首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
It was shown that active noradrenaline-14C (NA) uptake by the rat brain synaptosomes is inhibited by ouabain (0.1 M) and K-depolarization. Acquisition of the defensive conditioned reflex leads to inhibition of active NA uptake by the synaptosomes. This effect may be connected both with changes in the presynaptic membrane state and possible enhancement of the postsynaptic adrenoreceptor function.  相似文献   

2.
A decrease of the NAD and serotonin level in the brain of rats with PP hypovitaminosis is shown. NAD in concentration of 10(-6) M in vitro exerts a less pronounced inhibiting influence on the neuronal uptake of [14C]serotonin and [14C]GABA by brain synaptosomes of rats with PP hypovitaminosis. GABA content under such conditions increases as compared with the control and correlates with changes in the [14C]GABA uptake system.  相似文献   

3.
The influence of chemically different antidepressants on the uptake of 5-HT, dopamine and GABA by the rat brain synaptosomes was tested, using radioisotope technique in control and chronically stressed (14 days) animals. Drugs were more potent inhibitors of neurotransmitter uptake in synaptosomes of stressed animals, as compared to synaptosomes from control ones, the activity increasing proportionally to the changes in a particular uptake system. It is suggested that the drugs inhibit the uptake of neurotransmitters studied by changing the properties of synaptosomal membrane lipid bilayer. It is also evident that neurochemical properties of psychotropic drugs must be evaluated on the membranes from animals in the model of experimental psychopathology.  相似文献   

4.
Forty-eight hours after unilateral nephrectomy in young male Sprague-Dawley rats the concentrations of free methionine, alanine and tyrosine in renal cortical tissue were increased by 15-65 percent while the corresponding plasma concentrations decreased by 23-35 percent. The renal cortical concentrations of valine and leucine increased by 41 percent and 26 percent while plasma concentrations remained unchanged. The cortical concentrations of ornithine, serine and threonine remained unchanged while the plasma concentration decreased by approximately one-third. The total free amino acid contained in the cortex was not changed, while total free amino acids in plasma decreased by 7 percent. These data are thought to reflect an increased uptake of methionine and tyrosine into renal cells during compensatory hypertrophy, and an increased incorporation into renal protein of serine, threonine and ornithine. All these changes as well as all other biochemical changes accompanying compensatory hypertrophy with the exception of an increase of the RNA/DNA ratio were prevented by starvation for 48 hours after unilateral nephrectomy.In young male Sprague-Dawley rats and adult male Charles River mice, the incorporation of 14C-choline into acid-insoluble phospholipids (phosphatidylcholine, lysophosphatidylcholine and sphingomyelin) was already accelerated 5 minutes after contralateral nephrectomy and further rose to +68 ± 7 percent within 20 minutes to 3 hours. Incorporation of 14C-choline into phospholipids remained accelerated for two to three days and reflected increased rates of phospholipid synthesis rather than increased choline uptake. Three hours after unilateral nephrectomy in mice, incorporation of i.p. injected 14C-choline into phospholipids was accelerated 25 percent. The rate of turnover of free labelled renal phospholipids was not accelerated during compensatory renal growth. The very early increase of choline incorporation into phospholipids after contralateral nephrectomy, therefore, appears to reflect an increased rate of synthesis of membrane material.  相似文献   

5.
Histamine stimulated Ca2+ uptake in synaptosomes was completely inhibited by the slow Ca2+ channel antagonists verapamil, cinnarizine and flunarizine, and slightly inhibited by nifedipine and diltiazem. Ca2+ uptake in synaptosomes depolarized or predepolarized with varying K+ concentrations was increased by histamine, in both conditions, until 30mM K+. At higher K+ concentrations histamine was not able to alter K+ effects in either conditions. 30mM K+ stimulated uptake of Ca2+ in the absence or presence of histamine was not inhibited by verapamil and diltiazem. However nifedipine slightly inhibited K+ and K+ +histamine effects. 3-Isobutyl-1-methyl-xanthine and dibutyryl cyclicAMP potentiated (10%) the uptake of Ca2+ in synaptosomes induced by histamine. Dibutyryl cyclicAMP alone however decreased the basal Ca2+ uptake in a concentration-dependent manner. Verapamil, but not diltiazem, antagonized the effects elicited by 3-isobutyl-1-methyl-xanthine and dibutyryl cyclicAMP in the presence of histamine. The data suggest that the increase in synaptosomal Ca2+ uptake induced by histamine is mediated by the activation of the voltage sensitive calcium channels, and possibly a cyclicAMP-dependent protein kinase phosphorylation can modulate the opening of Ca2+ channels.  相似文献   

