxonomy will require thorough sampling and the use of both morphological and molecular data.  相似文献   

15.
Ice crawlers (Insecta: Grylloblattodea) are rarely encountered insects that consist of five genera representing 26 species from North America and Asia. Asian grylloblattids are the most diverse, but North American ice crawlers (genus Grylloblatta) are known for their adaptation to cold conditions. Phylogenetic relationships among grylloblattid species and genera are not known. Six genes were sampled in 35 individuals for 18S rRNA, 28S rRNA, histone 3, 12S rRNA, 16S rRNA, and cytochrome oxidase II from 21 populations of Grylloblatta, three populations from Japan (genus Galloisiana), and three populations from Russia (genus Grylloblattina). Phylogenetic analysis of these data with two mantophasmid outgroups in POY supported monophyletic genera, with Grylloblatta as sister to Grylloblattina. Grylloblatta was shown to contain two major lineages: a clade in Northern California and Oregon and a clade in Washington and Oregon. One new species and six candidate species are proposed. IUCN Red List Conservation Criteria were implemented to designate conservation status for each lineage.  相似文献   

16.
The phylogeny of the genus Arrhipis Bonvouloir (Coleoptera, Eucnemidae) is clarified with a cladistic analysis based on five molecular markers and morphology. Sixteen species from Africa, America, Asia, and Australia are included in the analysis. Two separate Asian clades are recovered, one of them being the sister group to a clade with the American and African species. With the exception of the continental south-east Asian species, all Gondwanan regions have monophyletic faunas. According to the present data, the continental south-east Asian fauna comprises two monophyletic groups, one of which is the sister group to African and American species. Vicariance seems to be the logical explanation for the distribution of these lignicolous beetles.
© The Willi Hennig Society 2009.  相似文献   

17.
Seventy-nine species representing 12 genera of Vitaceae were sequenced for the trnL-F spacer, 37 of which were subsequently sequenced for the atpB-rbcL spacer and the rps16 intron. Phylogenetic analysis of the combined data provided a fairly robust phylogeny for Vitaceae. Cayratia, Tetrastigma, and Cyphostemma form a clade. Cyphostemma and Tetrastigma are each monophyletic, and Cayratia may be paraphyletic. Ampelopsis is paraphyletic with the African Rhoicissus and the South American Cissus striata nested within it. The pinnately leaved Ampelopsis form a subclade, and the simple and palmately leaved Ameplopsis constitutes another with both subclades containing Asian and American species. Species of Cissus from Asia and Central America are monophyletic, but the South American C. striata does not group with other Cissus species. The Asian endemic Nothocissus and Pterisanthes form a clade with Asian Ampelocissus, and A. javalensis from Central America is sister to this clade. Vitis is monophyletic and forms a larger clade with Ampelocissus, Pterisanthes, and Nothocissus. The eastern Asian and North American disjunct Parthenocissus forms a clade with Yua austro-orientalis, a species of a small newly recognized genus from China to eastern Himalaya. Vitaceae show complex multiple intercontinental relationships within the northern hemisphere and between northern and southern hemispheres.  相似文献   

18.
Family level molecular phylogenetic analyses of cichlid fishes have generally suffered from a limited number of characters and/or poor taxonomic sampling across one or more major geographic assemblage, and therefore have not provided a robust test of early intrafamilial diversification. Herein we use both nuclear and mitochondrial nucleotide characters and direct optimization to reconstruct a phylogeny for cichlid fishes. Representatives of major cichlid lineages across all geographic assemblages are included, as well as nearly twice the number of characters as any prior family‐level study. In a strict consensus of 81 equally most‐parsimonious hypotheses, based on the simultaneous analysis of 2222 aligned nucleotide characters from two mitochondrial and two nuclear genes, four major subfamilial lineages are recovered with strong support. Etroplinae, endemic to Madagascar (Paretroplus) and southern Asia (Etroplus), is recovered as the sister taxon to the remainder of Cichlidae. Although the South Asian cichlids are monophyletic, the Malagasy plus South Asian lineages are not. The remaining Malagasy lineage, Ptychochrominae, is monophyletic and is recovered as the sister group to a clade comprising the African and Neotropical cichlids. The African (Pseudocrenilabrinae) and Neotropical (Cichlinae) lineages are each monophyletic in this reconstruction. The use of multiple molecular markers, from both mitochondrial and nuclear genes, results in a phylogeny that in general exhibits strong support, notably for early diversification events within Cichlidae. Results further indicate that Labroidei is not monophyletic, and that the sister group to Cichlidae may comprise a large and diverse assemblage of percomorph lineages. This hypothesis may at least partly explain why morphological studies that have attempted to place Cichlidae within Percomorpha, or that have tested cichlid monophyly using only “labroid” lineages, have met with only limited success. © The Willi Hennig Society 2004.  相似文献   

19.
20.
The family Microhylidae has a large circumtropic distribution and contains about 400 species in a highly subdivided taxonomy. Relationships among its constituent taxa remained controversial due to homoplasy in morphological characters, resulting in conflicting phylogenetic hypotheses. A phylogeny based on four nuclear genes (rag-1, rag-2, tyrosinase, BDNF) and one mitochondrial gene (CO1) of representatives of all currently recognized subfamilies uncovers a basal polytomy between several subfamilial clades. A sister group relationship between the cophylines and scaphiophrynines is resolved with moderate support, which unites these endemic Malagasy taxa for the first time. The American members of the subfamily Microhylinae are resolved to form a clade entirely separate from the Asian members of that subfamily. Otophryne is excluded from the subfamily Microhylinae, and resolved as a basal taxon. The placement of the Asian dyscophine Calluella nested within the Asian Microhyline clade rather than with the genus Dyscophus is corroborated by our data. Bayesian estimates of the divergence time of extant Microhylidae (47-90 Mya) and among the subclades within the family are discussed in frameworks of alternative possible biogeographic scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号