首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Serine/threonine phosphorylation of insulin receptor has been implicated in the development of insulin resistance. To investigate whether dephosphorylation of serine/threonine residues of the insulin receptor may restore the decreased insulin-stimulated receptor tyrosine kinase activity in skeletal muscle of obese Zucker rats, insulin receptor tyrosine kinase activity was measured before and after alkaline phosphatase treatment. Compared to lean controls, insulin-stimulated glucose transport was depressed by 61% (p < 0.05) in obese Zucker rats. The insulin receptor and insulin receptor substrate-1 contents were decreased by 14% (p < 0.05) and 16% (p < 0.05), respectively, in skeletal muscle of obese Zucker rats. In vivo insulin-induced tyrosine phosphorylation of insulin receptor and insulin receptor substrate-1 was depressed by 82% (p < 0.05) and 86% (p < 0.05), respectively. In the meantime, in vitro insulin-stimulated receptor tyrosine kinase activity in obese rats was decreased by 39% (p < 0.05). Dephosphorylation of the insulin receptor by prior alkaline phosphatase treatment increased insulin-stimulated receptor tyrosine kinase activity in both lean and obese Zucker rats, but the increase was three times greater in obese Zucker rats (p < 0.05). These findings suggest that excessive serine/threonine phosphorylation of the insulin receptor in obese Zucker rats may be a cause for insulin resistance in skeletal muscle.  相似文献   

3.
PGC-1alpha is a key regulator of tissue metabolism, including skeletal muscle. Because it has been shown that PGC-1alpha alters the capacity for lipid metabolism, it is possible that PGC-1alpha expression is regulated by the intramuscular lipid milieu. Therefore, we have examined the relationship between PGC-1alpha protein expression and the intramuscular fatty acid accumulation in hindlimb muscles of animals in which the capacity for fatty acid accumulation in muscle is increased (Zucker obese rat) or reduced [FAT/CD36 null (KO) mice]. Rates of palmitate incorporation into triacylglycerols were determined in perfused red (RG) and white gastrocnemius (WG) muscles of lean and obese Zucker rats and in perfused RG and WG muscles of FAT/CD36 KO and wild-type (WT) mice. In obese Zucker rats, the rate of palmitate incorporation into triacylglycerol depots in RG and WG muscles were 28 and 24% greater than in lean rats (P < 0.05). In FAT/CD36 KO mice, the rates of palmitate incorporation into triacylglycerol depots were lower in RG (-50%) and WG muscle (-24%) compared with the respective muscles in WT mice (P < 0.05). In the obese animals, PGC-1alpha protein content was reduced in both RG (-13%) and WG muscles (-15%) (P < 0.05). In FAT/CD36 KO mice, PGC-1alpha protein content was upregulated in both RG (+32%, P < 0.05) and WG muscles (+50%, P < 0.05). In conclusion, from studies in these two animal models, it appears that PGC-1alpha protein expression is inversely related to components of intramuscular lipid metabolism, because 1) PGC-1alpha protein expression is downregulated when triacylglycerol synthesis rates, an index of intramuscular lipid metabolism, are increased, and 2) PGC-1alpha protein expression is upregulated when triacylglycerol synthesis rates are reduced. Therefore, we speculate that the intramuscular lipid sensing may be involved in regulating the protein expression of PGC-1alpha in skeletal muscle.  相似文献   

4.
Past studies have suggested that the stress-induced GLUT4 localization pathway is damaged in fast-twitch muscles (white muscles) of obese subjects. In this study, we used obese rodents in an attempt to determine whether the stress-induced GLUT4 localization pathway is abnormal in slow-twitch muscles (red muscles), which are responsible for most daily activities. Protein expression levels of the intracellular stress sensor AMP-activated protein kinase (AMPK), its upstream kinase LKB1, its downstream protein AS160 and the glucose transporter protein 4 (GLUT4) in the red gastrocnemius muscle were measured under either resting or stress conditions (1 h of swimming or 14% hypoxia) in both lean and obese Zucker rats (n = 7 for each group). At rest, obese rats displayed higher fasting plasma insulin levels and increased muscle AMPK and AS160 phosphorylation levels compared with lean controls. No significant difference was found in the protein levels of LKB1, total GLUT4, or membrane GLUT4 between the obese and lean control groups. After one hour of swimming, AMPK and AS160 phosphorylation levels and the amount of GLUT4 translocated to the plasma membrane were significantly elevated in lean rats but remained unchanged in obese rats relative to their resting conditions. One hour 14% hypoxia did not cause significant changes in the LKB1-AMPK-AS160-GLUT4 pathway in either lean or obese rats. This study demonstrated that the AMPK-AS160-GLUT4 pathway was altered at basal levels and after exercise stimulation in the slow-twitch muscle of obese Zucker rats.  相似文献   

