首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Quantitative immunoelectron microscopy often involves determining the distributions of gold label in different intracellular compartments and then drawing comparisons between compartments in the same sample of cells or between experimental groups of cells. In the case of within-group comparisons, recent developments in the estimation of relative labelling index and labelling density make it possible to test whether or not particular compartments are preferentially labelled. These methods are ideally suited to analysing gold label restricted to volume (organelle) or surface (membrane) compartments but may be modified to analyse label localised in mixtures of both. Here, a simple and efficient approach to drawing between-group comparisons for label associated with organelles and/or membranes is presented. The method relies on multistage random sampling of specimens (via blocks and microscopic fields) followed by simply counting gold particles associated with different compartments. The distributions of raw gold counts in different groups are then compared by contingency table analysis with statistical degrees of freedom for chi-squared values being determined by the number of compartments and the number of experimental groups of cells. Compartmental chi-squared values making substantial contributions to the total chi-squared values then identify where the main between-group differences reside. The method requires no information about compartment size (for example, organelle profile area or membrane trace length) and does not even depend critically on standardising between-group magnification. Its application is illustrated using datasets from immunolabelling studies designed to localise the KDEL receptor, phosphatidyl-inositol 4,5-bisphosphate, GLUT4 and rab4 at the electron microscopic level.  相似文献   

2.
Yeast Saccharomyces cerevisiae has been a crucial model system for the study of a multitude of cellular processes because of its amenability to genetics, molecular biology and biochemical procedures. By contrast, the morphological analysis of this organism by immunoelectron microscopy (IEM) has remained in a primordial phase preventing researchers to routinely incorporate this technique into their investigations. Here, in addition to simple but detailed protocols to perform conventional electron microscopy (EM) on plastic embedded sections, we present a new IEM procedure adapted from the Tokuyasu method to prepare cryosections from mildly fixed cells. This novel approach allows an excellent cell preservation and the negatively stained membranes create superb contrast that leads to a unique resolution of the yeast morphology. This, plus the optimal preservation of the epitopes, permits combined localization studies with a fine resolution of protein complexes, vesicular carriers and organelles at an ultrastructural level. Importantly, we also show that this cryo-immunogold protocol can be combined with high-pressure freezing and therefore cryofixation can be employed if difficulties are encountered to immobilize a particular structure with chemical fixation. This new IEM technique will be a valuable tool for the large community of scientists using yeast as a model system, in particular for those studying membrane transport and dynamics.  相似文献   

3.
Hydroponic isotope labelling of entire plants (HILEP) is a cost-effective method enabling metabolic labelling of whole and mature plants with a stable isotope such as (15)N. By utilising hydroponic media that contain (15)N inorganic salts as the sole nitrogen source, near to 100% (15)N-labelling of proteins can be achieved. In this study, it is shown that HILEP, in combination with mass spectrometry, is suitable for relative protein quantitation of seven week-old Arabidopsis plants submitted to oxidative stress. Protein extracts from pooled (14)N- and (15)N-hydroponically grown plants were fractionated by SDS-PAGE, digested and analysed by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS). Proteins were identified and the spectra of (14)N/(15)N peptide pairs were extracted using their m/z chromatographic retention time, isotopic distributions, and the m/z difference between the (14)N and (15)N peptides. Relative amounts were calculated as the ratio of the sum of the peak areas of the two distinct (14)N and (15)N peptide isotope envelopes. Using Mascot and the open source trans-proteomic pipeline (TPP), the data processing was automated for global proteome quantitation down to the isoform level by extracting isoform specific peptides. With this combination of metabolic labelling and mass spectrometry it was possible to show differential protein expression in the apoplast of plants submitted to oxidative stress. Moreover, it was possible to discriminate between differentially expressed isoforms belonging to the same protein family, such as isoforms of xylanases and pathogen-related glucanases (PR 2).  相似文献   

