首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial respiratory chain is comprised of four different protein complexes (I–IV), which are responsible for electron transport and generation of proton gradient in the mitochondrial intermembrane space. This proton gradient is then used by FoF1-ATP synthase (complex V) to produce ATP by oxidative phosphorylation. In this study, the respiratory complexes I, II, and III were affinity purified from Trypanosoma brucei procyclic form cells and their composition was determined by mass spectrometry. The results along with those that we previously reported for complexes IV and V showed that the respiratome of Trypanosoma is divergent because many of its proteins are unique to this group of organisms. The studies also identified two mitochondrial subunit proteins of respiratory complex IV that are encoded by edited RNAs. Proteomics data from analyses of complexes purified using numerous tagged component proteins in each of the five complexes were used to generate the first predicted protein-protein interaction network of the Trypanosoma brucei respiratory chain. These results provide the first comprehensive insight into the unique composition of the respiratory complexes in Trypanosoma brucei, an early diverged eukaryotic pathogen.Mitochondria are dynamic organelles essential for cellular life, death, and differentiation of virtually every eukaryotic cell. They house systems for energy production through oxidative phosphorylation, synthesis of key metabolites, and iron-sulfur cluster assembly. The oxidative phoshorylation system of eukaryotic mitochondria comprises five major complexes located in the mitochondrial (mt)1 inner membrane, and often abbreviated as mt complexes I–V. The redox energy of the substrates NADH and succinate is first converted into an electrochemical proton potential across the inner mt membrane by respiratory complexes I (NADH:ubiquinone reductase), II (SDH, succinate:ubiquinone reductase), III (bc1, ubiquinone:cytochrome c reductase), and IV (cytochrome c oxidase). The electrochemical proton potential is then used by complex V (FoF1-ATP synthase) to synthesize ATP from ADP and inorganic phosphate, a mechanism that has essentially remained unchanged from bacteria to human (1). However, parasitic organisms have exploited unique energy metabolic pathways by adapting to their natural host habitats (2). Indeed, the respiratory systems of parasites typically show greater diversity in electron transfer pathways than those of their host, and Trypanosoma brucei is no exception to this rule (3).T. brucei, the causative agent of human African trypanosomiasis (HAT), or sleeping sickness, is a blood-borne pathogenic parasite transmitted by tsetse flies. It has a complex life cycle that alternates between the bloodstream forms (BF) in the mammalian host and several stages in the insect vector starting with the procyclic form (PF) in the midgut. During T. brucei differentiation between the distinct life-cycle stages, the mitochondrion undergoes morphological and functional changes, and the parasite switches its energy metabolism from amino acid to glucose oxidation (4). BF cells, which live in sugar-rich environment, use energy metabolism predominantly through the glycolytic pathway (5). They contain no cytochrome-mediated respiratory chain and they possess a unique electron transport chain in the mitochondria, the glycerol-3-phosphate dehydrogenase and the salicyl hydroxamic acid (SHAM)-sensitive alternative oxidase, which is known as the trypanosome alternative oxidase (TAO) (6). Despite the absence of complete cytochrome-containing complexes III and IV in BF trypanosomes, a mt membrane potential is maintained and involves the hydrolytic activity of the FoF1-ATP synthase complex (7). Conversely, PF cells are dependent on the cytochrome-containing respiratory chain and ATP generated by conventional function of the FoF1-ATP synthase complex for their energy production (8, 9). The branched electron-transport chain contains four complexes that donate electrons to the ubiquinone pool, two NADH:ubiquinone oxidoreductases (complex I and a rotenone-insensitive enzyme), complex II, and glycerol-3-phosphate dehydrogenase. Reduced ubiquinol can be reoxidized by the transfer of electron to either the TAO, which does not translocate protons, or to the cytochrome-containing complexes III and IV that produce a proton motive force by translocation of protons and thus create essential membrane potential (10).Although the T. brucei genome has been sequenced (11), little information is available on the subunit composition of mt complexes I–V based on similarity searches. However, some respiratory complexes have been partially characterized in other trypanosomatids such as Crithidia fasciculata, T. cruzi, and Leishmania tarentolae (1215). In recent studies, we have determined the protein composition of complexes IV and V, and part of complex I purified from mitochondria of T. brucei PF cells (8, 16, 17, 25). These analyses revealed the uniqueness of respiratory complexes in trypanosomes, where large numbers of component proteins have no homologs outside of the Kinetoplastida.In this study, we focus on the comprehensive characterization of all respiratory complexes in T. brucei, collectively termed the respiratome. We report the composition of complexes II and III from PF cells, and extend the characterization of complex I by identifying additional protein constituents. This included the identification of two subunits of the respiratory complex IV, both encoded by mt edited RNAs. We also present a predicted protein-protein interaction network of the respiratome, which was generated using proteomics data collected from numerous tagged proteins in each of the complexes I–V. Our results provide a comprehensive insight into the unique composition of the respiratory complexes in one of the life-cycle stages of T. brucei.  相似文献   