5.
A recent report from our group demonstrated that insulin facilitates muscle protein synthesis in obese Zucker rats. The purpose of this study was to determine whether PKC, a probable modulator of insulin signal transduction and/or mRNA translation, has a role in this insulin-mediated anabolic response. In the first portion of the study, gastrocnemius muscles of lean and obese Zucker rats (n = 5-7 for each phenotype) were bilaterally perfused with or without insulin to assess cytosolic and membrane PKC activity. Limbs perfused with insulin demonstrated greater PKC activity in both lean and obese Zucker rats (P < 0.05) compared with no insulin, but overall activity was greater in obese animals (by approximately 27% compared with lean, P < 0.05). To determine whether PKC plays a role in muscle protein synthesis, hindlimbs (n = 6-8 for each phenotype) were bilaterally perfused with or without insulin and/or GF-109203X (GF; a PKC inhibitor). The presence of GF did not influence the rates of insulin-mediated protein synthesis in gastrocnemius muscle of lean Zucker rats. However, when obese rats were perfused with GF (P < 0.05), the effect of insulin on elevating rates of protein synthesis was not observed. We also used phorbol 12-myristate 13-acetate (TPA, a PKC activator; n = 5-7 for each phenotype) with and without insulin to determine the effect of PKC activation on muscle protein synthesis. TPA alone did not elevate muscle protein synthesis in lean or obese rats. However, TPA plus insulin resulted in elevated rates of protein synthesis in both phenotypes that were similar to rates of insulin alone of obese rats. These results suggest that PKC is a modulator and is necessary, but not sufficient, for insulin-mediated protein anabolic responses in skeletal muscle.  相似文献   

6.
Exposure to high fatty acids (FAs) induces whole body and skeletal muscle insulin resistance. The globular form of the adipokine, adiponectin (gAd), stimulates FA oxidation and improves insulin sensitivity; however, its ability to prevent lipid-induced insulin resistance in humans has not been tested. The purpose of this study was to determine 1) whether acute (4 h) exposure to 2 mM palmitate would impair insulin signaling and glucose transport in isolated human skeletal muscle, 2) whether muscle from obese humans is more susceptible to the effects of palmitate, and 3) whether the presence of 2 mM palmitate + 2.5 mug/ml gAd (P+gAd) could prevent the effects of palmitate. Insulin-stimulated (10 mU/ml) glucose transport was not different, relative to control, following exposure to palmitate (-10%) or P+gAd (-3%) in lean muscle. In obese muscle, the absolute increase in glucose transport from basal to insulin-stimulated conditions was significantly decreased following palmitate (-55%) and P+gAd (-36%) exposure (control vs. palmitate; control vs. P+gAd, P < 0.05). There was no difference in the absolute increase in glucose transport between palmitate and P+gAd, indicating that in the presence of palmitate, gAd did not improve glucose transport. The palmitate-induced reduction in insulin-stimulated glucose transport in muscle from obese individuals may have been due to reduced Ser Akt (control vs. palmitate; P+gAd, P < 0.05) and Akt substrate 160 (AS160) phosphorylation (control vs. palmitate; P+gAd, P < 0.05). FA oxidation was significantly increased in muscle of lean and obese individuals in the presence of gAd (P < 0.05), suggesting that the stimulatory effects of gAd on FA oxidation may not be sufficient to entirely prevent palmitate-induced insulin resistance in obese muscle.  相似文献   