4.
When examined under an electron microscope, the central nervous system of Megalobulimus abbreviatus showed two types of glial cells: firstly, protoplasmic glial cells which displayed a nucleus with peripheral heterochromatin, scanty or no intermediate filaments, a developed Golgi complex, rough and smooth endoplasmic reticula, mitochondria and polymorphic lysosomes that indicate phagocytic activity of debris from the extracellular space; and, secondly, fibrous glial cells which showed numerous glial fibrillary acidic protein (GFAP) and vimentin immunoreactive intermediate filament bundles, a discrete Golgi complex, mitochondria, endoplasmic reticulum, lipid droplets and lysosomes. The contacts between the glial cells consisted of desmosomes and puncta adherentia, while those between the glial cells and the basal lamina consisted of hemidesmosomes. Both glial cell types were located in the cortex and medullary regions, however, the protoplasmic glial cells prevailed in the cortical region, while the fibrous glial cells prevailed in the medullar region. As the nervous tissue is avascular, the passage of nutrients and waste products may be facilitated by the glial labyrinthic system which is located in the cortical region. Glial processes adjacent to large and giant neurones formed a trophospongium, which seemed to be involved in a metabolic exchange between these cells. Thus, this evidence suggests that glial cells of M. abbreviatus are involved in structural support, isolation of different ganglionic areas, the formation of a microcirculatory system and an intimate metabolic relationship with neurones.  相似文献   

5.
The unbiased and comprehensive analysis of metabolites in any organism presents a major challenge if proper peak annotation and unambiguous assignment of the biological origin of the peaks are required. Here we provide a comprehensive multi-isotope labelling-based strategy using fully labelled (13) C, (15) N and (34) S plant tissues, in combination with a fractionated metabolite extraction protocol. The extraction procedure allows for the simultaneous extraction of polar, semi-polar and hydrophobic metabolites, as well as for the extraction of proteins and starch. After labelling and extraction, the metabolites and lipids were analysed using a high-resolution mass spectrometer providing accurate MS and all-ion fragmentation data, providing an unambiguous readout for every detectable isotope-labelled peak. The isotope labelling assisted peak annotation process employed can be applied in either an automated database-dependent or a database-independent analysis of the plant polar metabolome and lipidome. As a proof of concept, the developed methods and technologies were applied and validated using Arabidopsis thaliana leaf and root extracts. Along with a large repository of assigned elemental compositions, which is provided, we show, using selected examples, the accuracy and reliability of the developed workflow.  相似文献   

6.
《Luminescence》2003,18(3):182-192
In this paper we describe the preparation of a series of new phosphorescent labelling reagents, based on monosubstituted palladium(II) coproporphyrin‐I and the isothiocyanato reactive group. The labelling reagents differ with respect to the chemical composition of the linker unit that combines the reactive group and the porphyrin chromophore. Altogether, seven different labelling reagents are prepared. The new labelling reagents are conjugated with monoclonal mouse IgG to yield label conjugates with variable degrees of conjugation. The effect is studied of linker unit on: (a) the conjugation reaction kinetics; (b) the biological activity of the resulting IgG conjugates; and (c) the efficiency of phosphorescence emission. The results show that an increase in the length of the linker unit has a positive effect on both the reactivity of the label and the biological activity of the resulting conjugates. In addition, the results indicate that the labels with the most hydrophilic linker units exhibit the highest phosphorescence emission efficiencies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Summary The collembolan Orchesella cincta possesses a well-developed coelomoduct kidney. The presence of podocytes in the wall of the sacculus and the fact that the epithelium of the nephridial tubule has the ultrastructural characteristics of resorbing cells, indicate that this is an ultrafiltration-reabsorption kidney.Apparently also the rectum is lined by a reabsorptive epithelium; the cells possess an extensive system of apical and basal infoldings. This view is sustained by the fact that the stereology of the apical channel system varies in animals kept under different moisture conditions. During the intermoult period, both organs are subject to strong morphological changes, which are obviously related to the feeding rhythm.The authors wish to thank Dr. T. Sminia for his stimulating interest during the investigations, Dr. J.C. Jager for statistical advice and Mr. G.W.H. van den Berg for drawing the figures  相似文献   

