首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A conservative estimate of the species tree for the woodpecker genus Picoides based on two mitochondrial protein-coding genes is tested using sequences of an independently evolving nuclear intron, beta-fibrinogen intron 7. The mitochondrial gene-based topology and the intron-based topology are concordant, and a partition-homogeneity statistical test did not detect phylogenetic heterogeneity. The intron evolves more slowly than the mitochondrial sequences and tends not to resolve relationships among recently evolved species. However, the intron is superior over mitochondrial genes in resolving older bifurcations in the phylogeny. The two data sets were combined resulting in a robust estimate of the Picoides species tree in which most every node is statistically supported by bootstrap proportions. The Picoides species tree clearly shows that many morphological and behavioral characters used to lump species into this single genus have evolved by convergent evolution. Picoides is considered the largest genus of woodpeckers, but the molecular-based species tree suggests that Picoides is actually a conglomerate of several smaller groups.  相似文献   

2.
Species belonging to the obscura group of the genus Drosophila have long held a central position in evolutionary studies, especially in experimental population genetics. Despite the considerable amount of accumulated knowledge, many of the phylogenetic relationships of the species in the group remain unclear. Here we present DNA sequence data for the mitochondrial gene cytochrome oxidase I (COI) for 13 species native to both the Old and New Worlds. We combine these data with seven other mitochondrial gene sequences from previous studies, for a total of over 3 kb per species. Strongly supported conclusions include: (1) the two North American subgroups, pseudoobscura and affinis, are each monophyletic; and (2) among Eurasian species two unambiguous clades are identified, one containing D. tristis, D. ambigua, and D. obscura and the other containing D. guanche, D. subobscura, and D. madeirensis. Constructing firm hypotheses connecting these four major clades is problematic with all datasets. Major ambiguities are the number of invasions giving rise to the North American obscura species and the relationships among the Eurasian species. The inadequacy of the mtDNA data to resolve these ambiguities does not reside in lack of changes; the transversions-only parsimony tree has 283 informative characters. Rather, the problems are likely intrinsic to the history of the group: while radiating in temperate Eurasia, North America was colonized once or twice, followed by one or two radiations in the New World.  相似文献   

3.
The woodcreepers is a highly specialized lineage within the New World suboscine radiation. Most systematic studies of higher level relationships of this group rely on morphological characters, and few studies utilizing molecular data exist. In this paper, we present a molecular phylogeny of the major lineages of woodcreepers (Aves: Dendrocolaptinae), based on nucleotide sequence data from a nuclear non-coding gene region (myoglobin intron II) and a protein-coding mitochondrial gene (cytochrome b ). A good topological agreement between the individual gene trees suggests that the resulting phylogeny reflects the true evolutionary history of woodcreepers well. However, the DNA-based phylogeny conflicts with the results of a parsimony analysis of morphological characters. The topological differences mainly concern the basal branches of the trees. The morphological data places the genus Drymornis in a basal position (mainly supported by characters in the hindlimb), while our data suggests it to be derived among woodcreepers. Unlike most other woodcreepers, Drymornis is ground-adapted, as are the ovenbirds. The observed morphological similarities between Drymornis and the ovenbird outgroup may thus be explained with convergence or with reversal to an ancestral state. This observation raises the question of the use of characters associated with locomotion and feeding in phylogenetic reconstruction based on parsimony.  相似文献   

4.
The nasute termite genus Nasutitermes is widely distributed over all tropical regions. The phylogenetic relationships among 17 Nasutitermes species from the Pacific tropics were inferred from sequences of mitochondrial cytochrome oxidase II and 16S ribosomal RNA genes. Several methods of analysis yielded phylogenetic trees showing almost the same topology and in good agreement with reconstructions based on morphological or behavioral characters. Neotropical and Australian species came out as separate, apical clades. Asian species split between an apical branch, appearing as sister group to the neotropical clade, and basal taxa. New Guinean species were spread among several clades, suggesting a derivation from multiple origins. A well-supported clade includes the neotropical, Australian, and New Guinean species, with the southeast Asian N. takasagoensis and N. matangensis. It excludes the Asian species N. regularis, N. parvonasutus, and N. longinasus, which might deserve to be removed from Nasutitermes, as well as the long-legged Asian genera Hospitalitermes and Longipeditermes. A Gondwanan origin is proposed for the former clade, although an Old World origin of Nasutitermes followed by dispersal to Australia and South America cannot be excluded.  相似文献   