7.
There is evidence that increasing carbohydrate (CHO) availability during exercise by raising preexercise muscle glycogen levels attenuates the activation of AMPKalpha2 during exercise in humans. Similarly, increasing glucose levels decreases AMPKalpha2 activity in rat skeletal muscle in vitro. We examined the effect of CHO ingestion on skeletal muscle AMPK signaling during exercise in nine active male subjects who completed two 120-min bouts of cycling exercise at 65 +/- 1% V(O2 peak). In a randomized, counterbalanced order, subjects ingested either an 8% CHO solution or a placebo solution during exercise. Compared with the placebo trial, CHO ingestion significantly (P < 0.05) increased plasma glucose levels and tracer-determined glucose disappearance. Exercise-induced increases in muscle-calculated free AMP (17.7- vs. 11.8-fold), muscle lactate (3.3- vs. 1.8-fold), and plasma epinephrine were reduced by CHO ingestion. However, the exercise-induced increases in skeletal muscle AMPKalpha2 activity, AMPKalpha2 Thr(172) phosphorylation and acetyl-CoA Ser(222) phosphorylation, were essentially identical in the two trials. These findings indicate that AMPK activation in skeletal muscle during exercise in humans is not sensitive to changes in plasma glucose levels in the normal range. Furthermore, the rise in plasma epinephrine levels in response to exercise was greatly suppressed by CHO ingestion without altering AMPK signaling, raising the possibility that epinephrine does not directly control AMPK activity during muscle contraction under these conditions in vivo.  相似文献   

8.
Increasing evidence supports a negative role of glycogen synthase kinase-3 (GSK-3) in regulation of skeletal muscle glucose transport. We assessed the effects of chronic treatment of insulin-resistant, prediabetic obese Zucker (fa/fa) rats with a highly selective GSK-3 inhibitor (CT118637) on glucose tolerance, whole body insulin sensitivity, plasma lipids, skeletal muscle insulin signaling, and in vitro skeletal muscle glucose transport activity. Obese Zucker rats were treated with either vehicle or CT118637 (30 mg/kg body wt) twice per day for 10 days. Fasting plasma insulin and free fatty acid levels were reduced by 14 and 23% (P < 0.05), respectively, in GSK-3 inhibitor-treated animals compared with vehicle-treated controls. The glucose response during an oral glucose tolerance test was reduced by 18% (P < 0.05), and whole body insulin sensitivity was increased by 28% (P < 0.05). In vivo insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (50%) and IRS-1-associated phosphatidylinositol-3' kinase (79%) relative to fasting plasma insulin levels were significantly elevated (P < 0.05) in plantaris muscles of GSK-3 inhibitor-treated animals. Whereas basal glucose transport in isolated soleus and epitrochlearis muscles was unaffected by chronic GSK-3 treatments, insulin stimulation of glucose transport above basal was significantly enhanced (32-60%, P < 0.05). In summary, chronic treatment of insulin-resistant, prediabetic obese Zucker rats with a specific GSK-3 inhibitor enhances oral glucose tolerance and whole body insulin sensitivity and is associated with an amelioration of dyslipidemia and an improvement in IRS-1-dependent insulin signaling in skeletal muscle. These results provide further evidence that selective targeting of GSK-3 in muscle may be an effective intervention for the treatment of obesity-associated insulin resistance.  相似文献   

9.
Previous data have suggested that insulin-resistant skeletal muscle may exhibit a diminished ability to undergo hypertrophy and that this result may be mediated, at least in part, from decrements in mammalian target of rapamycin (mTOR) signaling (Katta A, Kundla S, Kakarla SK, Wu M, Fannin J, Paturi S, Liu H, Addagarla HS, Blough ER. Am J Physiol Regul Integr Comp Physiol 299: R1666-R1675, 2010). Herein, we attempt to extend these observations by determining if this attenuation in muscle growth is associated with alterations in AMP-activated protein kinase (AMPK) signaling, an upstream mediator of mTOR, and changes in the activation of dsRNA-dependent protein kinase (PKR), which functions as an inhibitor of protein synthesis and potential mediator of protein degradation. Compared with that observed in lean Zucker (LZ) rats, the phosphorylation of AMPKα at Thr172 was higher after 3 wk of overload in the insulin-resistant obese Zucker (OZ) soleus (P < 0.05). This change in AMPKα phosphorylation was accompanied by increases in the amount of phosphorylated PKR (Thr446), elevations in the PKR-dependent phosphorylation of eukaryotic initiation factor (eIF)-2α (Ser51), augmented p38 MAP kinase (Thr180/Tyr182) phosphorylation, and increases in the amount of protein ubiquitination (P < 0.05). Taken together, these results suggest that the diminished hypertrophic response we observe in the OZ rat may be mediated, at least in part, by the hyperactivation of AMPK- and PKR-related signaling.  相似文献   