6.
Activity of high-affinity glutamate transporters was altered in brain nerve terminals under artificial gravity conditions. Blood platelets contain glutamate transporters and are able to uptake glutamate. The goal of the research was to analyze comparatively L-[14C]glutamate transport in neuronal and non-neuronal tissues. The kinetic characteristics of transporters, [Na+]-dependence and influence of competitive transporter inhibitor DL-threo-beta-hydroxyaspartate (DL-THA) on the glutamate uptake by synaptosomes and platelets were determined. Km value of the L-[14C]glutamate uptake was very similar for preparations. Controversy, Vmax was three orders lower for platelets as compared with synaptosomes. It seems to correlate with reduced number of glutamate transporters in the plasma membrane of platelets in comparison with nerve terminals. It was concluded that the glutamate uptake process was primarily similar for both objects studied. Thus, it is reasonable to use platelets as potential peripheral diagnostic markers to analyze changes of glutamate transport activity in brain under altered gravity conditions.  相似文献   

7.
The uptake of serotonin -14 C by glial cells and synaptosomes of the rabbit brain cortex was studied. The Km value of the uptake of serotonin -14 C proved to be equal (0.83 + 0.02 microM) both for synaptosomes and glial cells. Synaptosomes of the rabbit brain cortex take up serotonin -14 C twice as fast as glial cells (uptake rates were compared from protein). Among psychotropic drugs studied the tricyclic antidepressant imipramine and psychostimulant cocaine turned out the most active inhibitors of both synaptosomal and glial uptake of serotonin -14 C. The drugs in 50 microM concentration inhibit the uptake of serotonin -14 C in synaptosomes and glial cells by 90 and 75-80%, respectively.  相似文献   

8.
S M Dunn 《Biochemistry》1988,27(14):5275-5281
The voltage dependence of binding of the calcium channel antagonist, (+)-[3H]PN200-110, to rat brain synaptosomes and the effects of dihydropyridines on 45Ca2+ uptake have been investigated. Under nondepolarizing conditions (+)-[3H]PN200-110 binds to a single class of sites with a Kd of 0.07 nM and a binding capacity of 182 fmol/mg of protein. When the synaptosomal membrane potential was dissipated either by osmotic lysis of the synaptosomes or by depolarization induced by raising the external K+ concentration, there was a decrease in affinity (approximately 7-fold) with no change in the number of sites. The effects of calcium channel ligands on 45Ca2+ uptake by synaptosomes have been measured as a function of external potassium concentration, i.e., membrane potential. Depolarization led to a rapid influx of 45Ca2+ whose magnitude was voltage-dependent. Verapamil (100 microM) almost completely inhibited calcium uptake at all potassium concentrations studied. In contrast, the effects of dihydropyridines (2 microM) appear to be voltage-sensitive. At relatively low levels of depolarization (10-25 mM K+) nitrendipine and PN200-110 completely inhibited 45Ca2+ influx, whereas the agonist Bay K8644 slightly potentiated the response. At higher K+ concentrations an additional dihydropyridine-insensitive component of calcium uptake was observed. These results provide evidence for the presence of dihydropyridine-sensitive calcium channels in synaptosomes which may be activated under conditions of partial depolarization.  相似文献   

