首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new application of the Giemsa stain to demonstrate endocrine cells in deplasticized sections of Epon embedded material is described. Its application to the pancreas of Rana temporaria is illustrated. The technique does not require postfixation with OSO4 and is easily performed in 30 min. It allows the easy identification of three types of endocrine cells (A, B, and D). A cells, preferentially located at the islet periphery, stain purple-blue. B cells, which occupy the interior of the islet, display a lilac color. D cells give a strong purple color, they are located both in the periphery of the islets and scattered among acinar cells. Positive identification of the cell types was made by immunocytochemistry and electron microscopy.  相似文献   

2.
Differentiation of the pancreatic islets in grass snake Natrix natrix embryos, was analyzed using light, transmission electron microscopy, and immuno-gold labeling. The study focuses on the origin of islets, mode of islet formation, and cell arrangement within islets. Two waves of pancreatic islet formation in grass snake embryos were described. The first wave begins just after egg laying when precursors of endocrine cells located within large cell agglomerates in the dorsal pancreatic bud differentiate. The large cell agglomerates were divided by mesenchymal cells thus forming the first islets. This mode of islet formation is described as fission. During the second wave of pancreatic islet formation which is related to the formation of the duct mantle, we observed four phases of islet formation: (a) differentiation of individual endocrine cells from the progenitor layer of duct walls (budding) and their incomplete delamination; (b) formation of two types of small groups of endocrine cells (A/D and B) in the wall of pancreatic ducts; (c) joining groups of cells emerging from neighboring ducts (fusion) and rearrangement of cells within islets; (d) differentiated pancreatic islets with characteristic arrangement of endocrine cells. Mature pancreatic islets of the grass snake contained mainly A endocrine cells. Single B and D or PP–cells were present at the periphery of the islets. This arrangement of endocrine cells within pancreatic islets of the grass snake differs from that reported from most others vertebrate species. Endocrine cells in the pancreas of grass snake embryos were also present in the walls of intralobular and intercalated ducts. At hatching, some endocrine cells were in contact with the lumen of the pancreatic ducts.  相似文献   

3.
The endocrine pancreas of Triturus cristatus carnifex was studied with the aid of immunocytochemical methods, showing cells immunoreactive to anti-insulin serum (B cells), a small population of cells immunoreactive to anti-glucagon serum only (A cells), rare cells positive to anti-PP serum only (PP or F cells), and a larger population of cells immunoreactive both to anti-glucagon and to anti-PP sera. B cells lied in the core of the islet, while the A/PP cells were located at the periphery, forming digitations extending into the exocrine parenchyma. D cells were present in small number in the islet while they were more numerous scattered in the exocrine parenchyma. A/PP cells as well as D cells showed one or two long cytoplasmic extensions often in contact with blood vessels.  相似文献   

4.
Summary Thioredoxin and thioredoxin reductase (NADPH-oxidized thioredoxin oxidoreductase, E.C. 1.6.4.5) have been proposed to be involved in several thioldependent reduction-oxidation reactions in cells. Both proteins have been immunohistochemically demonstrated in the periphery of the cytoplasm and in cytoplasmic granules of acinar and islet cells in mouse pancreas. In animals fed ad libitum, the staining for thioredoxin was more intense in the exocrine acinar cells than in the islet cells, whereas that for thioredoxin reductase was more intense in the endocrine than in the exocrine pancreas. In the islets of fed mice all endocrine cell types showed about the same staining intensity for thioredoxin, while thioredoxin reductase was greatly enriched in the somatostatin-containing D cells. Starvation overnight caused an increased staining for both proteins in the acinar cells as well as in the islets. Under conditions of starvation, thioredoxin reductase, in contrast to thioredoxin, appeared to increase preferentially in the islet B cells, as compared with the D cells. Cysteamine treatment reduced the staining for somatostatin and for thioredoxin reductase in the D cells without any obvious effect on the other pancreatic cells. The results are compatible with a role for thioredoxin and thioredoxin reductase in secretion.  相似文献   