5.
The family Percidae is among the most speciose families of northern hemisphere fishes with > 178 178 North American species and 14 Eurasian species. Previous phylogenetic studies have been hampered by a lack of informative characters, inadequate taxonomic sampling, and conflicting data. We estimated phylogenetic relationships among 54 percid species (9 of 10 genera and all but one subgenus of darters) and four outgroup taxa using mitochondrial DNA data from the 12S rRNA and cytochrome b genes. Four primary evolutionary lineages were consistently recovered: Etheostomatinae (Ammocrypta, Crystallaria, Etheostoma, and Percina), Perca, Luciopercinae (Romanichthys, Sander, and Zingel), and Gymnocephalus. Except Etheostoma and Zingel, all polytypic genera were monophyletic. The Etheostoma subgenus Nothonotus failed to resolve with other members of the genus resulting in a paraphyletic Etheostoma. The subfamily Percinae (Gymnocephalus and Perca) was not recovered in phylogenetic analyses with Gymnocephalus sister to Luciopercinae. Etheostomatinae and Romanichthyini were never resolved as sister groups supporting convergent evolution as the cause of small, benthic, stream-inhabiting percids in North American and Eurasian waters.  相似文献   

6.
Phylogenetic relationships among the 12 recognized fish species in the New World genus Centropomus (Pisces, Centropomidae) were analyzed using allozyme electrophoresis and 618 bp of the mitochondrial DNA 16S ribosomal RNA (rRNA) gene. Molecular phylogenetic trees were generally consistent with previously published partial hypotheses based on morphological evidence. However, previously undefined sister group relationships between major species groups were resolved using molecular data, and phylogenetic hypotheses for Centropomus based on 16S rRNA sequences were better supported than were allozyme-based hypotheses. The high level of congruence among the trees inferred from the nuclear and mitochondrial characters provided a firm phylogenetic basis for analysis of ecological diversification and molecular evolution in the genus. Compared to basal Centropomus species, members of the most nested species group were significantly larger in body size and occupied a marine niche only peripherally utilized by their congeners. We also observed substitution rate heterogeneity among 16S rRNA lineages; in contrast to expectations based on "metabolic rate" and "generation interval" models, relative substitution rates were faster than expected for the group of large-bodied snooks. Using the Pliocene rise of the Central American isthmian marine barrier to calibrate rates of 16S ribosomal gene evolution in Centropomus, we found that the rates for the genus were similar to those reported for higher vertebrates. Analysis of the three sets of transisthmian geminate taxa in Centropomus indicated that two of the pairs were probably formed during the Pliocene rise of the isthmus while the third pair diverged several million years earlier.  相似文献   

7.
Small-eared shrews of the New World genus Cryptotis (Eulipotyphla, Soricidae) comprise at least 42 species that traditionally have been partitioned among four or more species groups based on morphological characters. The Cryptotis mexicana species group is of particular interest, because its member species inhibit a subtly graded series of forelimb adaptations that appear to correspond to locomotory behaviors that range from more ambulatory to more fossorial. Unfortunately, the evolutionary relationships both among species in the C. mexicana group and among the species groups remain unclear. To better understand the phylogeny of this group of shrews, we sequenced two mitochondrial and two nuclear genes. To help interpret the pattern and direction of morphological changes, we also generated a matrix of morphological characters focused on the evolutionarily plastic humerus. We found significant discordant between the resulting molecular and morphological trees, suggesting considerable convergence in the evolution of the humerus. Our results indicate that adaptations for increased burrowing ability evolved repeatedly within the genus Cryptotis.  相似文献   

8.
The phylogeny of the avian genus Emberiza and the monotypic genera Latoucheornis, Melophus and Miliaria (collectively the Old World Emberizini), as well as representatives for the New World Emberizini, the circumpolar genera Calcarius and Plectrophenax and the four other generally recognized tribes in the subfamily Emberizinae was estimated based on the mitochondrial cytochrome b gene and introns 6-7 of the nuclear ornithine decarboxylase (ODC) gene. Our results support monophyly of the Old World Emberizini, but do not corroborate a sister relationship to the New World Emberizini. Calcarius and Plectrophenax form a clade separated from the other Emberizini. This agrees with previous studies, and we recommend the use of the name Calcariini. Latoucheornis, Melophus and Miliaria are nested within Emberiza, and we therefore propose they be synonymized with Emberiza. Emberiza is divided into four main clades, whose relative positions are uncertain, although a sister relation between a clade with six African species and one comprising the rest of the species (30, all Palearctic) is most likely. Most clades agree with traditional, morphology-based, classifications. However, four sister relationships within Emberiza, three of which involve the previously recognized Latoucheornis, Melophus and Miliaria, are unpredicted, and reveal cases of strong morphological divergence. In contrast, the plumage similarity between adult male Emberiza (formerly Latoucheornis) siemsseni and the nominate subspecies of the New World Junco hyemalis is shown to be the result of parallel evolution. A further case of parallel plumage evolution, between African and Eurasian taxa, is pointed out. Two cases of discordance between the mitochondrial and nuclear data with respect to branch lengths and genetic divergences are considered to be the result of introgressive hybridization.  相似文献   