2.
3.

Background

Neutrophils depend mainly on glycolysis for their energy provision. Their mitochondria maintain a membrane potential (Δψm), which is usually generated by the respiratory chain complexes. We investigated the source of Δψm in neutrophils, as compared to peripheral blood mononuclear leukocytes and HL-60 cells, and whether neutrophils can still utilise this Δψm for the generation of ATP.

Methods and Principal Findings

Individual activity of the oxidative phosphorylation complexes was significantly reduced in neutrophils, except for complex II and V, but Δψm was still decreased by inhibition of complex III, confirming the role of the respiratory chain in maintaining Δψm. Complex V did not maintain Δψm by consumption of ATP, as has previously been suggested for eosinophils. We show that complex III in neutrophil mitochondria can receive electrons from glycolysis via the glycerol-3-phosphate shuttle. Furthermore, respiratory supercomplexes, which contribute to efficient coupling of the respiratory chain to ATP synthesis, were lacking in neutrophil mitochondria. When HL-60 cells were differentiated to neutrophil-like cells, they lost mitochondrial supercomplex organisation while gaining increased aerobic glycolysis, just like neutrophils.

Conclusions

We show that neutrophils can maintain Δψm via the glycerol-3-phosphate shuttle, whereby their mitochondria play an important role in the regulation of aerobic glycolysis, rather than producing energy themselves. This peculiar mitochondrial phenotype is acquired during differentiation from myeloid precursors.  相似文献   

4.
Ozone effects on lung mitochondrial oxidative metabolism were examined after short-term exposure of rats and monkeys to O3. Exposure of animals to 2 ppm O3 for 8 hr or to 4 ppm O3 for 4 hr caused a 15–27% (P < 0.05) depression of lung mitochondrial O2 consumption, using 2-oxoglutarate, succinate, and glycerol-1-phosphate. but not ascorbate plus Wurster's blue as substrates. Under these exposure conditions (4 ppm 4 hr) the ADP:O ratios dropped 25–36% (P < 0.05) and the respiratory control indices decreased 27–33% (P < 0.02) for oxidation of all substrates examined. Lung mitochondria from control animals were relatively impermeable to added NADH, but those from O3-exposed animals showed an increased permeability as judged from NADH oxidation at a rate 3-fold higher than the control. Likewise, added cytochrome c caused a 22% (P < 0.01) stimulation of succinate oxidation in exposed lung mitochondria as against 5% (nonsignificant) in controls. Ozone exposure also caused a 20% (P < 0.01) oxidation of thiol groups in lung mitochondria, but no lipid peroxidation products were detectable in O3-exposed lung tissue. The depression of substrate utilization, coupled phosphorylation and respiratory control observed in lung mitochondria of O3-exposed animals might be related to alteration of membrane permeability, and inhibition of respiratory enzymes (dehydrogenases) due to oxidation of functional thiol groups.  相似文献   