10.
Uncoupling protein-3 (UCP3), a mitochondrial carrier protein predominantly expressed in muscle, has been suggested to release stored energy as heat. The insulin-sensitizing thiazolidinediones enhance glucose disposal in skeletal muscle and have been reported to increase the expression of uncoupling proteins in various experimental systems. We therefore studied the effect of troglitazone treatment on UCP3 gene expression in muscles from lean and obese Zucker rats. In comparison with obese littermates, basal UCP3 mRNA levels in lean Zucker rats tended to be higher in white and red gastrocnemius muscles, but were lower in soleus (P<0.001) muscle and heart (P<0.01). In lean rats, troglitazone significantly increased UCP3 gene expression in white and red gastrocnemius and heart muscles (all P<0.01). In contrast, the drug reduced UCP3 mRNA expression in red gastrocnemius and soleus muscles of obese littermates (all P<0.001). The troglitazone-dependent decrease in UCP3 gene expression was accompanied by an increased weight gain in obese rats, while no such effect was observed in lean rats. In obese rats, improvement of insulin resistance by troglitazone was associated with increased rates of basal and insulin-stimulated CO(2) production from glucose measured in soleus muscle. These studies demonstrate that effects of troglitazone on UCP3 gene expression depend on the phenotype of Zucker rats and that troglitazone-induced metabolic improvements are not related to increased uncoupling resulting from upregulation of UCP3 mRNA expression in muscle.  相似文献   

11.
The genetically obese Zucker rat has a reduced capacity to deposit dietary protein in skeletal muscle. To determine whether amino acid uptake by muscle of obese Zucker rats is impaired, soleus strip (SOL) and epitrochlearis (EPI) muscles from 10-wk-old lean and obese Zucker rats were studied in vitro by use of [14C]alpha-aminoisobutyric acid (AIB). Muscles from fasted rats were incubated under basal conditions at rest or after a 1-h treadmill run at 8% grade. To equate total work completed, lean and obese rats ran at 27 and 20 m/min, respectively. Muscles were pinned at resting length, preincubated for 30 min at 37 degrees C in Krebs-Ringer bicarbonate buffer containing 5 mM glucose under 95% O2-5% CO2, and then incubated up to 3 h in Krebs-Ringer bicarbonate with 0.5 mM AIB, [14C]AIB, and [3H]inulin as a marker of extracellular fluid. Basal AIB uptake in EPI and SOL from obese rats was significantly reduced by 40 and 30% (P less than 0.01), respectively, compared with lean rats. For both lean and obese rats, exercise increased (P less than 0.05) basal AIB uptake in EPI and SOL, but the relative increases were greater in the obese rats (EPI 54% and SOL 71% vs. EPI 32% and SOL 37%). These results demonstrate that genetically obese Zucker rats have reduced basal skeletal muscle amino acid uptake and suggest that physical inactivity may partially contribute to this defect.  相似文献   

12.
Earlier studies have shown that whole body adenosine receptor antagonism increases skeletal muscle insulin sensitivity in insulin-resistant Zucker rats. To find which steps in the insulin signaling pathway are influenced by adenosine receptors, muscle from lean and obese Zucker rats, treated for 1 week with the adenosine receptor antagonist, 1,3-dipropyl-8-(4-acrylate)-phenylxanthine (BWA1433), were analyzed. All rats were first anesthetized and injected intravenously (i.v.) with 1 IU of insulin. About 3 min later the gastrocnemius was freeze clamped. Insulin receptors were partially purified on wheat germ agglutinin (WGA) columns and insulin receptor kinase activity measured in control and BWA1433-treated lean and obese Zucker rats. Protein tyrosine phosphatase (PTPase) activity was also analyzed in subcellular fractions, including the cytosolic fraction, a high-speed particulate fraction and the insulin receptor fraction eluted from WGA columns. Administration of BWA1433 increased insulin receptor kinase activity in obese but not lean Zucker rats. PTPase activities were higher in the untreated obese rat muscle particulate fractions than in the lean rat particulate fractions. The BWA1433 administration lowered the PTPase activity of the obese rats but not the lean rats. Although the PTPase activity in WGA eluate fractions containing crude insulin receptors were similar in lean and obese animals, BWA1433 administration was found to lower the PTPase activities in the fractions obtained from obese but not from the lean rats. PTPases may be upregulated in muscles from obese rats due to activated adenosine receptors. Adenosine receptor blockade, by reducing PTPase activity, may thereby increase insulin signaling.  相似文献   