9.
This study examined the hypothesis that ATP, released together with norepinephrine (NE) from brain noradrenergic nerve terminals, may serve as a cosubstrate for an extracellular protein phosphorylation system that regulates the reuptake of the transmitter, NE. The possible regulation of high-affinity uptake (uptake 1) of [3H]NE by divalent cations and ATP, both of which are involved in protein phosphorylation, was examined in rat cerebral cortical synaptosomes. A marked inhibition of uptake 1 by 5'-adenylylimidodiphosphate [App(NH)p], a nonhydrolyzable, competitive antagonist of ATP, was observed. A similar inhibition of uptake was observed when Ca2+ and Mg2+ were both omitted from the incubation medium. App(NH)p distinguished the actions of Ca2+ from those of Mg2+: Ca2+-stimulated uptake 1 was blocked by App(NH)p; Mg2+-stimulated uptake was not. In parallel experiments, the patterns of protein phosphorylation in crude and purified preparations of synaptosomes were examined under conditions similar to those used in uptake assays. A striking correlation was found between the inhibition of uptake 1, by either App(NH)p or Ca-omission, and inhibition of the phosphorylation of one specific, 39,000-dalton, Ca2+-dependent, protein component in synaptosomes. This 39K protein was distinct from the alpha subunit of pyruvate dehydrogenase, a mitochondrial protein of similar electrophoretic mobility. These findings are consistent with the possibility that an ectokinase on synaptosomes utilizes extracellular ATP and Ca2+ in phosphorylating a protein(s) associated with the regulation of NE uptake.  相似文献   

10.
[14C]GABA is taken up by rat brain synaptosomes via a high affinity, Na+-dependent process. Subsequent addition of depolarizing levels of potassium (56.2 MM) or veratridine (100 μM) stimulates the release of synaptosomal [14C]GABA by a process which is sensitive to the external concentration of divalent cations such as Ca2+, Mg2+, and Mn2+. However, the relatively smaller amount of [14C]GABA taken up by synaptosomes in the absence of Na+ is not released from synaptosomes by Ca2+ -dependent, K +-stimulation. [14C]DABA, a competitive inhibitor of synaptosomal uptake of GABA (Iversen & Johnson , 1971) is also taken up by synaptosomal fractions via a Na + -dependent process; and is subsequently released by Ca2+ -dependent, K+-stimulation. On the other hand, [14C]β-alanine, a purported blocker of glial uptake systems for GABA (Schon & Kelly , 1974) is a poor competitor of GABA uptake into synaptosomes. Comparatively small amounts of [14C] β-alanine are taken up by synaptosomes and no significant amount is released by Ca2+ -dependent, K+-stimulation. These data suggest that entry of [14C]GABA into a releasable pool requires external Na+ ions and maximal evoked release of [14C]GABA from the synaptosomal pool requires external Ca2+ ions. The GABA analogue, DABA, is apparently successful in entering the same or similar synaptosomal pool. The GABA analogue, β-alanine, is not. None of the compounds or conditions studied were found to simultaneously affect both uptake and release processes. Compounds which stimulated release (veratridine) or inhibited release (magnesium) were found to have minimal effect on synaptosomal uptake. Likewise compounds (DABA) or conditions (Na+-free medium) which inhibited uptake, had little effect on release.  相似文献   

11.
采用大鼠海马脑片体外缺血模型,观察海马突触体内蛋白激酶C(PKC)活性的变化,以及这种变化对突触体谷氨酸(GLU)摄取的影响。结果显示:海马脑片体外“缺血”10min,其突触体内PKC活性基本不变,而缺血30min,突触体内PKC活性显著上升(P<0.01,n=6);非N-甲基-D-天门冬氨酸(NMDA)受体拮抗剂DNQX有效地抑制PKC活性的同时,可降低胞外GLU的堆积,而NMDA受体阻断剂AP_5无作用。进一步实验证明,PKC激动剂PDB浓度依赖性地抑制突触体对3H-GLU的摄取(IC50=131±10μmol/L),此抑制作用可由PKC抑制剂H-7(100μmol/L)抵消。提示脑缺血诱发GLU堆积的作用机理可能是:脑缺血引发钙内流导致GLU过量释放,GLU又通过突触前非NMDA受体激活PKC,抑制其自身摄取,正反馈性加重胞外GLU的堆积。  相似文献   

