首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies show that intracellular calcium controls the migration rate of different mobile cell types. We studied migrating astrocytoma cells from two human cell lines, U-87MG and A172, in order to clarify the mechanisms by which calcium potentially influences cell migration. Using the wound-healing model to assay migration, we showed that four distinct components of migration could be distinguished: (i) a Ca(2+)/serum-dependent process; (ii) a Ca(2+)-dependent/serum-independent process; (iii) a Ca(2+)/serum-independent process; (iv) a Ca(2+)-independent/serum-dependent process. In U-87MG cells which lack a Ca(2+)-dependent/serum-independent component, we found that intracellular Ca(2+) oscillations are involved in Ca(2+)-dependent migration. Removing extracellular Ca(2+) greatly decreased the frequency of migration-associated Ca(2+) oscillations. Furthermore, non-selective inhibition of Ca(2+) channels by heavy metals such as Cd(2+) or La(3+) almost completely abolished changes in intracellular Ca(2+) observed during migration, indicating an essential role for Ca(2+) channels in the generation of these Ca(2+) oscillations. However, specific blockers of voltage-gated Ca(2+) channels, including nitrendipine, omega-conotoxin GVIA, omega-conotoxin MVIIC or low concentrations of Ni(2+) were without effect on Ca(2+) oscillations. We examined the role of internal Ca(2+) stores, showing that thapsigargin-sensitive Ca(2+) stores and InsP(3) receptors are involved in Ca(2+) oscillations, unlike ryanodine-sensitive Ca(2+) stores. Detailed analysis of the spatio-temporal aspect of the Ca(2+) oscillations revealed the existence of Ca(2+) waves initiated at the leading cell edge which propagate throughout the cell. Previously, we have shown that the frequency of Ca(2+) oscillations was reduced in the presence of inhibitory antibodies directed against beta3 integrin subunits. A simple model of a Ca(2+) oscillator is proposed, which may explain how the generation of Ca(2+) oscillations is linked to cell migration.  相似文献   

2.
Modulation of Ca(2+) stores with 10 mM caffeine stimulates robust secretion of gonadotropin (GTH-II) from goldfish gonadotropes. Although both endogenous forms of gonadotropin-releasing hormone (GnRH) utilize a common intracellular Ca(2+) store, sGnRH, but not cGnRH-II, uses an additional caffeine-sensitive mechanism. We examined caffeine signaling by using Ca(2+) imaging, electrophysiology, and cell-column perifusion. Although caffeine inhibited K+ channels, this action appeared to be unrelated to caffeine-induced GTH-II release, because the latter was insensitive to tetraethylammonium. The effects of caffeine also were not mediated by the cAMP/protein kinase A pathway. Instead, caffeine-evoked GTH-II responses were Ca(2+) signal dependent because they were abolished by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid loading. Caffeine generated localized Ca(2+) signals that began near secretory granules. Surprisingly, caffeine-stimulated GTH-II release was insensitive to 100 microM ryanodine and, unlike GnRH action, was unaffected by inhibitors of voltage-gated Ca(2+) channels or sarco(endo)plasmic reticulum Ca(2+)-ATPases. Collectively, these data indicate that caffeine-stimulated GTH-II release is not mediated by typical agonist-sensitive Ca(2+) stores found in endoplasmic reticulum.  相似文献   