8.
9.
In this study we characterised the in vitro antitumour and hepatotoxicity profiles of a series of Au(I) and Ag(I) bidentate phenyl and pyridyl complexes in a panel of cisplatin-resistant human ovarian cancer cell-lines, and in isolated rat hepatocytes. The gold and silver compounds overcame cisplatin-resistance in the CH1-cisR, 41M-cisR and SKOV-3 cell-lines, and showed cytotoxic potencies strongly correlated with their lipophilicity. Complexes with phenyl or 2-pyridyl ligands had high antitumour and hepatotoxic potency and low selectivity between different cell-lines. Their cytotoxicity profiles were similar to classic mitochondrial poisons and an example of this type of compound was shown to accumulate preferentially in the mitochondria of cancer cells in a manner that depended upon the mitochondrial membrane potential. In contrast, complexes with 3- or 4-pyridyl ligands had low antitumour and hepatotoxic potency and cytotoxicity profiles similar to 2-deoxy-D-glucose. In addition, they showed high selectivity between different cell-lines that was not attributable to variation in uptake in different cell-types. The in vitro hepatotoxic potency of the series of gold and silver compounds varied by over 61-fold and was closely related to their lipophilicity and hepatocyte uptake. In conclusion, Au(I) and Ag(I) bidendate pyridyl phosphine complexes demonstrate activity against cisplatin-resistant human cancer cells and in vitro cytotoxicity that strongly depends upon their lipophilicity.  相似文献   

10.
Five new heterocyclic gold carbene complexes were prepared, four chlorido-[1,3-dimethyl-4,5-diarylimidazol-2-ylidene]gold complexes 6a-d and a chlorido-[1,3-dibenzylimidazol-2-ylidene]gold complex 11, and three of them were characterised by X-ray single crystal analyses. They were tested for cytotoxicity against a panel of four human cancer cell lines and non-malignant fibroblasts, for tubulin interaction, and for the pathways of their uptake into 518A2 melanoma cells. All complexes showed cytotoxic activity in the micromolar IC50 range with distinct selectivities for certain cell lines. In stark contrast to related metal-free 1-methyl-4,5-diarylimidazoles, the complexes 6 and 11 did not noticeably inhibit the polymerisation of tubulin to give microtubules. The cellular uptake of complexes 6 occurred mainly via the copper transporter (Ctr1) and the organic cation transporters (OCT-1/2). Complex 11 was accumulated preferentially via the organic cation transporters and by Na+/K+-dependent endocytosis. The new gold carbene complexes seem to operate by a mechanism different from that of the parent 1-methylimidazolium ligands.  相似文献   

11.
This study utilised a commercially available monomaleimido-nanogold reagent to directly label cellular thiol groups (SH) of marsupial (tammar wallaby) spermatozoa before and after reduction of disulphides (S-S) with mercaptoethylamine hydrochloride (MEA). The sperm surface, mitochondrial membranes, axoneme and tail fibres were all labelled with gold particles before MEA treatment and the label intensity was increased after S-S reduction. The acrosomal membranes and matrix of spermatozoa contained no detectable SH prior to MEA treatment. However, after moderate MEA treatment (1 mg/ml) gold label was associated with the acrosomal membrane and invaginated acrosomal membrane within the acrosomal matrix. After exposure to 5 and 10 mg/ml MEA, gold particles heavily labelled the acrosomal matrix. Thus, the acrosomal membranes and matrix of tammar wallaby spermatozoa both contain S-S cross-linked structures, and this may contribute to the unusual stability of the marsupial acrosome. Under all treatment conditions the nucleus remained unlabelled. This is consistent with early studies which indicated that cysteine was absent from the nuclear protamines. The study also demonstrated that monomaleimido-nanogold can be used to resolve SH- and S-S-rich cellular structures directly, in addition to its use to label antibodies and Fab fragments for immunochemical localisation.This study was supported by a grant to J.C.R. from the Australian Research Council. Y.S. was the recipient of an Australian International Development Program Fellowship.  相似文献   