9.
Shrews of the genus Sorex are characterized by a Holarctic distribution, and relationships among extant taxa have never been fully resolved. Phylogenies have been proposed based on morphological, karyological, and biochemical comparisons, but these analyses often produced controversial and contradictory results. Phylogenetic analyses of partial mitochondrial cytochrome b gene sequences (1011 bp) were used to examine the relationships among 27 Sorex species. The molecular data suggest that Sorex comprises two major monophyletic lineages, one restricted mostly to the New World and one with a primarily Palearctic distribution. Furthermore, several sister-species relationships are revealed by the analysis. Based on the split between the Soricinae and Crocidurinae subfamilies, we used a 95% confidence interval for both the calibration of a molecular clock and the subsequent calculation of major diversification events within the genus Sorex. Our analysis does not support an unambiguous acceleration of the molecular clock in shrews, the estimated rate being similar to other estimates of mammalian mitochondrial clocks. In addition, the data presented here indicate that estimates from the fossil record greatly underestimate divergence dates among Sorex taxa.  相似文献   

10.
11.
Lutzomyia spp. are New World phlebotomine sand flies, many of which are involved in the transmission of human diseases, such as leishmaniases and bartonellosis. The systematic classification of the approximately 400 species in the genus has been based on morphological characters, but the relationships within the genus are still very much in question. We have inferred phylogenies of 32 species of phlebotomine sand flies belonging to seven sub-genera and two species groups, by using fragments of the mitochondrial small subunit (12SrRNA) and of the nuclear large subunit (28SrRNA) ribosomal gene sequences. The subgenus Helcocyrtomyia and the Verrucarum species group, prominent representatives of the Peruvian sand fly fauna, were represented by 11 and 7 species, respectively. Although based on a limited number of taxa, the resulting phylogenies, based on 837 characters, provide an initial phylogenetic backbone for the progressive reconstruction of infrageneric relationships within Lutzomyia.  相似文献   

12.
Lycium comprises approximately 70 species and is disjunctly distributed in temperate to subtropical regions in South America, North America, southern Africa, Eurasia, and Australia. Among them, only Lycium sandwicense A. Gray sporadically occurs widely on oceanic islands in the Pacific Ocean. To investigate phylogenetic and biogeographic relationships of the genus with emphasis on L. sandwicense, the coding region of matK, the two intergenic spacers trnT (UGU)-trnL (UAA) and trnL (UAA)-trnF (GAA), and the trnL (UAA) intron of chloroplast DNA (cpDNA) were sequenced. A strict consensus tree resulting from the phylogenetic analysis indicates the following: (1) New World species comprise a potentially paraphyletic assemblage; (2) southern African, Australian, and Eurasian species together are monophyletic; (3) southern African species are a paraphyletic assemblage; and (4) L. sandwicense is in a clade with certain New World species. The estimated biogeographic events based on the cpDNA analysis indicate that (1) Lycium originated in the New World, (2) all southern African, Australian, and Eurasian species have a common ancestor from the New World, (3) Australian and Eurasian species originated once from a southern African progenitor, and (4) L. sandwicense differentiated from the New World species.  相似文献   

13.
Four protein-encoding mitochondrial genes (cytochrome b , NADH-dehydrogenase subunits 1, 2 and 4) and one nuclear (c-mos) gene were sequenced to infer phylogenetic relationships among Old and New World representatives of racers and whipsnakes, Coluber (sensu lato). New World Coluber ( Coluber sensu stricto, including Masticophis ) and Salvadora proved to have affinities with the Old World non-racer colubrine genus Ptyas (and possibly Elaphe s.l. and Coronella ), whereas Old World ' Coluber ' form several basally related clades; these are (1) Hemorrhois -( Spalerosophis-Platyceps ); (2) Hierophis , with Eirenis nested within this paraphyletic genus and (3) ' Coluber ' dorri as the sister taxon to Macroprotodon cucullatus . The position of ' Coluber ' zebrinus along with Hemerophis socotrae located at the base of the Old World racer radiation forming the possible sister group to all remaining Palearctic racers and whipsnakes remains less well supported. Nevertheless, inter- and subgeneric relationships among many of the Old World racer groups have been resolved.  相似文献   