3.
Histamine, released from mast cells, can modulate the activity of intrinsic neurons in the guinea pig cardiac plexus. The present study examined the ionic mechanisms underlying the histamine-induced responses in these cells. Histamine evokes a small membrane depolarization and an increase in neuronal excitability. Using intracellular voltage recording from individual intracardiac neurons, we were able to demonstrate that removal of extracellular sodium reduced the membrane depolarization, whereas inhibition of K+ channels by 1 mM Ba2+, 2 mM Cs+, or 5 mM tetraethylammonium had no effect. The depolarization was also not inhibited by either 10 microM Gd3+ or a reduced Cl- solution. The histamine-induced increase in excitability was unaffected by K+ channel inhibitors; however, it was reduced by either blockage of voltage-gated Ca2+ channels with 200 microM Cd2+ or replacement of extracellular Ca2+ with Mg2+. Conversely, alterations in intracellular calcium with thapsigargin or caffeine did not inhibit the histamine-induced effects. However, in cells treated with both thapsigargin and caffeine to deplete internal calcium stores, the histamine-induced increase in excitability was decreased. Treatment with the phospholipase C inhibitor U73122 also prevented both the depolarization and the increase in excitability. From these data, we conclude that histamine, via activation of H1 receptors, activates phospholipase C, which results in 1) the opening of a nonspecific cation channel, such as a transient receptor potential channel 4 or 5; and 2) in combination with either the influx of Ca2+ through voltage-gated channels or the release of internal calcium stores leads to an increase in excitability.  相似文献   

4.
Prolactin (PRL) cells from the euryhaline tilapia, Oreochromis mossambicus, behave like osmoreceptors by responding directly to reductions in medium osmolality with increased secretion of the osmoregulatory hormone PRL. Extracellular Ca(2+) is essential for the transduction of a hyposmotic stimulus into PRL release. In the current study, the presence and possible role of intracellular Ca(2+) stores during hyposmotic stimulation was investigated using pharmacological approaches. Changes in intracellular Ca(2+) concentration were measured with fura-2 in isolated PRL cells. Intracellular Ca(2+) stores were depleted in dispersed PRL cells with thapsigargin (1 microM) or cyclopiazonic acid (CPA, 10 microM). Pre-incubation with thapsigargin prevented the rise in [Ca(2+)](i) induced by lysophosphatidic acid (LPA, 1 microM), an activator of the IP(3) signalling cascade, but did not prevent the hyposmotically-induced rise in [Ca(2+)](i) in medium with normal [Ca(2+)] (2mM). Pre-treatment with CPA produced similar results. Prolactin release from dispersed cells followed a pattern that paralleled observed changes in [Ca(2+)](i). CPA inhibited LPA-induced prolactin release but not hyposmotically-induced release. Xestospongin C (1microM), an inhibitor of IP(3) receptors, had no effect on hyposmotically-induced PRL release. Pre-exposure to caffeine (10mM) or ryanodine (1microM) did not prevent a hyposmotically-induced rise in [Ca(2+)](i). Taken together these results indicate the presence of IP(3) and ryanodine-sensitive Ca(2+) stores in tilapia PRL cells. However, the rapid rise in intracellular [Ca(2+)] needed for acute PRL release in response to hyposmotic medium can occur independently of these intracellular Ca(2+) stores.  相似文献   

5.
Isolated squid olfactory receptor neurons respond to dopamine and betaine with hyperpolarizing conductances. We used Ca(2+) imaging techniques to determine if changes in intracellular Ca(2+) were involved in transducing the hyperpolarizing odor responses. We found that dopamine activated release of Ca(2+) from intracellular stores while betaine did not change internal Ca(2+) concentrations. Application of 10 mM caffeine also released Ca(2+) from intracellular stores, suggesting the presence of ryanodine-like receptors. Depletion of intracellular stores with 100 microM thapsigargin revealed the presence of a Ca(2+) store depletion-activated Ca(2+) influx. The influx of Ca(2+) through the store-operated channel was reversibly blocked by 10 mM Cd(2+). Taken together, these data suggest a novel odor transduction system in squid olfactory receptor neurons involving Ca(2+) release from intracellular stores. Copyright Copyright 1999 S. Karger AG, Basel  相似文献   