13.
1. The effect of insulin (0.5, 10 and 50 munits/ml of perfusate) on glucose uptake and disposal in skeletal muscle was studied in the isolated perfused hindquarter of obese (fa/fa) and lean (Fa/Fa) Zucker rats and Osborne-Mendel rats. 2. A concentration of 0.5 munit of insulin/ml induced a significant increase in glucose uptake (approx. 2.5 mumol/min per 30 g of muscle) in lean Zucker rats and in Osborne-Mendel rats, and 10 munits of insulin/ml caused a further increase to approx. 6 mumol/min per 30 g of muscle; but 50 munits of insulin/ml had no additional stimulatory effect. In contrast, in obese Zucker rats only 10 and 50 munits of insulin/ml had a stimulatory effect on glucose uptake, the magnitude of which was decreased by 50-70% when compared with either lean control group. Since under no experimental condition tested was an accumulation of free glucose in muscle-cell water observed, the data suggest an impairment of insulin-stimulated glucose transport across the muscle-cell membrane in obese Zucker rats. 3. The intracellular disposal of glucose in skeletal muscle of obese Zucker rats was also insulin-insensitive: even at insulin concentrations that clearly stimulated glucose uptake, no effect of insulin on lactate oxidation (nor an inhibitory effect on alanine release) was observed; [14C]glucose incorporation into skeletal-muscle lipids was stimulated by 50 munits of insulin/ml, but the rate was still only 10% of that observed in lean Zucker rats. 4. The data indicate that the skeletal muscle of obese Zucker rats is insulin-resistant with respect to both glucose-transport mechanisms and intracellular pathways of glucose metabolism, such as lactate oxidation. The excessive degree of insulin-insensitivity in skeletal muscle of obese Zucker rats may represent a causal factor in the development of the glucose intolerance in this species.  相似文献   

14.
Glycogen synthase kinase-3 (GSK3) has been implicated in the multifactorial etiology of skeletal muscle insulin resistance in animal models and in human type 2 diabetic subjects. However, the potential molecular mechanisms involved are not yet fully understood. Therefore, we determined if selective GSK3 inhibition in vitro leads to an improvement in insulin action on glucose transport activity in isolated skeletal muscle of insulin-resistant, prediabetic obese Zucker rats and if these effects of GSK3 inhibition are associated with enhanced insulin signaling. Type I soleus and type IIb epitrochlearis muscles from female obese Zucker rats were incubated in the absence or presence of a selective, small organic GSK3 inhibitor (1 microM CT118637, Ki < 10 nM for GSK3alpha and GSK3beta). Maximal insulin stimulation (5 mU/ml) of glucose transport activity, glycogen synthase activity, and selected insulin-signaling factors [tyrosine phosphorylation of insulin receptor (IR) and IRS-1, IRS-1 associated with p85 subunit of phosphatidylinositol 3-kinase, and serine phosphorylation of Akt and GSK3] were assessed. GSK3 inhibition enhanced (P <0.05) basal glycogen synthase activity and insulin-stimulated glucose transport in obese epitrochlearis (81 and 24%) and soleus (108 and 20%) muscles. GSK3 inhibition did not modify insulin-stimulated tyrosine phosphorylation of IR beta-subunit in either muscle type. However, in obese soleus, GSK3 inhibition enhanced (all P < 0.05) insulin-stimulated IRS-1 tyrosine phosphorylation (45%), IRS-1-associated p85 (72%), Akt1/2 serine phosphorylation (30%), and GSK3beta serine phosphorylation (39%). Substantially smaller GSK3 inhibitor-mediated enhancements of insulin action on these insulin signaling factors were observed in obese epitrochlearis. These results indicate that selective GSK3 inhibition enhances insulin action in insulin-resistant skeletal muscle of the prediabetic obese Zucker rat, at least in part by relieving the deleterious effects of GSK3 action on post-IR insulin signaling. These effects of GSK3 inhibition on insulin action are greater in type I muscle than in type IIb muscle from these insulin-resistant animals.  相似文献   

