首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
JadH是羟化脱水双功能酶,参与杰多霉素生物合成中的聚酮后修饰反应,将2,3-dehydro-UWM6催化为dehydrorabelomycin。为了分析杰多霉素生物合成途径中后修饰氧化酶JadH结合、催化底物的关键氨基酸,构建了JadH与底物复合物的三维结构模型。利用该模型并结合JadH同源蛋白氨基酸序列比对分析,推测出JadH活性中心中可能参与底物结合或催化的关键氨基酸(R50、G51、L52、G53、F100、R221、I223、P295和G298)。通过定点突变及体外酶学实验对这些位点的突变体的催化活性进行评价,结果显示这些突变株活性均显著低于野生型,表明这9个氨基酸是JadH参与底物结合或催化的关键氨基酸。  相似文献   

2.
Joseph E  Wei W  Tittmann K  Jordan F 《Biochemistry》2006,45(45):13517-13527
The X-ray crystal structure of pyruvamide-activated yeast pyruvate decarboxylase (YPDC) revealed a flexible loop spanning residues 290 to 304 on the beta-domain of the enzyme, not seen in the absence of pyruvamide, a substrate activator surrogate. Site-directed mutagenesis studies revealed that residues on the loop affect the activity, with some residues reducing k(cat)/K(m) by at least 1000-fold. In the pyruvamide-activated form, the loop located on the beta domain can transfer information to the active center thiamin diphosphate (ThDP) located at the interface of the alpha and gamma domains. The sigmoidal v(0)-[S] curve with wild-type YPDC attributed to substrate activation is modulated for most variants, but is not abolished. Pre-steady-state stopped-flow studies for product formation on these loop variants provided evidence for three enzyme conformations connected by two transitions, as already noted for the wild-type YPDC at pH 5.0 [Sergienko, E. A., and Jordan, F. (2002) Biochemistry 41, 3952-3967]. (1)H NMR analysis of the intermediate distribution resulting from acid quench [Tittmann et al. (2003) Biochemistry 42, 7885-7891] with all YPDC variants indicated that product release is rate limiting in the steady state. Apparently, the loop is not solely responsible for the substrate activation behavior, rather it may affect the behavior of residue C221 identified as the trigger for substrate activation. The most important function of the loop is to control the conformational equilibrium between the "open" and "closed" conformations of the enzyme identified in the pyruvamide-activated structure [Lu et al. (2000) Eur. J. Biochem. 267, 861-868].  相似文献   

3.
Comparison of six urease sequences revealed the presence of 10 conserved histidine residues (H96 in the gamma subunit, H39 and H41 in beta, and H134, H136, H219, H246, H312, H320, and H321 in the alpha subunit of the Klebsiella aerogenes enzyme). Each of these residues in K. aerogenes urease was substituted with alanine by site-directed mutagenesis, and the mutant proteins were purified and characterized in order to identify essential histidine residues and assign their roles. The gamma H96A, beta H39A, beta H41A, alpha H312A, and alpha H321A mutant proteins possess activities and nickel contents similar to wild-type enzyme, suggesting that these residues are not essential for substrate binding, catalysis, or metal binding. In contrast, the alpha H134A, alpha H136A, and alpha H246A proteins exhibit no detectable activity and possess 53%, 6%, and 21% of the nickel content of wild-type enzyme. These results are consistent with alpha H134, alpha H136, and alpha H246 functioning as nickel ligands. The alpha H219A protein is active and has nickel (approximately 1.9% and approximately 80%, respectively, when compared to wild-type protein) but exhibits a very high Km value (1,100 +/- 40 mM compared to 2.3 +/- 0.2 mM for the wild-type enzyme). These results are compatible with alpha H219 having some role in facilitating substrate binding. Finally, the alpha H320A protein (Km = 8.3 +/- 0.2 mM) only displays approximately 0.003% of the wild-type enzyme activity, despite having a normal nickel content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Human triacylglycerol hydrolase (hTGH) has been shown to play a role in hepatic lipid metabolism. Triacylglycerol hydrolase (TGH) hydrolyzes insoluble carboxylic esters at lipid/water interfaces, although the mechanism by which the enzyme adsorbs to lipid droplets is unclear. Three-dimensional modeling of hTGH predicts that catalytic residues are adjacent to an alpha-helix that may mediate TGH/lipid interaction. The helix contains a putative neutral lipid binding domain consisting of the octapeptide FLDLIADV (amino acid residues 417-424) with the consensus sequence FLXLXXXn (where n is a nonpolar residue and X is any amino acid except proline) identified in several other proteins that bind or metabolize neutral lipids. Deletion of this alpha-helix abolished the lipolytic activity of hTGH. Replacement of F417 with alanine reduced activity by 40% toward both insoluble and soluble esters, whereas replacement of L418 and L420 with alanine did not. Another potential mechanism of increasing TGH affinity for lipid is via reversible acylation. Molecular modeling predicts that C390 is available for covalent acylation. However, neither chemical modification of C390 nor mutation to alanine affected activity. Our findings indicate that F417 but not L418, L420, or C390 participates in substrate hydrolysis by hTGH.  相似文献   