6.
Endothelin-1 (ET-1) increases intracellular Ca(2+) concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs); however, the mechanisms for Ca(2+) mobilization are not clear. We determined the contributions of extracellular influx and intracellular release to the ET-1-induced Ca(2+) response using Indo 1 fluorescence and electrophysiological techniques. Application of ET-1 (10(-10) to 10(-8) M) to transiently (24-48 h) cultured rat PASMCs caused concentration-dependent increases in [Ca(2+)](i). At 10(-8) M, ET-1 caused a large, transient increase in [Ca(2+)](i) (>1 microM) followed by a sustained elevation in [Ca(2+)](i) (<200 nM). The ET-1-induced increase in [Ca(2+)](i) was attenuated (<80%) by extracellular Ca(2+) removal; by verapamil, a voltage-gated Ca(2+)-channel antagonist; and by ryanodine, an inhibitor of Ca(2+) release from caffeine-sensitive stores. Depleting intracellular stores with thapsigargin abolished the peak in [Ca(2+)](i), but the sustained phase was unaffected. Simultaneously measuring membrane potential and [Ca(2+)](i) indicated that depolarization preceded the rise in [Ca(2+)](i). These results suggest that ET-1 initiates depolarization in PASMCs, leading to Ca(2+) influx through voltage-gated Ca(2+) channels and Ca(2+) release from ryanodine- and inositol 1,4,5-trisphosphate-sensitive stores.  相似文献   

7.
The role of acidic intracellular calcium stores in calcium homeostasis was investigated in the Drosophila Schneider cell line 2 (S2) by means of free cytosolic calcium ([Ca2+]i) and intracellular pH (pHi) imaging together with measurements of total calcium concentrations within intracellular compartments. Both a weak base (NH4Cl, 15 mM) and a Na+/H+ ionophore (monensin, 10 microM) evoked cytosolic alkalinization followed by Ca2+ release from acidic intracellular Ca2+ stores. Pretreatment of S2 cells with either thapsigargin (1 microM), an inhibitor of endoplasmic reticulum Ca(2+)-ATPases, or with the Ca2+ ionophore ionomycin (10 microM) was without effect on the amplitude of Ca2+ release evoked by alkalinization. Application of the cholinergic agonist carbamylcholine (100 microM) to transfected S2-DM1 cells expressing a Drosophila muscarinic acetylcholine receptor (DM1) emptied the InsP3-sensitive Ca2+ store but failed to affect the amplitude of alkalinization-evoked Ca2+ release. Glycyl-L-phenylalanine-beta-naphthylamide (200 microM), a weak hydrophobic base known to permeabilize lysosomes by osmotic swelling, triggered Ca2+ release from internal stores, while application of brefeldin A (10 microM), an antibiotic which disperses the Golgi complex, resulted in a smaller increase in [Ca2+]i. These results suggest that the alkali-evoked calcium release is largely attributable to lysosomes, a conclusion that was confirmed by direct measurements of total calcium content of S2 organelles. Lysosomes and endoplasmic reticulum were the only organelles found to have concentrations of total calcium significantly higher than the cytosol. However, NH4Cl (15 mM) reduced the level of total calcium only in lysosomes. Depletion of acidic Ca2+ stores did not elicit depletion-operated Ca2+ entry. They were refilled upon re-exposure of cells to normal saline ([Ca2+]o = 2 mM), but not by thapsigargin-induced [Ca2+]i elevation in Ca(2+)-free saline.  相似文献   

