首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Inositol 1,4,5-trisphosphate (IP(3)) is one of the second messengers produced by phosphoinositid hydrolysis and triggers IP(3) receptor (IP(3)R) mediated calcium release from intracellular pools. To determine whether immobilization stress affects the gene expression and protein level of IP(3)R in stellate ganglia, animals were immobilized once for 2h and/or for 7 days, 2h daily. After decapitation, stellate ganglia were extirpated and the gene expression of IP(3) receptors was evaluated. Protein levels of IP(3) receptor were measured by Western blot analysis using the antibody against IP(3) receptor. In the present work, we clearly show that type 1 and 2 IP(3) receptors, but not the type 3 IP(3) receptor, are expressed in stellate ganglia. Both types, type 1 and 2 IP(3) receptors, are not significantly affected by single 2h immobilization stress on mRNA and protein level. However, gene expression of both these types is significantly reduced by repeated immobilization stress for 7 days, 2h daily. The IP(3) receptor protein is reduced as well. Physiological relevance of our observations remains to be elucidated.  相似文献   

2.
The aim of the present work was to study the effect of various stressors (hypoxia, cold, immobilization) on the gene expression of sigma receptors in the left ventricles of rat heart. We have clearly shown that gene expression of sigma receptors is upregulated by strong stress stimuli, such as immobilization and/or hypoxia. Nevertheless, cold as a milder stressor has no effect on sigma receptor's mRNA levels. Signalling cascade of sigma receptors is dependent on IP(3) receptors, since silencing of both, type 1 and 2 IP(3) receptors resulted in decreased mRNA levels of sigma receptors. Physiological relevance of sigma receptors in the heart is not clear yet. Nevertheless, based on the already published data we can assume that sigma receptors might participate in contractile responses in cardiomyocytes.  相似文献   

3.
4.
The sympathoadrenal system is the main source of catecholamines (CAs) in adipose tissues and therefore plays the key role in the regulation of adipose tissue metabolism. We recently reported existence of an alternative CA-producing system directly in adipose tissue cells, and here we investigated effect of various stressors-physical (cold) and emotional stress (immobilization) on dynamics of this system. Acute or chronic cold exposure increased intracellular norepinephrine (NE) and epinephrine (EPI) concentration in isolated rat mesenteric adipocytes. Gene expression of CA biosynthetic enzymes did not change in adipocytes but was increased in stromal vascular fraction (SVF) after 28?day cold. Exposure of rats to a single IMO stress caused increases in NE and EPI levels, and also gene expression of CA biosynthetic enzymes in adipocytes. In SVF changes were similar but more pronounced. Animals adapted to a long-term cold exposure (28?days, 4°C) did not show those responses found after a single IMO stress either in adipocytes or SVF. Our data indicate that gene machinery accommodated in adipocytes, which is able to synthesize NE and EPI de novo, is significantly activated by stress. Cold-adapted animals keep their adaptation even after an exposure to a novel stressor. These findings suggest the functionality of CAs produced endogenously in adipocytes. Taken together, the newly discovered CA synthesizing system in adipocytes is activated in stress situations and might significantly contribute to regulation of lipolysis and other metabolic or thermogenetic processes.  相似文献   

5.
A single exposure to severe stressors has been shown to cause anorexia in the next 24 h, but the duration of such alterations is not known. Male Sprague-Dawley rats were subjected to different stressors, and food intake was measured for several days after stress. In experiment 1, 2 h of immobilization (Imo) and lipopolysaccharide (LPS) administration (1,000 microgram/kg) caused a marked anorexia in the 24 h after stress, which persisted on poststress day 3. In experiment 2, changes in food intake after LPS and Imo were followed until total recovery. As in experiment 1, LPS caused initially a greater degree of anorexia than Imo, but normal food intake recovered much faster (poststress day 3 vs. poststress day 9). Changing the period of exposure to Imo between 20 min and 6 h (experiment 3) only slightly modified the pattern of response to the stressor. When different doses of LPS (50, 250, and 1,000 microgram/kg) were tested in experiment 4, a dose-dependent effect on food intake was observed, the greatest doses causing the most marked and lasting effect. The present results showed stressor-specific lasting changes in food intake caused by a single exposure to some stressors, the effect of a severe psychological stressor such as Imo being more lasting than that of LPS, despite a lower initial anorexia. A severe psychological stressor and a physical stressor such as LPS appear to change food intake in different ways.  相似文献   

6.
7.
Gene expression of the type 1 and 2 inositol 1,4,5-trisphosphate (IP(3)) receptors in the rat cardiac atria and ventricles and their possible modulation by single immobilization stress was studied. Single immobilization stress significantly elevated mRNA levels for both types of these receptors. To evaluate the involvement of glucocorticoids in the modulation of the gene expression of IP(3) receptors by immobilization stress, we used adrenalectomized and/or hypophysectomized rats. Since adrenalectomy and/or hypophysectomy completely abolished increase in IP(3) receptor's mRNA levels after the immobilization, we conclude that immobilization stress elevates mRNA of type 1 and 2 IP(3) receptors, mainly through the glucocorticoid responsive element.  相似文献   

8.
The study deals with activity of three antioxidant enzymes, copper, zinc-superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), catalase (CAT) in hippocampus of rats, following the exposure to single chronic (individual housing or forced swimming) and acute (immobilization or cold) stress, as well as to combined chronic/acute stress. In addition, plasma noradrenaline (NA) and adrenaline (A) concentrations were measured in the same stress conditions, because their autooxidation can add to the oxidative stress. We observed that i) long-term social isolation and repeated forced swimming had minor effects on plasma catecholamines, but in the long-term pretreated groups, acute stressors caused profound elevation NA and A levels, ii) chronic stressors activate antioxidant enzymes, iii) acute stressors decrease catalase activity, their effects on CuZnSOD appear to be stressor-dependent, whereas MnSOD is not affected by acute stressors, and iv) pre-exposure to chronic stress affects the antioxidant-related effects of acute stressors, but this effect depends to a large extent on the type of the chronic stressor. Based on both metabolic and neuroendocrine data, long-term isolation appears to be a robust psychological stressor and to induce a "priming" effect specifically on the CuZnSOD and CAT activity.  相似文献   