12.
A comparative developmental study of flowers was carried out using epi-illumination light microscopy on four genera of Lamiaceae (Nepeta, Rosmarinus, Salvia, andZiziphora), representing all three subtribes of Mentheae. All species examined share unidirectional (adaxial to abaxial) sepal initiation, except Rosmarinus, which has the reverse unidirectional sequence, starting abaxially. Initiated but suppressed bracteoles were detected only in Rosmarinus. In Rosmarinus, Salvia, and Ziziphora, initiation of petals and stamens proceeds unidirectionally from the abaxial side. Floral initiation of Nepeta has bidirectional inception of petals and unidirectional stamen initiation from the adaxial side. Temporal overlap in organ initiation between petal and stamen whorls occurs in all taxa, though this feature is more prominent in Rosmarinus. Significant structural and developmental features that distinguish the four genera include: (1) polysymmetric calyx tube, highly tomentose corolla and deeply four-partitioned ovary in Nepeta; (2) monosymmetric two-lipped calyx and shallowly four-partitioned ovary in Ziziphora; and (3) suppression of adaxial stamens in Salvia and Rosmarinus. Adaxial stamens are absent from Rosmarinus, but reduced stamens remain as staminodia in Salvia. In a phylogenetic context, the late monosymmetry of Nepeta and very early monosymmetry of Rosmarinus could both be regarded as derived conditions compared with the early monosymmetry ofSalvia and Ziziphora.  相似文献   

13.
While the prion protein (PrP) is clearly involved in neuropathology, its physiological roles remain elusive. Here, we demonstrate PrP functions in cell-substrate interaction in Drosophila S2, N2a and HeLa cells. PrP promotes cell spreading and/or filopodia formation when overexpressed, and lamellipodia when downregulated. Moreover, PrP normally accumulates in focal adhesions (FAs), and its downregulation leads to reduced FA numbers, increased FA length, along with Src and focal adhesion kinase (FAK) activation. Furthermore, its overexpression elicits the formation of novel FA-like structures, which require intact reggie/flotillin microdomains. Altogether, PrP modulates process formation and FA dynamics, possibly via signal transduction involving FAK and Src.  相似文献   

14.
Norephedrine, also called phenylpropanolamine (PPA), is a synthetic form of the ephedrine alkaloid. After reports of the occurrence of intracranial hemorrhage and other adverse effects, including several deaths, PPA is no longer sold in USA and Canada. Despite the extensive information about PPA toxicity, reports on its effects on cell membranes are scarce. With the aim to better understand the molecular mechanisms of the interaction of PPA with cell membranes, ranges of concentrations were incubated with intact human erythrocytes, isolated unsealed human erythrocyte membranes (IUM), and molecular models of cell membranes. The latter consisted in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of most plasmatic cell membranes, respectively. The capacity of PPA to perturb the bilayer structures of DMPC and DMPE was assessed by X-ray diffraction, DMPC large unilamellar vesicles (LUV) and IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed by scanning electron microscopy (SEM). This study presents evidence that PPA affects human red cell membranes as follows: (a) in SEM studies on human erythrocytes it was observed that 0.5 mM PPA induced shape changes; (b) in IUM PPA induced a sharp decrease in the fluorescence anisotropy in the lipid bilayer acyl chains in a concentration range lower than 100 μM; (c) X-ray diffraction studies showed that PPA in the 0.1–0.5 mM range induced increasing structural perturbation to DMPC, but no effects on DMPE multibilayers were detected.  相似文献   