5.
Before the middle of the previous century, cell types of the pancreatic islets of Langerhans were identified primarily on the basis of their color reactions with histological dyes. At that time, the chemical basis for the staining properties of islet cells in relation to the identity, chemistry and structure of their hormones was not fully understood. Nevertheless, the definitive islet cell types that secrete glucagon, insulin, and somatostatin (A, B, and D cells, respectively) could reliably be differentiated from each other with staining protocols that involved variations of one or more tinctorial techniques, such as the Mallory-Heidenhain azan trichrome, chromium hematoxylin and phloxine, aldehyde fuchsin, and silver impregnation methods, which were popularly used until supplanted by immunohistochemical techniques. Before antibody-based staining methods, the most bona fide histochemical techniques for the identification of islet B cells were based on the detection of sulfhydryl and disulfide groups of insulin. The application of the classical islet tinctorial staining methods for pathophysiological studies and physiological experiments was fundamental to our understanding of islet architecture and the physiological roles of A and B cells in glucose regulation and diabetes.  相似文献   

6.
The gastroenteropancreatic (GEP) endocrine system of bowfin (Amia calva) was described using light and electron microscopy and immunological methods. The islet organ (endocrine pancreas) consists of diffusely scattered, mostly small islets and isolated patches of cells among and within the exocrine acini. The islets are composed of abundant, centrally located B cells immunoreactive to bovine and lamprey insulin antisera and D cells showing a widespread distribution and specificity to somatostatin antibodies. A and F cells are present at the very periphery of the islets and are immunoreactive with antisera against glucagon (and glucagon-like peptide) and several peptides of the pancreatic polypeptide (PP)-family, respectively. The peptides of the two families usually collocates within the same peripheral islet cells and are the most common immunoreactive peptides present in the extra-islet tissue. Immunocytochemistry and fine structural observations characterised the granule morphology for B and D cells and identified two cell types with granules immunoreactive to glucagon antisera. These two putative A cells had similar granules, which were distinct from either B or D cells, but one of the cells had rod-shaped cytoplasmic inclusions within cisternae of what appeared to be rough endoplasmic reticulum. The inclusions were not immunoreactive to either insulin or glucagon antisera. Only small numbers of cells in the stomach and intestine immunoreacted to antisera against somatostatin, glucagon, and PP-family peptides. The paucity of these cells was reflected in the low concentrations of these peptides in intestinal extracts. The GEP system of bowfin is not unlike that of other actinopterygian fishes, but there are some marked differences that may reflect the antiquity of this system and/or may be a consequence of the ontogeny of this system in this species.  相似文献   

7.
Maglio M  Putti R 《Tissue & cell》1998,30(6):672-683
The endocrine pancreas of the teleost fish Blennius gattoruggine was studied by immunochemistry using both light and electron microscopy. Generally, one large Brockmann body, along with intermediate and small islets, was found. Cells immunoreactive (IR) to anti-insulin (B), anti-glucagon (A) anti-somatostatin (D) anti-pancreatic polypeptide and anti-PYY sera were detected with B cells located at the center of the islet and the other cell types forming a peripheral mantle. The B-cell cytoplasm showed rows of microtubules close to the secretory granules and perpendicular to the plasmalemma. The ultrathin section images revealed exocytotic and endocytotic features, and the presence of intercellular gap junctions between the plasmalemma of contiguous cells, suggesting intercellular routes of communication, e.g. via autocrine and/or paracrine mechanism. These features were observed in all of the cell types, and were abundant in D cells. D cells were particularly numerous in the islets and were disposed close to A and B cells, as observed in other teleost species. The most peripheral B cells, in closer contact with D cells than the central ones, appeared strongly immunolabeled, perhaps owing to the inhibitory action of somatostatin. Some D cells exhibited a long protrusion directed towards the center of the islet. In view of their cytological characteristics and their secretion, D cells might have an important role in the modulation of A and B-cell secretion in an endocrine and/or paracrine fashion.  相似文献   

8.
The endocrine pancreas of the desert lizard (Chalcides ocellatus) was investigated histologically and immunocytochemically. The endocrine tissue was concentrated in the dorsal lobe, where it constituted about 7% of the total volume. In the ventral lobe the endocrine tissue formed approximately 1% of the total volume. Four endocrine cell types were observed in the pancreas of this species, namely insulin-, glucagon-, somatostatin- and pancreatic polypeptide (PP)-immunoreactive cells. The volume occupied by these cells was 1, 1, 0.6 and 0.3% of the total volume of the pancreas, respectively. Insulin-immunoreactive cells were located in the islet centre and comprised 3% of dorsal and 0.2% of the ventral lobe volume. Glucagon cells occurred at the islet periphery and amounted to 3 and 0.2% of the volume of the dorsal and ventral lobes, respectively. Somatostatin-immunoreactive cells were located at the islet periphery as well as in between the exocrine parenchyma. They constituted 1 and 0.2% of the volume of the dorsal and ventral lobes, respectively. PP-immunoreactive cells occurred mainly among the exocrine parenchyma as solitary cells. They formed only 0.03% of the volume of the dorsal lobe. The corresponding figure in the ventral lobe was 0.6%.  相似文献   