8.
Calcium channel blockers inhibit galvanotaxis in human keratinocytes   总被引:1,自引:0,他引:1  
Directed migration of keratinocytes is essential for wound healing. The migration of human keratinocytes in vitro is strongly influenced by the presence of a physiological electric field and these cells migrate towards the negative pole of such a field (galvanotaxis). We have previously shown that the depletion of extracellular calcium blocks the directional migration of cultured human keratinocytes in an electric field (Fang et al., 1998; J Invest Dermatol 111:751-756). Here we further investigate the role of calcium influx on the directionality and migration speed of keratinocytes during electric field exposure with the use of Ca(2+) channel blockers. A constant, physiological electric field strength of 100 mV/mm was imposed on the cultured cells for 1 h. To determine the role of calcium influx during galvanotaxis we tested the effects of the voltage-dependent cation channel blockers, verapamil and amiloride, as well as the inorganic Ca(2+) channel blockers, Ni(2+) and Gd(3+) and the Ca(2+) substitute, Sr(2+), on the speed and directionality of keratinocyte migration during galvanotaxis. Neither amiloride (10 microM) nor verapamil (10 microM) had any effect on the galvanotaxis response. Therefore, calcium influx through amiloride-sensitive channels is not required for galvanotaxis, and membrane depolarization via K(+) channel activity is also not required. In contrast, Sr(2+) (5 mM), Ni(2+) (1-5 mM), and Gd(3+) (100 microM) all significantly inhibit the directional migratory response to some degree. While Sr(2+) strongly inhibits directed migration, the cells exhibit nearly normal migration speeds. These findings suggest that calcium influx through Ca(2+) channels is required for directed migration of keratinocytes during galvanotaxis and that directional migration and migration speed are probably controlled by separate mechanisms.  相似文献   

9.
In rat pituitary somatotrophs, the stimulation of growth hormone secretion by growth hormone-releasing hormone (GHRH) is a Ca(2+)-dependent event involving Ca2+ influx. The presence of calcium-induced calcium release (CICR) Ca2+ stores has been suggested in these cells. The aim of our study was to demonstrate the presence of CICR stores in rat somatotrophs and to determine their function in GHRH Ca2+ signalling. To this end we measured cytosolic free Ca2+ concentration ([Ca2+]i), using indo-1 in purified rat somatotrophs in primary culture, while altering intracellular Ca2+ stores. Ionomycin (10 ttM) or 4-bromo-A23187 (10 ItM), used to mobilise organelle-bound Ca2+, raised [Ca2+]i in the absence of extracellular Ca2+. Caffeine (5 to 50 mM), used to mobilise Ca2+ from CICR stores, transiently raised [Ca2+]i in 65% of cells tested. The response to 40 mM caffeine was abolished when Ca2+ stores were depleted, with 1 microM thapsigargin or with 10 microM ryanodine. All cells that responded to 40 mM caffeine responded to 10 nM GHRH. The [Ca2+]i response to 10 nM GHRH was reversible and repeatable. However, the second response was 38% smaller than the first. Ryanodine treatment abolished the reduction in the second [Ca2+]i response, while thapsigargin increased the reduction by 67%. We conclude that rat somatotrophs possess CICR Ca2+ stores and that they account for 30-35% of the GHRH-induced increase in [Ca2+]i, and that their partial depletion is involved in somatotroph desensitization.  相似文献   

10.
To evaluate the relationship between the vasocontractile effect of thiopental and the extra and intracellular sources of Ca2+, we analyzed both the contractile effect of the barbiturate on rat aortic rings and its ability to modify the intracellular calcium concentration in cultured rat aorta smooth muscle cells. Thiopental (10-310 microg/mL) contracted aortic rings only in the presence of extracellular Ca2+, and this effect was not blocked by verapamil or diltiazem. On the contrary, Ca2+ (0.1-3.1 mM) evoked contractions only when thiopental (100 microg/mL) was present. Although in calcium-free solution thiopental (100 microg/mL) did not contract aortic rings, it abolished the contractile effect of either phenylephrine (10(-6) M) or caffeine (10 mM). Finally, thiopental augmented the intracellular calcium concentration in cultured smooth muscle cells incubated either in the presence or absence of calcium. In conclusion, thiopental's vasocontractile effect depends on extracellular calcium influx, which is independent of L-calcium channels. The increase in intracellular Ca2+ concentration elicited by thiopental in Ca2+-free solution and its ability to block the effect of phenylephrine and caffeine suggest that this barbiturate can deplete intracellular pools of calcium. Therefore, the calcium entry pathway associated with the contractile effect of thiopental may correspond to the capacitative calcium entry model.  相似文献   