5.
Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS.  相似文献   

6.
Ustilago maydis is an aerobic basidiomycete that depends on oxidative phosphorylation for its ATP supply, pointing to the mitochondrion as a key player in its energy metabolism. Mitochondrial respiratory complexes I, III2, and IV occur in supramolecular structures named respirasome. In this work, we characterized the subunit composition and the kinetics of NADH:Q oxidoreductase activity of the digitonine-solubilized respirasome (1600 kDa) and the free-complex I (990 kDa). In the presence of 2,6-dimethoxy-1,4-benzoquinone (DBQ) and cytochrome c, both the respirasome NADH:O2 and the NADH:DBQ oxidoreductase activities were inhibited by rotenone, antimycin A or cyanide. A value of 2.4 for the NADH oxidized/oxygen reduced ratio was determined for the respirasome activity, while ROS production was less than 0.001% of the oxygen consumption rate. Analysis of the NADH:DBQ oxidoreductase activity showed that respirasome was 3-times more active and showed higher affinity than free-complex I. The results suggest that the contacts between complexes I, III2 and IV in the respirasome increase the catalytic efficiency of complex I and regulate its activity to prevent ROS production.  相似文献   

7.
We have investigated the role of the Coenzyme Q pool in glycerol-3-phosphate oxidation in hamster brown adipose tissue mitochondria. Antimycin A and myxothiazol inhibit glycerol-3-phosphate cytochromec oxidoreductase in a sigmoidal fashion, indicating that CoQ behaves as a homogeneous pool between glycerol-3-phosphate dehydrogenase and complex III. The inhibition of ubiquinol cytochromec reductase is linear at low concentrations of both inhibitors, indicating that sigmoidicity of antimycin A and myxothiazol inhibition is not a direct property of antimycin A and myxothiazol binding. Glycerol-3-phosphate cytochromec oxidoreductase is strongly stimulated by added CoQ3, indicating that endogenous CoQ is not saturating. Application of the pool equation for nonsaturating ubiquinone allows calculation of theK m for endogenous CoQ of glycerol-3-phosphate dehydrogenase of 3.14mM. The results of this investigations reveal that CoQ behaves as a homogeneous pool between glycerol-3-phosphate dehydrogenase and complex III in brown adipose tissue mitochondria; moreover, its concentration is far below saturation for maximal electron transfer activity in comparison with other branches of the respiratory chain connected with the CoQ pool. HPLC analysis revealed a lower amount of CoQ in brown adipose mitochondria (0.752 nmol/mg protein) in comparison with mitochondria from other tissues and the presence of both CoQ9 and CoQ10.  相似文献   

8.
Rates of ATP synthesis were studied in cultured skin fibroblasts treated with digitonin. In fibroblasts from patients with complex I deficiency, complex IV and complex V deficiency rates of ATP synthesis were decreased below the levels found in controls. In mitochondria isolated from cultured lymphoblasts, ATP synthesis was also decreased by 35–50% in cases of Leigh's disease due to complex I, complex IV, or complex V deficiency. Calculating the effect of the mutations in the various complexes on the overall efficiency of oxidative phosphorylation, we show that the mtDNA 8993 mutation which affects the activity of the F1F0 ATPase (complex V) has the strongest effect.  相似文献   

9.
The branched respiratory chain in mitochondria from the halotolerant yeast Debaryomyces hansenii contains the classical complexes I, II, III and IV plus a cyanide-insensitive, AMP-activated, alternative-oxidase (AOX). Two additional alternative oxidoreductases were found in this organism: an alternative NADH dehydrogenase (NDH2e) and a mitochondrial isoform of glycerol-phosphate dehydrogenase (MitGPDH). These monomeric enzymes lack proton pump activity. They are located on the outer face of the inner mitochondrial membrane. NDH2e oxidizes exogenous NADH in a rotenone-insensitive, flavone-sensitive, process. AOX seems to be constitutive; nonetheless, most electrons are transferred to the cytochromic pathway. Respiratory supercomplexes containing complexes I, III and IV in different stoichiometries were detected. Dimeric complex V was also detected. In-gel activity of NADH dehydrogenase, mass spectrometry, and cytochrome c oxidase and ATPase activities led to determine the composition of the putative supercomplexes. Molecular weights were estimated by comparison with those from the yeast Y. lipolytica and they were IV2, I–IV, III2–IV4, V2, I–III2, I–III2–IV, I–III2–IV2, I–III2–IV3 and I–III2–IV4. Binding of the alternative enzymes to supercomplexes was not detected. This is the first report on the structure and organization of the mitochondrial respiratory chain from D. hansenii.  相似文献   