9.
Summary The endocrine pancreas of the desert lizard (Chalcides ocellatus) was investigated histologically and immunocytochemically. The endocrine tissue was concentrated in the dorsal lobe, where it constituted about 7% of the total volume. In the ventral lobe the endocrine tissue formed approximately 1% of the total volume. Four endocrine cell types were observed in the pancreas of this species, namely insulin-, glucagon-, somatostain- and pancreatic polypeptide (PP)-immunoreactive cells. The volume occupied by these cells was 1, 1, 0.6 and 0.3% of the total volume of the pancreas, respectively. Insulin-immunoreactive cells were located in the islet centre and comprised 3% of dorsal and 0.2% of the ventral lobe volume. Glucagon cells occurred at the islet periphery and amounted to 3 and 0.2% of the volume of the dorsal and ventral lobes, respectively. Somatostatin-immunoreactive cells were located at the islet periphery as well as in between the exocrine parenchyma. They constituted 1 and 0.2% of the volume of the dorsal and ventral lobes, respectively. PP-immunoreactive cells occurred mainly among the exocrine parenchyma as solitary cells. They formed only 0.03% of the volume of the dorsal lobe. The corresponding figure in the ventral lobe was 0.6%.  相似文献   

10.
Summary In the pancreas, calcitonin gene-related peptide (CGRP) immunoreactivity has been described in nerve fibers and in distinct types of islet cells. This unique, apparently species-specific cell-type expression prompted the present investigation to clarify further the pattern of CGRP immunoreactivity in different mammalian species (i.e., different strains of rats, mice, guinea pigs, rabbits, cats, dogs, pigs, and humans) commonly used for functional and anatomical studies of the pancreas by means of immunohistochemistry using three different CGRP antibodies. In each species, CGRP-immunoreactive neurites innervate the exocrine and endocrine compartments, the vasculature, and the intrapancreatic ganglia, where they form dense networks encircling unstained cell bodies. The only exception is the pig pancreas, where the islets appear to be devoid of immunoreactive fibers. The overall density of immunoreactive pancreatic axons in different species is as follows: rat, mouse, and rabbit>guinea pigpig and cat> >dog and human. CGRP-immunoreactive endocrine cells appear to be restricted to the rat pancreas, where they form a subpopulation of somatostatin-containing D cells. In contrast, in mouse, guinea pig, cat, dog, and human pancreas, a homogeneous staining of the core of the islets, where insulin-producing B cells are located, was visualized in sections incubated with the rabbit CGRP antiserum at 4°C, but not at 37°C (an incubation temperature that does not affect the islet cell staining in the rat nor the fiber labeling in any species). Furthermore, the staining of islet B cells was not reproductible with all the CGRP antibodies used, all of which comparably stain nerve fibers in each species, and islet D cells in the rat. Immunoreactive islet cells were not visualized in pig and rabbit pancreas. These results are consistent with the hypothesis that the expression of CGRP in nerve fibers is a common feature of mammalian pancreas, whereas its expression in endocrine cells appears to be restricted to the D cells of the rat pancreas.  相似文献   

11.
The endocrine pancreas of the Australian brush-tailed possum (Trichosurus vulpecula) was investigated by means of immunocytochemistry using the avidin-biotin-peroxidase technique. This was a light microscopic study using this established technique. Serial paraffin sections were stained individually with primary antibodies for glucagon, insulin, somatostatin, and pancreatic polypeptide (PP), showing the same islet. Cells immunoreactive to glucagon, insulin, somatostatin and PP were found in endocrine islets. PP cells appear to be scattered amidst the exocrine portion also. Insulin immunoreactive cells were located in the central region of islet, glucagon in the periphery, somatostatin in periphery and had elongated processes. PP cells were more sparse and located both in the periphery of islet and amidst the exocrine tissue. These results can then be related to a similar study in the same marsupial, but using the immunofluorescence technique and to studies in other marsupials such as grey kangaroo (Macropus fuliginosus) fat-tailed dunnart (Sminthopsis crasicaudata) and the American opossum (Didelphis virginiana). These investigations are part of a study in Australian mammals.  相似文献   