11.
12.
Depletion of intracellular calcium stores induces transmembrane Ca2+ influx. We studied Ca(2+)- and Ba(2+)-permeable ion channels in A431 cells after store depletion by dialysis of the cytosol with 10 mM BAPTA solution. Cell-attached patches of cells held at low (0.5 microM) external Ca2+ exhibited transient channel activity, lasting for 1-2 min. The channel had a slope conductance of 2 pS with 200 mM CaCl2 and 16 pS with 160 mM BaCl2 in the pipette. Channel activity quickly ran down in excised inside-out patches and was not restored by InsP3 and/or InsP4. Thapsigargin induced activation in cells kept in 1 mM external Ca2+ after BAPTA dialysis. These channels represent one Ca2+ entry pathway activated by depletion of internal calcium stores and are clearly distinct from previously identified calcium repletion currents.  相似文献   

13.
Messutat S  Heine M  Wicher D 《Cell calcium》2001,30(3):199-211
The dynamics of intracellular free Ca(2+)([Ca(2+)](i)) changes were investigated in dorsal unpaired median (DUM) neurons of the cockroach Periplaneta americana. Activation of voltage-gated Ca(2+) channels caused a steep increase in [Ca(2+)](i). Depolarizations lasting for < 100ms led to Ca(2+) release from intracellular stores as is indicated by the finding that the rise of [Ca(2+)](i) was greatly reduced by the antagonists of ryanodine receptors, ryanodine and ruthenium red. There is a resting Ca(2+)current which is potentiated on application of a neuropeptide, Neurohormone D (NHD), a member of the adipokinetic hormone family. Ca(2+) influx enhanced in this way again caused a rise of [Ca(2+)](i) sensitive to ryanodine and ruthenium red. Such rises developed and relaxed much more slowly than the depolarization-induced signals. Ca(2+)responses similar to those induced by NHD were obtained with the ryanodine receptor agonists caffeine (20mM) and cADP-ribose (cADPR, 100nM). These Ca(2+) responses, however, varied considerably in size and kinetics, and part of the cells did not respond at all to caffeine or cADPR. Such cells, however, produced Ca(2+) rises after having been treated with NHD. Thus, the variability of Ca(2+) signals might be caused by different filling states of Ca(2+) stores, and the resting Ca(2+) current seems to represent a source to fill empty Ca(2+) stores. In line with this notion, block of the endoplasmic Ca(2+) pump by thapsigargin (1 microM) produced either no or largely varying Ca(2+) responses. The Ca(2+) signals induced by caffeine and cADPR displayed different sensitivity to ryanodine receptor blockers. cADPR failed to elicit any response when ryanodine or ruthenium red were present. By contrast, the response to caffeine, in the presence of ryanodine, was only reduced by about 50% and, in the presence of ruthenium red, it was not at all reduced. Thus, there may be different types of Ca(2+) release channels. Block of mitochondrial Ca(2+) uptake with carbonyl cyanide m -chlorophenylhydrazone (CCCP, 1 microM) completely abolished cADPR-induced Ca(2+) signals, but it did not affect the caffeine-induced signals. Taken together our findings seem to indicate that there are different stores using different Ca(2+) uptake pathways and that some of these pathways involve mitochondria.  相似文献   

14.
We have studied the effects of ryanodine and inhibition of the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) with thapsigargin, on both [Ca(2+)](i) and the sarcoplasmic reticulum (SR) Ca(2+) level during caffeine-induced Ca(2+) release in single smooth muscle cells. Incubation with 10 microM ryanodine did not inhibit the first caffeine-induced [Ca(2+)](i) response, although it abolished the [Ca(2+)](i) response to a second application of caffeine. To assess whether ryanodine was inducing a permanent depletion of the internal Ca(2+) stores, we measured the SR Ca(2+) level with Mag-Fura-2. The magnitude of the caffeine-induced reduction in the SR Ca(2+) level was not augmented by incubating cells with 1 microM ryanodine. Moreover, on removal of caffeine, the SR Ca(2+) levels partially recovered in 61% of the cells due to the activity of thapsigargin-sensitive SERCA pumps. Unexpectedly, 10 microM ryanodine instead of inducing complete depletion of SR Ca(2+) stores markedly reduced the caffeine-induced SR Ca(2+) response. It was necessary to previously inhibit SERCA pumps with thapsigargin for ryanodine to be able to induce caffeine-triggered permanent depletion of SR Ca(2+) stores. These data suggest that the effect of ryanodine on smooth muscle SR Ca(2+) stores was markedly affected by the activity of SERCA pumps. Our data highlight the importance of directly measuring SR Ca(2+) levels to determine the effect of ryanodine on the internal Ca(2+) stores.  相似文献   