15.
This work summarizes the observations on 30 species of microdriles belonging to the families Naididae (Rhyacodrilinae, Pristininae, Naidinae, Phallodrilinae, and Tubificinae), Phreodrilidae, Lumbriculidae, and Enchytraeidae using scanning electron microscopy. The lumbricid Eiseniella tetraedra, a megadrile species common in typical microdrile habitats, was used for comparison. Microdriles display external ciliate sense structures along the entire body; even at the clitellum and in budding and regeneration zones. According to the shape of the cilia, these sense structures can be divided into receptors of blunt cilia, receptors of sharp cilia, and composed receptors. Sense receptors can be morphologically unconspicuous or clearly defined on sensory buds or papillae. All microdriles studied have receptors of blunt cilia. Enchytraeids have characteristic receptors of short cilia. Pristina (Pristininae), Chaetogaster, Ophidonais, and Stylaria (Naidinae) have receptors of long blunt cilia. Composed receptors were found only in some microdriles and E. tetraedra. Receptors of sharp cilia have been found in most microdriles. Enchytraeids might be the only exception, but sharp cilia are probably present in the amphibiotic Cognettia sphagnetorum. Sensory cells with long sharp cilia might play a rheoreceptor role, and their presence in E. tetraedra and C. sphagnetorum would imply the reappearing of an ancient character that was probably lost with the transit from aquatic to terrestrial habitats. Some lumbriculids have ciliated fields. Anatomically, these structures appear as intermediate between the typical isolate sensory structures of microdriles and the sensillae of the hirudineans. The general pattern in microdriles is that uniciliate receptors and multiciliate receptors are separated, which supports the presumed aquatic origin of the clitellates. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The seasonal and spatial patterns in cellular energy allocation of the estuarine mysid Neomysis integer (Leach, 1814) were investigated in the Scheldt estuary over a 2-year period. Using the recently developed cellular energy allocation (CEA) assay, energy reserves (protein, lipid and sugar) and energy consumption (as derived from the cellular respiration rate) were integrated into a general indicator of physiological stress. Total energy reserves were relatively unaffected by sampling season or location, whereas the individual energy reserve fractions of N. integer were differentially influenced by sampling location and season. Seasonal effects were apparent for mysid weight and were related to the population biology, whereas spatial effects on the weight of N. integer may depend on pollution-induced effects on cellular energy allocation in the two most upstream sites (Bath and Doel). These upstream sites coincide with the most polluted part of the sampled area and were characterized by a significant increase in energy consumption, resulting in a significantly lower CEA. Due to the recent amelioration in the oxygen concentration at these sites, it can be expected that N. integer will migrate further upstream, similar to what is observed in other European estuaries. It will, therefore, be important to assess the physiological consequences and potential population effects on mysids from these polluted areas in the Scheldt estuary. This study provides evidence that the CEA assay has potential under field conditions as an in situ biomarker of pollutant effects.  相似文献   

17.
We have developed an immunocytochemistry method for the semiquantitative detection of phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) at the cell plasma membrane. This protocol combines the use of a glutathione S-transferase-tagged pleckstrin homology (PH) domain of the general phosphoinositides-1 receptor (GST-GRP1PH) with fluorescence confocal microscopy and image segmentation using cell mask software analysis. This methodology allows the analysis of PI(3,4,5)P3 subcellular distribution in resting and epidermal growth factor (EGF)-stimulated HEK293T cells and in LIM1215 (wild-type phosphoinositide 3-kinase (PI3K)) and LIM2550 (H1047R mutation in PI3K catalytic domain) colonic carcinoma cells. Formation of PI(3,4,5)P3 was observed 5 min following EGF stimulation and resulted in an increase of the membrane/cytoplasm fluorescence ratio from 1.03 to 1.53 for HEK293T cells and from 2.2 to 3.3 for LIM1215 cells. Resting LIM2550 cells stained with GST-GRP1PH had an elevated membrane/cytoplasm fluorescence ratio of 9.8, suggesting constitutive PI3K activation. The increase in the membrane/cytoplasm fluorescent ratio was inhibited in a concentration-dependent manner by the PI3K inhibitor LY294002. This cellular confocal imaging assay can be used to directly assess the effects of PI3K mutations in cancer cell lines and to determine the potential specificity and effectiveness of PI3K inhibitors in cancer cells.  相似文献   