12.
The endocrine pancreas from four hypergastrinemic patients with recurrent peptic ulceration has been studied by light and electron microscopy. Greatly increased numbers of ducts and centroacinar cells have been observed associated with a striking increase in the number of islets and endocrine cells scattered in the acinar tissue (nesidioblastosis). The islet cells scattered throughout the exocrine parenchyma are of all the known islet cell types, with a prevalence of B and especially A cells. Many islets, probably formed de novo, are of a considerable size, have irregular contours and are in close apposition to centroacinar cells and ducts. The degree of nesidioblastosis and islet hyperplasia does not seem to be related to the plasma gastrin levels. Cytological changes have also been found in the islet cells of the hypergastrinemic patients compared with controls. These changes mainly affect the B cells and consist of a striking decrease in the number of mature secretory granules associated with a fairly extended ergastoplasm and Golgi apparatus and with a relevant increase in the number of immature granules. In two of the four patients examined, who had more severe hypergastrinemia, cytological signs of enhanced secretion are also recognized in A cells. The features indicating hypersecretion of B and A cells seem to be related to the plasma gastrin levels. The above findings indicate that chronic endogenous hypergastrinemia promotes proliferation and differentiation of islet cells and stimulates the secretory function of B cells and, to a lesser extent, of A cells, thus providing evidence for a trophic and secretagogue action of gastrin on the endocrine pancreas.  相似文献   

13.
Glucagon, insulin, somatostatin, and pancreatic polypeptide have been localized in the anolian pancreas using peroxidase-antiperoxidase immunocytochemistry. The most abundant endocrine cell type contains glucagon. Insulin-containing cells are the next most numerous. Somatostatin-immunoreactive cells tend to be localized at the periphery of the islet cords. Pancreatic polypeptide-containing cells are a minor endocrine component scattered throughout the exocrine pancreas and occasionally within the islet areas. No staining was observed after application of antigastrin serum.  相似文献   

14.
15.
The presence and abundance of calbindin in rat pancreatic islet cells was assessed by immunohistochemistry of either whole islets or purified B and non-B islet cells, as well as by Western blotting of extracts derived from whole islets and purified B and non-B islet cells. Immunohistochemistry of pancreatic sections indicated a higher calbindin content in non-B cells, located at the periphery of the islets, than in the centrally located insulin-producing B cells. Comparable results were obtained in purified islet cells. Likewise, scanning densitometry of the Western blots indicated that, relative to cell volume, the single calbindin band (Mr 27 kDa) was 5-7 times higher in non-B than in B cells. In the splenic lobe of chick pancreas, however, the opposite situation prevailed. Thus, insulin-producing cells clustered in small roundish islets were more intensely labelled after exposure to anti-calbindin serum than non-B islet cells located in large and irregularly shaped islets. Nevertheless, even in the chick pancreas, non-B islet cells contained an appreciable amount of calbindin.  相似文献   

16.
Summary Four immunoreactive endocrine cell types can be distinguished in the pancreatic islets of B. conchonius: insulin-producing B cells, somatostatin-producing A1 (= D) cells, glucagon-producing A2 cells and pancreatic poly-peptide-producing PP cells. The principal islet of this species contains only a few PP cells, while many PP cells are present in the smaller islets. Except for the B cell all pancreatic endocrine cell types are also present in the pancreatic duct.At least six enteroendocrine cell types are present in the gut of B. conchonius: 1. a cell type (I) with small secretory granules, present throughout the intestine, and possibly involved in the regulation of gut motility; 2. a C-terminal gastrin immunoreactive cell, probably producing a caerulein-like peptide; these cells are located at the upper parts of the folds, especially in the proximal part of the intestinal bulb; 3. a met-enkephalin-immunoreactive cell, present throughout the first segment; 4. a glucagon-immunoreactive cell, which is rare in the first segment; 5. a PP-immunoreactive cell, mainly present in the first half of the first segment; 6. an immunoreactive cell, which cannot at present be specified, located in the intestinal bulb. The latter four cell types are mostly located in the basal parts of the folds, although some PP-immunoreactive cells can also be found in the upper parts.Most if not all enteroendocrine cells are of the open type. The possible functions of all enteroendocrine cell types are discussed.Abbreviations BPP bovine pancreatic polypeptide - CCK cholecystokinin - GEP gastro-entero-pancreatic - GIP gastric inhibitory peptide or glucose-dependent insulin releasing peptide - PPP pig pancreatic polypeptide - VIP vasoactive intestinal polypeptide  相似文献   