10.
The disks of the vertebrate retinal rod Outer Segment (OS), devoid of mitochondria, are the site of visual transduction, a very energy demanding process. In a previous proteomic study we reported the expression of the respiratory chain complexes I–IV and the oxidative phosphorylation Complex V (F1F0-ATP synthase) in disks. In the present study, the functional localization of these proteins in disks was investigated by biochemical analyses, oxymetry, membrane potential measurements, and confocal laser scanning microscopy. Disk preparations, isolated by Ficoll flotation, were characterized for purity. An oxygen consumption, stimulated by NADH and Succinate and reverted by rotenone, antimycin A and KCN was measured in disks, either in coupled or uncoupled conditions. Rhodamine-123 fluorescence quenching kinetics showed the existence of a proton potential difference across the disk membranes. Citrate synthase activity was assayed and found enriched in disks with respect to ROS. ATP synthesis by disks (0.7 μmol ATP/min/mg), sensitive to the common mitochondrial ATP synthase inhibitors, would largely account for the rod ATP need in the light.Overall, data indicate that an oxidative phosphorylation occurs in rod OS, which do not contain mitochondria, thank to the presence of ectopically located mitochondrial proteins. These findings may provide important new insight into energy production in outer segments via aerobic metabolism and additional information about protein components in OS disk membranes.  相似文献   

11.
During respiratory glucose dissimilation, eukaryotes produce cytosolic NADH via glycolysis. This NADH has to be reoxidized outside the mitochondria, because the mitochondrial inner membrane is impermeable to NADH. In Saccharomyces cerevisiae, this may involve external NADH dehydrogenases (Nde1p or Nde2p) and/or a glycerol-3-phosphate shuttle consisting of soluble (Gpd1p or Gpd2p) and membrane-bound (Gut2p) glycerol-3-phosphate dehydrogenases. This study addresses the physiological relevance of these mechanisms and the possible involvement of alternative routes for mitochondrial oxidation of cytosolic NADH. Aerobic, glucose-limited chemostat cultures of a gut2Delta mutant exhibited fully respiratory growth at low specific growth rates. Alcoholic fermentation set in at the same specific growth rate as in wild-type cultures (0.3 h(-1)). Apparently, the glycerol-3-phosphate shuttle is not essential for respiratory glucose dissimilation. An nde1Delta nde2Delta mutant already produced glycerol at specific growth rates of 0.10 h(-1) and above, indicating a requirement for external NADH dehydrogenase to sustain fully respiratory growth. An nde1Delta nde2Delta gut2Delta mutant produced even larger amounts of glycerol at specific growth rates ranging from 0.05 to 0.15 h(-1). Apparently, even at a low glycolytic flux, alternative mechanisms could not fully replace the external NADH dehydrogenases and glycerol-3-phosphate shuttle. However, at low dilution rates, the nde1Delta nde2Delta gut2Delta mutant did not produce ethanol. Since glycerol production could not account for all glycolytic NADH, another NADH-oxidizing system has to be present. Two alternative mechanisms for reoxidizing cytosolic NADH are discussed: (i) cytosolic production of ethanol followed by its intramitochondrial oxidation and (ii) a redox shuttle linking cytosolic NADH oxidation to the internal NADH dehydrogenase.  相似文献   