18.
《Epigenetics》2013,8(11):1226-1235
The adaptive immune system is involved in tumor establishment and aggressiveness. Tumors of the ovaries, an immune-privileged organ, spread via transceolomic routes and rarely to distant organs. This is contrary to tumors of non-immune privileged organs, which often disseminate hematogenously to distant organs. Epigenetics-based immune cell quantification allows direct comparison of the immune status in benign and malignant tissues and in blood. Here, we introduce the “cellular ratio of immune tolerance” (immunoCRIT) as defined by the ratio of regulatory T cells to total T lymphocytes. The immunoCRIT was analyzed on 273 benign tissue samples of colorectal, bronchial, renal and ovarian origin as well as in 808 samples from primary colorectal, bronchial, mammary and ovarian cancers. ImmunoCRIT is strongly increased in all cancerous tissues and gradually augmented strictly dependent on tumor aggressiveness. In peripheral blood of ovarian cancer patients, immunoCRIT incrementally increases from primary diagnosis to disease recurrence, at which distant metastases frequently occur. We postulate that non-pathological immunoCRIT values observed in peripheral blood of immune privileged ovarian tumor patients are sufficient to prevent hematogenous spread at primary diagnosis. Contrarily, non-immune privileged tumors establish high immunoCRIT in an immunological environment equivalent to the bloodstream and thus spread hematogenously to distant organs. In summary, our data suggest that the immunoCRIT is a powerful marker for tumor aggressiveness and disease dissemination.  相似文献   

19.
The present article investigates the interactions of a resorcin[4]arene receptor with planar bilayer lipid membranes (BLMs) that can be used for the electrochemical detection of dopamine and ephedrine. BLMs were composed of egg phosphatidylcholine and 35% (w/w) dipalmitoyl phosphatidic acid in which the receptor was incorporated. These BLMs modified with the resorcin[4]arene receptor can be used as one-shot sensors for the direct electrochemical sensing of these energizing-stimulating substances. The interactions of these compounds with the lipid membranes were found to be electrochemically transduced in the form of a transient current signal with a duration of seconds, which reproducibly appeared within 8 and 20 s after exposure of the membranes to dopamine and ephedrine, respectively. The response time for BLMs without the receptor for dopamine was about 3 min, whereas no signals were obtained for ephedrine in the absence of the receptor. The mechanism of signal generation was investigated by differential scanning calorimetric studies. These studies revealed that the adsorption of the receptor is through the hydrophobic tails of the receptor, whereas hydrophilic groups of the receptor were directed towards the electrolyte solution enhancing the ion transport through the lipid membranes. The magnitude of the transient current signal was related to the concentration of the stimulating agent in bulk solution in the micromolar range. No interferences from ascorbic acid were noticed because of the use of the negatively charged lipids in membranes. The present technique can be used as one-shot sensor for the detection of these pharmaceutical substances and future research is targeted to the determination of these chemicals in human biofluids such as urine of athletes.  相似文献   

20.
Abstract Anacystis nidulans ( Synechococcus PCC6301) and Synechocystis PCC6803 were grown photoautotrophically in a turbido-statically operated chemostat at a constant cell concentration of 2.0±0.3 μ l packed cell mass per ml in the presence of elevated NaCl concentrations up to 0.5 M ('salt stress'). The impact of salt stress on ccytochrome- c oxidase (EC 1.9.3.1) was` studied on isolated and purified membranes, and by immuno-gold labeling of thin-sectioned whole cells ATPase activities of membranes isolated and separated from cells under varying salt stress were also measured. Anacystis and Synechocystis adapted to the presence of 0.5 M NaCl in the medium with lag phases of 2 days and 2 hours, respectively. Both isolated plasma and thylakoid membranes from salt adapted Synechocystis displayed 5- to 8-times enhanced cytcytochrome- c oxidase activities while in Anacystis the effect was restricted to the plasma membrane. In either case less than proportionately increased counts of immuno-gold labeled cytochrome- c oxidase molecules in the respective membranes were obtained, the additional increment being attributed to the increased lipid content of the membranes from salt-adapted cells, leading to increased specific activities of the enzyme compared to control cells. ATPase activity of plasma membranes from Synechocystis was far more increased than of those from Anacystis while in thylakoid membranes the differentiating effect was less pronounced. Our results are discussed in terms of distinct strategies for salt adaptation in the two cyanobacterial species whereby in Anacystis the plasma membrane-bound respiratory chain and in Synechocystis the plasma membrane-bound ATPase(s) play the major role for plasma membrane energization which, in turn, is necessary for the active exclusion of sodium from the cell interior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号