12.
1. Sodium uptake associated with the activation of voltage-sensitive sodium channels by alkaloid activators, batrachotoxin, veratridine, and aconitine in presynaptic nerve terminals isolated from the central nervous system of cockroach (Periplaneta americana) was investigated. 2. Batrachotoxin (K0.5, 0.2 microM) was full agonist as for most effective activator of Na+ uptake; veratridine (K0.5, 2.5 microM) and aconitine (K0.5, 7.6 microM) produced a maximal stimulation of 22Na+ uptake that were 71% and 43% respectively of that produced by batrachotoxin. 3. Veratridine-dependent 22Na+ uptake was completely inhibited by tetrodotoxin (I0.5, 11 nM), a specific inhibitor of the nerve membrane sodium channels. 4. The present study describes appropriate conditions for measuring neurotoxins--stimulated sodium transport in insect central nervous system synaptosomes. The data show that voltage-sensitive sodium channels as defined by specific activation by the alkaloid neurotoxins are qualitatively distinct in insect synaptosomes than those previously described for vertebrate brain synaptosomes, cultured neuronal cell, nerve membrane vesicles and neuroblastoma cells.  相似文献   

13.
Abstract— Reuptake of neuroactive amino acids by high affinity transport systems in the CNS is thought to terminate the neurotransmitter activity of these substances. This notion has been challenged since the homoexchange of synaptosomal and exogenous L-glutamate and the corresponding homoexchange of synaptosomal and exogenous GABA has been demonstrated. We reported that depolarizing media (56 mM-KCl, 1 mM-CaCl2) lowers the GABA content of synaptosomes. In such synaptosomes, net and apparent (radioactive) GABA uptake are similar. When rat cortical synaptosomes (1 mg protein/ml) are incubated with 10μM-[14C] L-glutamate, net and apparent (radioactive) uptake are similar. When the synaptosome levels are decreased to 0.5 mg protein/ml or less, then net uptake becomes a fraction of radioactive uptake (exchange ensues). Net L-glutamate uptake is Na +-dependent and temperature-dependent. Furthermore, a 1 mM concentration of KCl or RbCl supports net L-glutamate and GABA uptake. LiCl, NH4Cl, CsCl and choline chloride are ineffective. In addition, diaminobutyric acid (but not β -alanine) inhibits net and apparent GABA uptake. The demonstration of net uptake of L-glutamate and GABA by their respective high affinity systems is consonant with the idea that these systems may play a role in neurotransmitter inactivation in the synaptic region.  相似文献   

14.
Astrocytes, neuronal perikarya and synaptosomes were prepared from rat cerebellum. Kinetics of high and low affinity uptake systems of glutamate and aspartate, nominal rates of14CO2 production from [U–14C]glutamate, [U–14C]aspartate and [1–14C]glutamate and activities of enzymes of glutamate metabolism were studied in these preparations. The rate of uptake and the nomial rate of production of14CO2 from these amino acids was higher in the astroglia than neuronal perikarya and synaptosomes. Activities of glutamine synthetase and glutamate dehydrogenase were higher in astrocytes than in neuronal perikarya and synaptosomes. Activities of glutaminase and glutamic acid decarboxylase were observed to be highest in neuronal perikarya and synaptosomes respectively. These results are in agreement with the postulates of theory of metabolic compartmentation of glutamate while others (presence of glutaminase in astrocytes and glutamine synthetase in synaptosomes) are not. Results of this study also indicated that (i) at high extracellular concentrations, glutamate/aspartate uptake may be predominantly into astrocytes while at low extracellular concentrations, it would be into neurons (ii) production of -ketoglutarate from glutamate is chiefly by way of transamination but not by oxidative deamination in these three preparations and (iii) there are topographical differences glutamate metabolism within the neurons.  相似文献   