12.
Summary The analysis of anisotropic inhibitor-induced phenomena in mitochondria revealed that two kinds of negative charges are generated near surface of the C-side of mitochondrial inner membranes in the energized state, on the redox complexes (I, III & IV) and F0, respectively, and that positively charged anisotropic inhibitors (AI+) inhibit energy transduction in oxidative phosphorylation by binding to these negative charges. Thus, AI+ have two different inhibition sites in oxidative phosphorylation, the redox complexes and F0. The membrane components generating the negative charges in energized mitochondria were examined by the technique of photoaffinity labeling with monoazide ethidium, which is an AI+. Results showed that monoazide ethidium specifically binds to two kinds of hydrophobic protein (of 8 K and 13 K daltons) of mitochondria energized with succinate, and these proteins were named chargerin I and II, respectively. Chargerin I and II, which may be components of the redox complexes and F0, seem to generate the negative charges described above, and these may be essential for H+-pumps in the redox complexes and F1 · F0. AI+ seem to inhibit ATP synthesis by binding to negatively charged sites of chargerin I and II.Based on these findings and the salient results on energy-transducing membranes obtained recently in other laboratories, a conformational model of H+-pumps and ATP synthesis in mitochondria is proposed, which is also applicable to ATP synthesis in other energy-transducing membranes and ATP-linked active transport of ions.  相似文献   

13.
Recently the F0 portion of the bovine mitochondrial F1F0-ATP synthase was shown to contain eight ‘c’ subunits (n?=?8). This surprised many in the field, as previously, the only other mitochondrial F0 (for yeast) was shown to have ten ‘c’ subunits. The metabolic implications of ‘c’ subunit copy number explored in this paper lead to several surprising conclusions: (1) Aerobically respiring E. coli (n?=?10) and animal mitochondria (n?=?8) both have very high F1F0 thermodynamic efficiencies of ≈90 % under typical conditions, whereas efficiency is only ≈65 % for chloroplasts (n?=?14). Reasons for this difference, including the importance of transmembrane potential (?Ψ) as a rotational catalyst, as opposed to an energy source, are discussed. (2) Maximum theoretical P/O ratios in animal mitochondria (n?=?8) are calculated to be 2.73 ATP/NADH and 1.64 ATP/FADH2, yielding 34.5 ATP/glucose (assuming NADH import via the malate/aspartate shuttle). The experimentally measured values of 2.44 (±0.15), 1.47 (±0.13), and 31.3 (±1.5), respectively, are only about 10 % lower, suggesting very little energy depletion via transmembrane proton leakage. (3) Finally, the thermodynamic efficiency of oxidative phosphorylation is not lower than that of substrate level phosphorylation, as previously believed. The overall thermodynamic efficiencies of oxidative phosphorylation, glycolysis, and the citric acid cycle are ≈80 % in all three processes.  相似文献   

14.
Tumor cells favor abnormal energy production via aerobic glycolysis and show resistance to apoptosis, suggesting the involvement of mitochondrial dysfunction. The differences between normal and cancer cells in their energy metabolism provide a biochemical basis for developing new therapeutic strategies. The energy blocker 3-bromopyruvate (3BP) can eradicate liver cancer in animals without associated toxicity, and is a potent anticancer towards glioblastoma cells. Since mitochondria are 3BP targets, in this work the effects of 3BP on the bioenergetics of normal rat brain mitochondria were investigated in vitro, in comparison with the anticancer agent lonidamine (LND). Whereas LND impaired oxygen consumption dependent on any complex of the respiratory chain, 3BP was inhibitory to malate/pyruvate and succinate (Complexes I and II), but preserved respiration from glycerol-3-phosphate and ascorbate (Complex IV). Accordingly, although electron flow along the respiratory chain and ATP levels were decreased by 3BP in malate/pyruvate- and succinate-fed mitochondria, they were not significantly influenced from glycerol-3-phosphate- or ascorbate-fed mitochondria. LND produced a decrease in electron flow from all substrates tested. No ROS were produced from any substrate, with the exception of 3BP-induced H2O2 release from succinate, which suggests an antimycin-like action of 3BP as an inhibitor of Complex III. We can conclude that 3BP does not abolish completely respiration and ATP synthesis in brain mitochondria, and has a limited effect on ROS production, confirming that this drug may have limited harmful effects on normal cells.  相似文献   