14.
The phylogenetic relationships among extant species of Crocodylus (Crocodylia) have been inconsistently resolved by previous systematic studies. Here we used nearly complete mitochondrial (mt) genomes (~16,200 base pairs) for all described Crocodylus species, eight of which are new to this study, to derive a generally well-supported phylogenetic hypothesis for the genus. Model-based analyses support monophyly of all Asian+Australian species and paraphyly of Crocodylus niloticus (Nile crocodile) with a monophyletic New World clade nested within this species. Wild-caught Nile crocodiles from eastern populations group robustly with the four New World species to the exclusion of Nile crocodiles from western populations, a result that is also favored by parsimony analyses and by various subpartitions of the overall mt dataset. The fossil record of Crocodylus extends back only to the Late Miocene, while the earliest fossils assigned to C. niloticus and to New World Crocodylus are Pliocene. Therefore, in combination with paleontological evidence, mt DNA trees imply a relatively recent migration of Crocodylus from Africa to the Americas, a voyage that would have covered hundreds of miles at sea.  相似文献   

15.
Phylogenetic relationships were studied based on DNA sequences obtained from all recognized genera of the family Corvidae sensu stricto . The aligned data set consists 2589 bp obtained from one mitochondrial and two nuclear genes. Maximum parsimony, maximum-likelihood, and Bayesian inference analyses were used to estimate phylogenetic relationships. The analyses were done for each gene separately, as well as for all genes combined. An analysis of a taxonomically expanded data set of cytochrome b sequences was performed in order to infer the phylogenetic positions of six genera for which nuclear genes could not be obtained. Monophyly of the Corvidae is supported by all analyses, as well as by the occurrence of a deletion of 16 bp in the β-fibrinogen intron in all ingroup taxa. Temnurus and Pyrrhocorax are placed as the sister group to all other corvids, while Cissa and Urocissa appear as the next clade inside them. Further up in the tree, two larger and well-supported clades of genera were recovered by the analyses. One has an entirely New World distribution (the New World jays), while the other includes mostly Eurasian (and one African) taxa. Outside these two major clades are Cyanopica and Perisoreus whose phylogenetic positions could not be determined by the present data. A biogeographic analysis of our data suggests that the Corvidae underwent an initial radiation in Southeast Asia. This is consistent with the observation that almost all basal clades in the phylogenetic tree consist of species adapted to tropical and subtropical forest habitats.  相似文献   

16.
Gary Voelker 《Ibis》2002,144(4):577-584
I used combined sequences of mitochondrial cytochrome  b and ND2 genes to determine the molecular phylogenetic relationships of all five extant species of dipper ( Cinclus ), as well as the relationships of Cinclidae to postulated nearest relatives. All methods of analysis resulted in a single best tree of dipper relationships, uniting the two South American taxa (as sisters) with the single North American exemplar, and the two Eurasian taxa forming a sister clade to the New World taxa. Further, each tree identified thrushes (Turdidae) as the closest relative to Cinclidae. Based on relationships within Cinclus , a Eurasian ancestral area is proposed, with subsequent movement into the New World. Dating of species divergences suggest that dippers arose approximately 4 mya, and achieved their present continental distributions soon after.  相似文献   

17.
Gliridae is a small family of rodents including three subfamilies: the Eurasian Glirinae (with three genera) and Leithiinae (with four genera) and the African Graphiurinae (with a single genus). Phylogenetic relationships among these eight genera are not fully resolved based on morphological characters. Moreover, the genus Graphiurus is characterized by numerous peculiar features (morphological characters and geographical distribution), raising the question of its relationships to the family Gliridae. The phylogenetic position of Graphiurus and the intra-Gliridae relationships are here addressed by a molecular analysis of 12S RNA and cytochrome b mitochondrial gene sequences for six glirid genera. Phylogenetic analyses are performed with three construction methods (neighbor-joining, maximum parsimony and maximum likelihood) and tests of alternative topologies with respect to the most likely. Our analyses reveal that Graphiurus is clearly a member of the Gliridae, refuting the hypothesis that the family could be paraphyletic. Among Gliridae, phylogenetic relationships are poorly resolved: the Leithiinae could be monophyletic, there is no support for the subfamily Glirinae, and the closest relative of Graphiurus is not identified. The inclusion of Graphiurus among Gliridae allows us to postulate that its hystricomorphous condition has been achieved convergently with other hystricomorphous rodents.  相似文献   