15.
The presence and function of voltage-gated Ca(2+) channels were examined in individual muscle fibers freshly dispersed from the triclad turbellarian Dugesia tigrina. Individual muscle fibers contracted in response to elevated extracellular K(+) in a concentration-dependent fashion. These depolarization-induced contractions were blocked by extracellular Co(2+) (2.5 mM), suggesting that they were dependent on depolarization-induced Ca(2+) influx across the sarcolemma. A voltage-gated inward current was apparent in whole cell recordings when the outward K(+) current was abolished by replacement of intracellular K(+) by Cs(+). This inward current was amplified with increasing concentration (相似文献   

16.
Combined patch-clamp and fura-2 measurements were performed to study the calcium release properties of Chinese hamster ovary (CHO) cells transfected with the rabbit skeletal muscle ryanodine receptor cDNA carried by an expression vector. Both caffeine (1-50 mM) and ryanodine (100 microM) induced release of calcium from intracellular stores of transformed CHO cells but not from control (non-transfected) CHO cells. The calcium responses to caffeine and ryanodine closely resembled those commonly observed in skeletal muscle. Repetitive applications of caffeine produced characteristic all-or-none rises in intracellular calcium. Inositol 1,4,5-trisphosphate (IP3) neither activated the ryanodine receptor channel nor interfered with the caffeine-elicited calcium release. These results indicate that functional calcium release channels are formed by expression of the ryanodine receptor cDNA.  相似文献   

17.
Phosphoinositide (3,5)-bisphosphate [PI(3,5)P(2)] is a newly identified phosphoinositide that modulates intracellular Ca(2+) by activating ryanodine receptors (RyRs). Since the contractile state of arterial smooth muscle depends on the concentration of intracellular Ca(2+), we hypothesized that by mobilizing sarcoplasmic reticulum (SR) Ca(2+) stores PI(3,5)P(2) would increase intracellular Ca(2+) in arterial smooth muscle cells and cause vasocontraction. Using immunohistochemistry, we found that PI(3,5)P(2) was present in the mouse aorta and that exogenously applied PI(3,5)P(2) readily entered aortic smooth muscle cells. In isolated aortic smooth muscle cells, exogenous PI(3,5)P(2) elevated intracellular Ca(2+), and it also contracted aortic rings. Both the rise in intracellular Ca(2+) and the contraction caused by PI(3,5)P(2) were prevented by antagonizing RyRs, while the majority of the PI(3,5)P(2) response was intact after blockade of inositol (1,4,5)-trisphosphate receptors. Depletion of SR Ca(2+) stores with thapsigargin or caffeine and/or ryanodine blunted the Ca(2+) response and greatly attenuated the contraction elicited by PI(3,5)P(2). The removal of extracellular Ca(2+) or addition of verapamil to inhibit voltage-dependent Ca(2+) channels reduced but did not eliminate the Ca(2+) or contractile responses to PI(3,5)P(2). We also found that PI(3,5)P(2) depolarized aortic smooth muscle cells and that LaCl(3) inhibited those aspects of the PI(3,5)P(2) response attributable to extracellular Ca(2+). Thus, full and sustained aortic contractions to PI(3,5)P(2) required the release of SR Ca(2+), probably via the activation of RyR, and also extracellular Ca(2+) entry via voltage-dependent Ca(2+) channels.  相似文献   