15.
Yukiko Tokumitsu  Michio Ui 《BBA》1973,292(2):325-337
1. The mitochondrial level of AMP gradually diminishes during incubation of mitochondria with glutamate but does not with succinate. This decline of AMP, associated with stoichiometric increase in ADP and/or ATP, is accelerated by the addition of electron acceptors or 2,4-dinitrophenol, while arsenite, arsenate and rotenone are inhibitory. These results are in agreement with the view that AMP is phosphorylated to ADP in the inner space of rat liver mitochondria via succinyl-CoA synthetase (succinate: CoA ligase (GDP), EC 6.2.1.4) and GTP:AMP phosphotransferase dependent on the oxidation of 2-oxoglutarate, which is promoted by the transfer of electron from NADH to the respiratory chain.2. Studies of the periodical changes of chemical quantities of adenine nucleotides as well as of their labelling with 32Pi reveals the following characteristics concerning mitochondrial phosphorylation. (i) In contrast to the mass action ratio of ATP to ADP, the ratio of ADP to AMP is not affected by the intramitochondrial concentration of Pi. (ii) 32Pi, externally added, is incorporated into ADP much more slowly than into γ-phosphate of ATP. (iii) Conversely, ATP loses its radioactivity from γ-phosphate position more rapidly than [32P]ADP when 32P-labelled mitochondria are incubated with non-radioactive Pi.3. In order to elucidate the above characteristic properties of phosphorylation, a hypothetical scheme is proposed which postulates the two separate compartments in the intramitochondrial pool of Pi; one readily communicates with external Pi and is utilized for the phosphorylation of ADP in oxidative phosphorylation, while the other less readily communicates with external Pi and serves as the precursor of ADP via succinyl-CoA synthetase and GTP:AMP phosphotransferase.  相似文献   

16.
Respiratory oxidative phosphorylation represents a central functionality in plant metabolism, but the subunit composition of the respiratory complexes in plants is still being defined. Most notably, complex II (succinate dehydrogenase) and complex IV (cytochrome c oxidase) are the least defined in plant mitochondria. Using Arabidopsis mitochondrial samples and 2D Blue-native/SDS-PAGE, we have separated complex II and IV from each other and displayed their individual subunits for analysis by tandem mass spectrometry and Edman sequencing. Complex II can be discretely separated from other complexes on Blue-native gels and consists of eight protein bands. It contains the four classical SDH subunits as well as four subunits unknown in mitochondria from other eukaryotes. Five of these proteins have previously been identified, while three are newly identified in this study. Complex IV consists of 9–10 protein bands, however, it is more diffuse in Blue-native gels and co-migrates in part with the translocase of the outer membrane (TOM) complex. Differential analysis of TOM and complex IV reveals that complex IV probably contains eight subunits with similarity to known complex IV subunits from other eukaryotes and a further six putative subunits which all represent proteins of unknown function in Arabidopsis. Comparison of the Arabidopsis data with Blue-native/SDS-PAGE separation of potato and bean mitochondria confirmed the protein band complexity of these two respiratory complexes in plants. Two-dimensional Blue-native/Blue-native PAGE, using digitonin followed by dodecylmaltoside in successive dimensions, separated a diffusely staining complex containing both TOM and complex IV. This suggests that the very similar mass of these complexes will likely prevent high purity separations based on size. The documented roles of several of the putative complex IV subunits in hypoxia response and ozone stress, and similarity between new complex II subunits and recently identified plant specific subunits of complex I, suggest novel biological insights can be gained from respiratory complex composition analysis.  相似文献   