18.
The phylogenetic relationships within the New and Old World hawk-eagle assemblage (genus Spizaetus ; Aves: Accipitridae) were studied using mitochondrial DNA sequences ( cytochrome b , control region). Eighty-four specimens representing all Spizaetus species and almost all currently distinguished subspecies as well as 11 other booted and non-booted 'eagle' genera from the Neotropics, Africa, Eurasia, South Asia and Australasia ( Oroaetus , Harpia , Morphnus , Lophaetus , Stephanoaetus , Hieraaetus , Aquila , Ictinaetus , Spilornis , Pithecophaga , Harpyopsis ) were investigated. Although the basal branching could not be resolved, our investigations clearly indicate that hawk-eagles represent a paraphyletic assemblage and thus their external similarities have to be ascribed to convergent evolution. The New World taxa of Spizaetus cluster together, but the South American species Oroaetus isidori appears embedded within this clade. The taxa from Southeast to East Asia form a clearly separated monophyletic group. It is further divided into two subgroups, which are also characterized by distinct juvenile plumage patterns. Spizaetus africanus , the only African representative of the genus, is found in a mixed cluster consisting of members of the genera Aquila and Hieraaetus . These findings are in accordance with previous studies of other authors based on various molecular markers and different sets of taxa, but disagree with current taxonomy. Therefore, we suggest assigning the species of the genus Spizaetus to three different genera: (1) Spizaetus (including Oroaetus isidori ) in Central and South America and (2) Nisaetus for the Southeast to East Asian group. (3) The African taxon ( Spizaetus africanus ) is discussed to be included into the genus Aquila. Furthermore, we propose to use the former genus name Lophotriorchis Sharpe, 1874, for the monotypic species Hieraaetus kienerii , which has an isolated phylogenetic position.  相似文献   

19.
Phylogenetic relationships between two New World Syrphinae taxa (Diptera, Syrphidae), i.e. the highly diverse genus Ocyptamus and the large genus Toxomerus, were analysed based on molecular characters. The monophyly of both taxa was tested and the taxonomic status of included subgenera and species groups was examined. Toxomerus constitutes the monogeneric tribe Toxomerini with more than 140 described species, while Ocyptamus (tribe Syrphini) is a very diverse genus (over 300 spp.) with multiple recognised subgenera and species groups. Sequence data from three gene regions were used: the mitochondrial protein-coding gene cytochrome c oxidase subunit I (COI) and the nuclear 28S and 18S ribosomal RNA genes. The secondary structure of two expansion segments (D2, D3) of the ribosomal 28S RNA gene is presented for the family Syrphidae and used for the first time in a multiple sequence alignment. Molecular data were analysed using parsimony, maximum likelihood and Bayesian inference. Toxomerus was always recovered as monophyletic within Ocyptamus, and relationships to other New World taxa such as Salpingogaster (Eosalpingogaster) were well-supported. Only the subgenera and species groups of Ocyptamus were consistently recovered as monophyletic lineages, thus the apparent non-monophyly of Ocyptamus demands reclassification of this clade.  相似文献   

20.
Phylogenetic relationships among 26 South African species in the tribe Aphnaeini (Lepidoptera: Lycaenidae) were inferred from DNA characters of the mitochondrial gene cytochrome oxidase I (COI), using maximum-parsimony methods. The resulting phylogenetic estimate supports the systematic hypothesis made by Heath (1997, Metamorphosis, supplement 2), based on morphological characters, that at least three preexisting genera (Chrysoritis, Poecilmitis, and Oxychaeta) should be collapsed into the single monophyletic genus Chrysoritis. Two of the species groups described by Heath within Chrysoritis are also monophyletic, while one is paraphyletic and thus unsupported by the molecular data. Strong node support and skewed transition/transversion ratios suggest that two Chrysoritis clades contain synonymous species. Aphytophagy appears as a derived feeding strategy. Evolutionary patterns of ant association indicate lability at the level of ant genus, while association with different ant subfamilies may have played an ancestral and chemically mediated role in the diversification of South African aphnaeines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号