18.
Ca(+) stores may regulate multiple components of the secretory pathway. We examined the roles of biochemically independent intracellular Ca(2+) stores on acute and long-term growth hormone (GH) release, storage, and mRNA levels in goldfish somatotropes. Thapsigargin-evoked intracellular Ca(2+) concentration ([Ca(2+)](i)) signal amplitude was similar to the Ca(2+)-mobilizing agonist gonadotropin-releasing hormone, but thapsigargin (2 microM) did not acutely increase GH release, suggesting uncoupling between [Ca(2+)](i) and exocytosis. However, 2 microM thapsigargin affected long-term secretory function. Thapsigargin-treated cells displayed a steady secretion of GH (2, 12, and 24 h), which decreased GH content (12 and 24 h), but not GH mRNA/production (24 h). In contrast to the results with thapsigargin, activating the ryanodine (Ry) receptor (RyR) with 1 nM Ry transiently increased GH release (2 h). Prolonged activation of RyR (24 h) reduced GH release, contents and apparent production, without changing GH mRNA levels. Inhibiting RyR with 10 microM Ry increased GH mRNA levels, production, and storage (2 h). Increasing [Ca(2+)](i) independently of Ca(2+) stores with the use of 30 mM KCl decreased GH mRNA. Collectively, these results suggest that parts of the secretory pathway can be controlled independently by function-specific Ca(2+) stores.  相似文献   

19.
In many cells, inhibition of sarcoplasmic reticulum (SR) Ca2+-ATPase activity induces a steady-state increase in cytosolic calcium concentration ([Ca2+]i) that is sustained by calcium influx. The goal was to characterize the response to inhibition of SR Ca2+-ATPase activity in bovine airway smooth muscle cells. Cells were dispersed from bovine trachealis and loaded with fura 2-AM (0.5 microM) for imaging of single cells. Cyclopiazonic acid (CPA; 5 microM) inhibited refilling of both caffeine- and carbachol-sensitive calcium stores. In the presence of extracellular calcium, CPA caused a transient increase in [Ca2+]i from 166 +/- 11 to 671 +/- 100 nM, and then [Ca2+]i decreased to a sustained level (CPA plateau; 236 +/- 19 nM) significantly above basal. The CPA plateau spontaneously declined toward basal levels after 10 min and was attenuated by discharging intracellular calcium stores. When CPA was applied during sustained stimulation with caffeine or carbachol, decreases in [Ca2+]i were observed. We concluded that the CPA plateau depended on the presence of SR calcium and that SR Ca2+-ATPase activity contributed to sustained increases in [Ca2+]i during stimulation with caffeine and, to a lesser extent, carbachol.  相似文献   

20.
Graded or "quantal" Ca(2+) release from intracellular stores has been observed in various cell types following activation of either ryanodine receptors (RyR) or inositol 1,4,5-trisphosphate receptors (InsP(3)R). The mechanism causing the release of Ca(2+) stores in direct proportion to the strength of stimulation is unresolved. We investigated the properties of quantal Ca(2+) release evoked by activation of RyR in PC12 cells, and in particular whether the sensitivity of RyR to the agonist caffeine was altered by lumenal Ca(2+). Quantal Ca(2+) release was observed in cells stimulated with 1 to 40 mM caffeine, a range of caffeine concentrations giving a >10-fold change in lumenal Ca(2+) content. The Ca(2+) load of the caffeine-sensitive stores was modulated by allowing them to refill for varying times after complete discharge with maximal caffeine, or by depolarizing the cells with K(+) to enhance their normal steady-state loading. The threshold for RyR activation was sensitized approximately 10-fold as the Ca(2+) load increased from a minimal to a maximal loading. In addition, the fraction of Ca(2+) released by low caffeine concentrations increased. Our data suggest that RyR are sensitive to lumenal Ca(2+) over the full range of Ca(2+) loads that can be achieved in an intact PC12 cell, and that changes in RyR sensitivity may be responsible for the termination of Ca(2+) release underlying the quantal effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号