5.
6.
Dimerization between G protein-coupled receptors (GPCRs) is a clearly established phenomenon. However, limited information is currently available on the interface essential for this process. Based on structural comparisons and sequence homology between rhodopsin and A1 adenosine receptor (A1R), we initially hypothesized that four residues in transmembrane (TM) 4 and TM5 are involved in A1R homodimerization. Accordingly, these residues were substituted with Ala by site-directed mutagenesis. Interestingly, the mutant protein displayed no significant decrease in homodimer formation compared with wild-type A1R, as evident from coimmunoprecipitation and BRET2 analyses (improved bioluminescence resonance energy transfer system offered by Perkin-Elmer Life Sciences), but lost ligand binding activity almost completely. Further studies disclosed that this effect was derived from the mutation of one particular residue, Trp132, which is highly conserved among many GPCRs. Confocal immunofluorescence and cell-surface biotinylation studies revealed that the mutant receptors localized normally at transfected cell membranes, signifying that loss of ligand binding was not because of defective cellular trafficking. Molecular modeling of the A1R-ligand complex disclosed that Trp132 interacted with several residues located in TM3 and TM5 that stabilized agonist binding. Thus, loss of interactions of Trp with these residues may, in turn, disrupt binding to agonists. Our study provides strong evidence of the essential role of the highly conserved Trp132 in TM4 of adenosine receptors.  相似文献   

7.
Excitatory amino acid transporter 2 (EAAT2), the gene of which is known as solute carrier family 1 member 2 (SLC1A2), is an important membrane-bound transporter that mediates approximately 90% of the transport and clearance of l -glutamate at synapses in the central nervous system (CNS). Transmembrane domain 2 (TM2) of EAAT2 is close to hairpin loop 2 (HP2) and far away from HP1 in the inward-facing conformation. In the present study, 14 crucial amino acid residues of TM2 were identified via alanine-scanning mutations. Further analysis in EAAT2-transfected HeLa cells in vitro showed that alanine substitutions of these residues resulted in a decrease in the efficiency of trafficking/targeting to the plasma membrane and/or reduced functionality of membrane-bound, which resulted in impaired transporter activity. After additional mutations, the transporter activities of some alanine-substitution mutants recovered. Specifically, the P95A mutant decreased EAAT2-associated anion currents. The Michaelis constant (Km) values of the mutant proteins L85A, L92A and L101A were increased significantly, whereas R87 and P95A were decreased significantly, indicating that the mutations L85A, L92A and L101A reduced the affinity of the transporter and the substrate, whereas R87A and P95A enhanced this affinity. The maximum velocity (Vmax) values of all 14 alanine mutant proteins were decreased significantly, indicating that all these mutations reduced the substrate transport rate. These results suggest that critical residues in TM2 affect not only the protein expression and membrane-bound localization of EAAT2, but also its interactions with substrates. Additionally, our findings elucidate that the P95A mutant decreased EAAT2-related anion currents. Our results indicate that the TM2 of EAAT2 plays a vital role in the transport process. The key residues in TM2 affect protein expression in the membrane, substrate transport and the anion currents of EAAT2.  相似文献   

8.
A fluorescent binding assay was developed to investigate the effects of mutagenesis on the binding affinity and substrate specificity of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. The chitin-binding domain was genetically fused to the N-terminus of a green fluorescent protein, and the polyhistidine-tagged hybrid protein was expressed in Escherichia coli. Residues likely to be involved in the binding site were mutated and their contributions to binding and substrate specificity were evaluated by affinity electrophoresis and depletion assays. The experimental binding isotherms were analyzed by non-linear regression using a modified Langmuir equation. Non-conservative substitution of tryptophan residue (W687) nearly abolished chitin-binding affinity and dramatically lowered chitosan binding while retaining the original level of curdlan binding. Double mutation E668K/P689A had altered specificity for several substrates and also impaired chitin binding significantly. Other substitutions in the binding site altered substrate specificity but had little effect on overall affinity for chitin. Interestingly, mutation T682A led to a higher specificity towards chitinous substrates than the wildtype. Furthermore, the ChBD-GFP hybrid protein was tested for use in diagnostic staining of cell walls of fungi and yeast and for the detection of fungal infections in tissue samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号