15.
16.
Obstructive sleep apnea involves intermittent periods of airway occlusions that lead to repetitive oxygen desaturations. Exposure to chronic intermittent hypoxia (IH) in rats increases diurnal blood pressure and alters skeletal muscle physiology. The impact of IH on upper airway muscle function is unknown. We hypothesize that IH exposure increases upper airway collapsibility in rats due to alterations of the muscles surrounding the upper airway. Lean and obese rats were exposed to cyclic alterations in O(2) levels (20.6%-5%) every 90 s, 8 h/day for 6 days/wk for 12 wk. Following the exposure period, arterial pressure was recorded via the tail artery in conscious unrestrained rats. Mean arterial pressure was increased in lean IH but not in obese IH-exposed Zucker rats (P < 0.05). The pharyngeal pressure associated with airway collapse (P(crit)) was measured under anesthesia during baseline conditions and then during supramaximal stimulation of the hypoglossal nerve (cnXII). Baseline P(crit) was more positive (more collapsible) in lean but not obese rats following 12 wk of IH (P < 0.05), while supramaximal stimulation of cnXII increased airway stability (decreased P(crit)) in both lean and obese Zucker rats following IH to levels that were similar to their respective room air controls. The in vitro peak tension and the expression of the individual myosin heavy chain isoforms from the upper airway muscles were unaltered following IH. We conclude that IH leads to increases in baseline collapsibility in lean Zucker rats exposed to IH by nonmyogenic mechanisms.  相似文献   

17.
5'-AMP-activated protein kinase (AMPK) was recently suggested to regulate pyruvate dehydrogenase (PDH) activity and thus pyruvate entry into the mitochondrion. We aimed to provide evidence for a direct link between AMPK and PDH in resting and metabolically challenged (exercised) skeletal muscle. Compared with rest, treadmill running increased AMPKalpha1 activity in alpha(2)KO mice (90%, P < 0.01) and increased AMPKalpha2 activity in wild-type (WT) mice (110%, P < 0.05), leading to increased AMPKalpha Thr(172) (WT: 40%, alpha(2)KO: 100%, P < 0.01) and ACCbeta Ser(227) phosphorylation (WT: 70%, alpha(2)KO: 210%, P < 0.01). Compared with rest, exercise significantly induced PDH-E(1)alpha site 1 (WT: 20%, alpha(2)KO: 62%, P < 0.01) and site 2 (only alpha(2)KO: 83%, P < 0.01) dephosphorylation and PDH(a) [ approximately 200% in both genotypes (P < 0.01)]. Compared with WT, PDH dephosphorylation and activation was markedly enhanced in the alpha(2)KO mice both at rest and during exercise. The increased PDH(a) activity during exercise was associated with elevated glycolytic flux, and muscles from the alpha(2)KO mice displayed marked lactate accumulation and deranged energy homeostasis. Whereas mitochondrial DNA content was normal, the expression of several mitochondrial proteins was significantly decreased in muscle of alpha(2)KO mice. In isolated resting EDL muscles, activation of AMPK signaling by AICAR did not change PDH-E(1)alpha phosphorylation in either genotype. PDH is activated in mouse skeletal muscle in response to exercise and is independent of AMPKalpha2 expression. During exercise, alpha(2)KO muscles display deranged energy homeostasis despite enhanced glycolytic flux and PDH(a) activity. This may be linked to decreased mitochondrial oxidative capacity.  相似文献   