17.
Leishmaniasis is a growing health problem in many parts of the world partly due to drug resistance of the parasite. This study reports on the fisibility of studying mitochondrial properties of two forms of wild-type L. donovani through the use of selective inhibitors. Amastigote forms of L. donovani exhibited a wide range of sensitivities to these inhibitors. Mitochondrial complex II inhibitor thenoyltrifluoroacetone and FoF1-ATP synthase inhibitors oligomycin and dicyclohexylcarbodiimide were refractory to growth inhibition of amastigote forms, whereas they strongly inhibited the growth of promastigote forms. This result indicated that complex II and FoF1-ATP synthase were not functional in amastigote forms suggesting the presence of attenuated oxidative phosphorylation in the mitochondria of amastigote forms. In contrast, mitochondrial complex I inhibitor rotenone and complex III inhibitor antimycin A inhibited cellular multiplication and substrate level phosphorylation in amastigote forms, suggesting the role of complex I and complex III for the survival of amastigote forms. Further we studied the mitochondrial activities of both forms by measuring oxygen consumption and ATP production. In amastigote form, substantial ATP formation by substrate level phosphorylation was observed in NADPH-fumarate, NADH-fumarate, NADPH-pyruvate and NADH-pyruvate redox couples. None of the redox couple generated ATP formation was inhibited by FoF1-ATP synthase inhibitor oligomycin. Therefore, we may conclude that there are significant differences between these two forms of L. donovani in respect of mitochondrial bioenergetics. Our results demonstrated bioenergetic disfunction of amastigote mitochondria. Therefore, these alterations of metabolic functions might be a potential chemotherapeutic target.  相似文献   

18.
The proposal that the respiratory complexes can associate with each other in larger structures named supercomplexes (SC) is generally accepted. In the last decades most of the data about this association came from studies in yeasts, mammals and plants, and information is scarce in other lineages. Here we studied the supramolecular association of the F1FO-ATP synthase (complex V) and the respiratory complexes I, III and IV of the colorless alga Polytomella sp. with an approach that involves solubilization using mild detergents, n-dodecyl-β-D-maltoside (DDM) or digitonin, followed by separation of native protein complexes by electrophoresis (BN-PAGE), after which we identified oligomeric forms of complex V (mainly V2 and V4) and different respiratory supercomplexes (I/IV6, I/III4, I/IV). In addition, purification/reconstitution of the supercomplexes by anion exchange chromatography was also performed. The data show that these complexes have the ability to strongly associate with each other and form DDM-stable macromolecular structures. The stable V4 ATPase oligomer was observed by electron-microscopy and the association of the respiratory complexes in the so-called “respirasome” was able to perform in-vitro oxygen consumption.  相似文献   

19.
The effects of cobalt and copper complexes with o-phenantroline on the respiratory activity of mitochondria from pea sprouts and submitochondrial particles from bovine heart and on the oxidative phosphorylation in mitochondria were studied. The catalytic activity of the complexes in several components of the respiratory chain autooxidation reactions was investigated. It was shown that the bis (o-phenantroline) cobalt (II) chloride complex is more active in exidation of NADH. The tris (o-phenantroline) cobolt (III) perchlorate complex stimulates the respiratory activity of mitochondria and submitochondrial particles. Possible localization of the effect of this complex was postulated. The (o-phenantroline) copper chloride complex completely inhibits the succinate-dependent respiration of submitochondrial particles and causes disturbances in oxidative phosphorylation of mitochondria.  相似文献   

20.
The organization of respiratory chain complexes in supercomplexes has been shown in the mitochondria of several eukaryotes and in the cell membranes of some bacteria. These supercomplexes are suggested to be important for oxidative phosphorylation efficiency and to prevent the formation of reactive oxygen species.Here we describe, for the first time, the identification of supramolecular organizations in the aerobic respiratory chain of Escherichia coli, including a trimer of succinate dehydrogenase. Furthermore, two heterooligomerizations have been shown: one resulting from the association of the NADH:quinone oxidoreductases NDH-1 and NDH-2, and another composed by the cytochrome bo3 quinol:oxygen reductase, cytochrome bd quinol:oxygen reductase and formate dehydrogenase (fdo). These results are supported by blue native-electrophoresis, mass spectrometry and kinetic data of wild type and mutant E . coli strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号