15.
Abstract— Several parameters of GABA Auxes across the synaptosomal membrane were studied using synaptosomes prepared from the brain of immature (8-day-old) rats. The following aspects of GABA carrier-mediated transport were similar in immature and mature synaptosomes: (1) magnitude of [3H]GABA accumulation; (2) GABA homoexchange in normal ionic conditions; (3) GABA homoexchange in the presence of cationic fluxes (Na+ and Ca2+ influx, K+ efflux) characteristic of physiological depolarization. As in adult synaptosomes (Levi & Raiteri , 1978), in these conditions the stoichiometry of GABA homoexchange was in the direction of net outward transport (efflux > influx). The essential differences between the behaviour of 8-day-old and adult synaptosomes were the following: (1) β-alanine (a glial uptake inhibitor) inhibited GABA uptake in immature synaptosomes (the inhibition being greater in crude than in purified preparations) and was without a significant effect in adult synaptosomes. DABA and ACHC (two neuronal uptake inhibitors) depressed GABA uptake more efficiently in purified than in crude immature synaptosomes, but were as effective in crude and purified nerve endings from adult animals. The data suggest a greater uptake of GABA in the‘gliosomes’contaminating the synaptosomal preparations from immature animals. (2) In immature synaptosomes prelabelled with [3H]GABA the specific radioactivity of the GABA released spontaneously or by heteroexchange (with 300 μm -OH-GABA) was the same as that present in synaptosomes, while in adult synaptosomes OH-GABA released GABA with increased specific radioactivity. The data suggest a homogeneous distribution of the [3H]GABA taken up within the endogenous GABA pool in immature, but not in mature synaptosomes. (3) In immature synaptosomes the release of GABA (radioactive and endogenous) induced by depolarization with high KC was not potentiated by Ca2+, unless the synaptosomes had been previously depleted of Na+ These data suggest that, although a Ca2+ sensitive pool of GABA may be present, this pool is not susceptible to being released in normal conditions, probably because the high intrasynaptosomal Na+ level prevents a sufficient depolarization. The possible significance of these findings in terms of functional activity of GABAergic neurotransmission in the immature brain is discussed.  相似文献   

16.
Dopamine Uptake by Rat Striatal Synaptosomes: A Compartmental Analysis   总被引:5,自引:3,他引:2  
Abstract: Dopamine (DA) uptake into synaptosomes from rat corpus striatum was studied in the presence of a monoamine oxidase (MAO) inhibitor and dithiothreitol, by means of a filtration technique. Under these conditions a steady state develops rapidly in which the synaptosomal DA content remains constant while the continuing DA uptake is counterbalanced by DA efflux from the synaptosome. Exchange of synaptosomal [3H]DA and [14C]DA was measured under these conditions. In timecourse experiments it was found that exchange could be described significantly better by a three-compartment model than by a two-compartment model. However, if synaptosomes from reserpine-pretreated animals were used, analysis according to a three-compartment model did not result in a significantly better fit compared with a two-compartment model. Subsequently, kinetic transfer parameters describing DA fluxes between compartments at different DA concentrations were calculated from the fitted exchange curves. A Michaelis-Menten kinetic analysis indicated that only the in-series three-compartment configuration, in which DA is taken up from the medium into one synaptosomal compartment, from which it can subsequently be transferred to a second compartment without direct access to the medium, gave kinetically acceptable results. Transfer parameters in synaptosomes from reserpine-treated rats were comparable to those parameters describing DA transport between the medium and the first intrasynaptosomal compartment as measured under control conditions. Morover, it was found that potassium depolarization of synaptosomes resulted in a release of DA in a quantity similar to that found in the second intrasynaptosomal compartment. It is suggested that the two intrasynaptosomal compartments found correspond to a cytoplasmatic and vesicular DA pool, respectively. The functional significance of these findings is discussed in terms of the regulation of DA levels within the nerve terminal.  相似文献   