17.
Pancreatic islet cells provide the major source of counteractive endocrine hormones required for maintaining glucose homeostasis; severe health problems result when these cell types are insufficiently active or reduced in number. Therefore, the process of islet endocrine cell lineage allocation is critical to ensure there is a correct balance of islet cell types. There are four endocrine cell types within the adult islet, including the glucagon-producing alpha cells, insulin-producing beta cells, somatostatin-producing delta cells and pancreatic polypeptide-producing PP cells. A fifth islet cell type, the ghrelin-producing epsilon cells, is primarily found during gestational development. Although hormone expression is generally assumed to mark the final entry to a determined cell state, we demonstrate in this study that ghrelin-expressing epsilon cells within the mouse pancreas do not represent a terminally differentiated endocrine population. Ghrelin cells give rise to significant numbers of alpha and PP cells and rare beta cells in the adult islet. Furthermore, pancreatic ghrelin-producing cells are maintained in pancreata lacking the essential endocrine lineage regulator Neurogenin3, and retain the ability to contribute to cells within the pancreatic ductal and exocrine lineages. These results demonstrate that the islet ghrelin-expressing epsilon cells represent a multi-potent progenitor cell population that delineates a major subgrouping of the islet endocrine cell populations. These studies also provide evidence that many of hormone-producing cells within the adult islet represent heterogeneous populations based on their ontogeny, which could have broader implications on the regulation of islet cell ratios and their ability to effectively respond to fluctuations in the metabolic environment during development.  相似文献   

18.
We used transmission electron microscopy to study the pancreatic main endocrine cell types in the embryos of the grass snake Natrix natrix L. with focus on the morphology of their secretory granules. The embryonic endocrine part of the pancreas in the grass snake contains four main types of cells (A, B, D, and PP), which is similar to other vertebrates. The B granules contained a moderately electron‐dense crystalline‐like core that was polygonal in shape and an electron‐dense outer zone. The A granules had a spherical electron‐dense eccentrically located core and a moderately electron‐dense outer zone. The D granules were filled with a moderately electron‐dense non‐homogeneous content. The PP granules had a spherical electron‐dense core with an electron translucent outer zone. Within the main types of granules (A, B, D, PP), different morphological subtypes were recognized that indicated their maturity, which may be related to the different content of these granules during the process of maturation. The sequence of pancreatic endocrine cell differentiation in grass snake embryos differs from that in many vertebrates. In the grass snake embryos, the B and D cells differentiated earlier than A and PP cells. The different sequence of endocrine cell differentiation in snakes and other vertebrates has been related to phylogenetic position and nutrition during early developmental stages.  相似文献   

19.
Three types of secretory cells -- B, A and D were found in the pancreatic islets of the frog, turtle, crucian, rat and cat by the method of electron microscopy. The fine structure of secretory granules is a basis for identification of the endocrine cell types. The structure of the insuline granules is changed more markedly in the evolution process while the granules of A and D cells have a similar structure in the vertebrates under study.  相似文献   

20.
Summary The histological picuture of the Langerhans' islets in hamster pancreas is quite similar to that in white rat pancreas, i.e. the B-cells are located in the middle of the islet, while the A-cells in its periphery. Very often the argyrophil cells (D-cells) are located between the A- and B-cells forming a peculiar “barrier”. The histochemical studies reveal differences between the endocrine tissue and exocrine parenchyma. In general, the islet cells are richer in enzymes, as compared with the acini. The histochemical characteristic of hamster pancreas is closest to that of white rat pancreas. Like in rat, alkaline phosphomonoesterase reaction is very strong in the A-cells, while G-6-P reaction is negative. But, concerning zinc localization, there are differences between hamster and rat. Zinc reaction is very strong in the peripheral A-cells in white rat pancreas, while in hamster this reaction is much stronger in the B-cells (the reaction is negative in the A-cells). The D-cells can not be differentiated from the other endocrine pancreatic cells by means of hystochemical studies. But these studies permit certain conclusion on the possible role of the enzymes and substances investigated in cytophysiology of the islet cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号