18.
Skeletal muscle expresses two catalytic subunits, alpha1 and alpha2, of the 5'-AMP-activated protein kinase (AMPK), which has been implicated in contraction-stimulated glucose transport and fatty acid oxidation. Muscle contraction activates the alpha2-containing AMPK complex (AMPKalpha2), but this activation may occur with or without activation of the alpha1-containing AMPK complex (AMPKalpha1), suggesting that AMPKalpha2 is the major isoform responsible for contraction-induced metabolic events in skeletal muscle. We report for the first time that AMPKalpha1, but not AMPKalpha2, can be activated in contracting skeletal muscle. Rat epitrochlearis muscles were isolated and incubated in Krebs-Ringer bicarbonate buffer containing pyruvate. In muscles stimulated to contract at a frequency of 1 and 2 Hz during the last 2 min of incubation, AMPKalpha1 activity increased twofold and AMPKalpha2 activity remained unchanged. Muscle stimulation did not change the muscle AMP concentration or the AMP-to-ATP ratio. AMPK activation was associated with increased phosphorylation of Thr(172) of the alpha-subunit, the primary activation site. Muscle stimulation increased the phosphorylation of acetyl-CoA carboxylase (ACC), a downstream target of AMPK, and the rate of 3-O-methyl-d-glucose transport. In contrast, increasing the frequency (>or=5 Hz) or duration (>or=5 min) of contraction activated AMPKalpha1 and AMPKalpha2 and increased AMP concentration and the AMP/ATP ratio. These results suggest that 1) AMPKalpha1 is the predominant isoform activated by AMP-independent phosphorylation in low-intensity contracting muscle, 2) AMPKalpha2 is activated by an AMP-dependent mechanism in high-intensity contracting muscle, and 3) activation of each isoform enhances glucose transport and ACC phosphorylation in skeletal muscle.  相似文献   

19.
The effect of prolonged moderate-intensity exercise on human skeletal muscle AMP-activated protein kinase (AMPK)alpha1 and -alpha2 activity and acetyl-CoA carboxylase (ACCbeta) and neuronal nitric oxide synthase (nNOSmu) phosphorylation was investigated. Seven active healthy individuals cycled for 30 min at a workload requiring 62.8 +/- 1.3% of peak O(2) consumption (VO(2 peak)) with muscle biopsies obtained from the vastus lateralis at rest and at 5 and 30 min of exercise. AMPKalpha1 activity was not altered by exercise; however, AMPKalpha2 activity was significantly (P < 0.05) elevated after 5 min (approximately 2-fold), and further elevated (P < 0.05) after 30 min (approximately 3-fold) of exercise. ACCbeta phosphorylation was increased (P < 0.05) after 5 min (approximately 18-fold compared with rest) and increased (P < 0.05) further after 30 min of exercise (approximately 36-fold compared with rest). Increases in AMPKalpha2 activity were significantly correlated with both increases in ACCbeta phosphorylation and reductions in muscle glycogen content. Fat oxidation tended (P = 0.058) to increase progressively during exercise. Muscle creatine phosphate was lower (P < 0.05), and muscle creatine, calculated free AMP, and free AMP-to-ATP ratio were higher (P < 0.05) at both 5 and 30 min of exercise compared with those at rest. At 30 min of exercise, the values of these metabolites were not significantly different from those at 5 min of exercise. Phosphorylation of nNOSmu was variable, and despite the mean doubling with exercise, statistically significance was not achieved (P = 0.304). Western blots indicated that AMPKapproximately 2 was associated with both nNOSmu and ACCbeta consistent with them both being substrates of AMPKalpha2 in vivo. In conclusion, AMPKalpha2 activity and ACCbeta phosphorylation increase progressively during moderate exercise at approximately 60% of VO(2 peak) in humans, with these responses more closely coupled to muscle glycogen content than muscle AMP/ATP ratio.  相似文献   

20.
The present study examined the level of GLUT-4 glucose transporter protein in gastrocnemius muscles of 36 week old genetically obese Zucker (fa/fa) rats and their lean (Fa/-) littermates, and in obese Zucker rats following 18 or 30 weeks of treadmill exercise training. Despite skeletal muscle insulin resistance, the level of GLUT-4 glucose transporter protein was similar in lean and obese Zucker rats. In contrast, exercise training increased GLUT-4 protein levels by 1.7 and 2.3 fold above sedentary obese rats. These findings suggest endurance training stimulates expression of skeletal muscle GLUT-4 protein which may be responsible for the previously observed increase in insulin sensitivity with training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号