17.
We have developed and used a novel technique to investigate the effects of lithium and other psychotropic drugs on the cation-transporting properties of the sodium- and potassium-activated ATPase enzyme (Na+,K+-ATPase) in intact synaptosomes. Rubidium-86 uptake into intact synaptosomes is an active process and is inhibited by approximately 75% in the presence of the Na+,K+-ATPase inhibitor acetylstrophanthidin. In vitro addition of lithium to synaptosomes prepared from untreated mice causes a progressive inhibition of acetylstrophanthidin-sensitive 86Rb uptake, but only at concentrations higher than the clinical therapeutic range. However, pretreatment of mice for 14 days in vivo with lithium, carbamazepine, and haloperidol, but not phenytoin, causes a significant stimulation of 86Rb uptake into synaptosomes via Na+,K+-ATPase.  相似文献   

18.
The accumulation of 3H-choline by isolated synaptosomes from the central nervous system of locust was studied at concentrations varying from 0.05 to 40μM. Kinetic analysis of the saturable process revealed a high-affinity and a low-affinity system. The high-affinity uptake was competitively inhibited by hemicholinium-3 and was absolutely dependent on external sodium. Elevated potassium concentrations inhibited choline uptake. The choline uptake by insect synaptosomes was found to be remarkably resistant to a variety of metabolic inhibitors. The reduced choline uptake under depolarizing conditions (high potassium concentration or veratridine) in the absence of calcium implies that electrochemical gradients are important for high-affinity choline uptake. Depolarization of preloaded synaptosomes under appropriate conditions resulted in a significant release of newly accumulated choline radioactivity.  相似文献   

19.
The Na+ dependence of tyrosine uptake into rat brain synaptosomes and synaptosomal plasma membrane vesicles (SPMV) was examined in the present study. At low tyrosine concentrations, the isoosmotic substitution of Na+ by sucrose in the incubation medium led to an increase of tyrosine uptake in synaptosomes and to a decrease in SPMV. The removal of extracellular Ca2+ and Mg2+ and addition of isoosmotic sucrose completely prevented the augmented tyrosine uptake in Na+-free incubated synaptosomes. Morphological differences were found at the electron-microscopic level when synaptosomes were incubated in Na+-free and Na+-containing media. The internal volume measured for synaptosomes incubated in a Na+-free medium was almost half of that obtained in a Na+-containing medium, in good agreement with the observations made with the electron microscope. Also, the omission of Ca2+ and Mg2+ resulted in a specific swelling of only the synaptosomes incubated in Na+-free medium. When synaptosomes and SPMV were preloaded with several neutral amino acids, the tyrosine uptake rate was greatly increased, indicating fully operational exchange mechanisms for these amino acids. We propose that the enhancement of high-affinity synaptosomal tyrosine uptake observed in Na+-free medium is a consequence of a specific shrinkage of the synaptosomes and a parallel increase of the exchange rate with endogenous neutral amino acids.  相似文献   

20.
Abstract: Using isolated cholinergic synaptosomes prepared from Torpedo electric organ, we studied the effects of N,N'-dicyclohexylcarbodiimide (DCCD) on acetylcholine (ACh) synthesis, compartmentation, and release after stimulation. Whereas ACh synthesis was unchanged, ACh compartmentation inside synaptosomes was affected by the presence of DCCD. In resting conditions, the uptake into the synaptic vesicle pool of newly synthesized ACh (i.e., [14C]ACh synthesized in the presence of the drug) was progressively and markedly inhibited as the duration of DCCD preincubation was increased, whereas compartmentation of endogenous ACh was unchanged in the presence of DCCD. After stimulation, the release of endogenous ACh from DCCD-treated synaptosomes was similar to that of control, in contrast to the release of [14C]ACh, which was markedly inhibited. This inhibition was observed whatever the conditions of stimulation used (gramicidin D, calcium ionophore A23187, or KCI depolarization). The study of the compartmentation of [14C]ACh during stimulation revealed a transfer of highly labeled ACh from the free to the bound ACh compartment in the presence of DCCD, suggesting the existence of several ACh subcompartments within the free and bound ACh pools. The present results are discussed in comparison with the previously reported effects of vesamicol (AH5183) on ACh compartmentation and release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号