9.
The response of hypothalamo-pituitary-adrenocortical (HPA) axis to different stressors depends on numerous stimulatory and inhibitory signals gathering from various parts of the brain to the hypothalamic nuclei. The present study was aimed at determining whether catecholamines (CA) and vasopressin (VP) play the role in the specific regulation of adrenocorticotropic hormone (ACTH) secretion under the influence of thermal stressors, cold (+4 °C) and heat (+38 °C), applied acutely for 1 h or repeatedly during 7 and 14 day (1 h daily). The results showed that following acute exposure to those stressors, hypothalamic dopamine (DA), noradrenaline (NA) and adrenaline (ADR) concentrations were significantly decreased as compared to non stressed controls. The prolonged exposure to either of the two stressors left hypothalamic CA concentration unaffected. The amount of pituitary VP significantly increased only under the influence of acute heat stress. Prolonged exposure to both stressors induced significant decrease in the pituitary VP content. Unlike the heat, the cold-caused changes in circulating VP did not follow those in the pituitary. The applied stressors significantly increased the amount of the pituitary V1b receptor (V1bR) mainly present at the surface of corticotrophs, depending on both duration of exposure and nature of stressor. Additionally, both cold and heat specifically induced an increase in blood ACTH. In conclusion, this study's results suggest that the role of VP in the regulation of the ACTH secretion in response to cold and heat depends on the type of stressor, whereas the role of the CA depends on the manner of exposure.  相似文献   

10.
A Armario  T Jolin 《Life sciences》1989,44(3):215-221
The effect of stressor intensity and duration of exposure to the stimuli on adrenocorticotropin (ACTH), somatotropin (GH) and thyrotropin (TSH) concentration in serum was studied in adult male Sprague-Dawley rats. The stressors used were noise, restraint in plastic tubes and immobilization on wood boards. The greatest ACTH release was found in immobilized rats and the smallest in noise-exposed animals. The inhibition of GH secretion was related to the intensity of ACTH release in that maximal GH inhibition was observed in immobilized rats and minimal in noise-exposed rats. The TSH response was more complex. Noise increased TSH release at all periods observed (10, 30 and 60 min); the stimulation of TSH release caused by restraint was significant at 30 and 60 min and was always of lesser magnitude than that in response to noise. Finally, immobilization significantly increased TSH levels at 10 min and decreased them at 30 and 60 min. These results suggest that, under appropriate conditions, all hormones studied discriminate between different stressor intensities. However, the complexity of the TSH response to stressors indicates that this hormone is not an adequate index of the stress experienced by the animals.  相似文献   

11.
12.
Inositol 1,4,5-trisphosphate receptor (IP(3)-receptor) is a calcium channel, transporting calcium from intracellular stores to the cytoplasm. In kidney, IP(3)-receptors are involved in the signal transduction of various hormones. In our work we studied the effect of immobilization stress on the IP(3)-receptor's protein content in renal cortex and the medulla of normotensive and hypertensive rats. We detected both mRNA and type 1 IP(3)-receptor protein in medulla, but not in renal cortex. We found that this receptor was approximately twice as abundant in normotensive as in genetically hypertensive rat kidney. Immobilization stress decreased the amount of type 1 IP(3)-receptor in the renal medulla of normotensive rats approximately five times, while no effect due to single and/or repeated stress was observed in the renal medulla of spontaneously hypertensive rats. The results indicate that expression of type 1 IP(3)-receptor in renal medulla is modulated by hypertension and immobilization stress.  相似文献   

13.
Extreme environmental temperature could impact the physiology and ecology of animals. The stress endocrine axis provides necessary physiological stress response to acute (day–day) stressors. Presently, there are no empirical evidences showing that exposure to extreme thermal stressor could cause chronic stress in amphibians. This could also modulate the physiological endocrine sensitivity to acute stressors and have serious implications for stress coping in amphibians, particularly those living in fragmented and disease prone environments. We addressed this important question using the cane toad (Rhinella marina) model from its introduced range in Queensland, Australia. We quantified their physiological endocrine sensitivity to a standard acute (capture and handling) stressor after exposing the cane toads to thermal shock at 35 °C for 30 min daily for 34 days. Corticosterone (CORT) responses to the capture and handling protocol were measured on three sampling intervals (days 14, 24, and 34) to determine whether the physiological endocrine sensitivity was maintained or modulated over-time. Two control groups (C1 for baseline CORT measurement only and C2 acute handled only) and two temperature treatment groups (T1 received daily thermal shock up to day 14 only and a recovery phase of 20 days and T2 received thermal shock daily for 34 days). Results showed that baseline CORT levels remained high on day 14 (combined effect of capture, captivity and thermal stress) for both T1 and T2. Furthermore, baseline CORT levels decreased for T1 once the thermal shock was removed after day 14 and returned to baseline by day 29. On the contrary, baseline CORT levels kept on increasing for T2 over the 34 days of daily thermal shocks. Furthermore, the magnitudes of the acute CORT responses or physiological endocrine sensitivity were consistently high for both C1 and T1. However, acute CORT responses for T2 toads were dramatically reduced between days 24 and 34. These novel findings suggest that repeated exposure to extreme thermal stressor could cause chronic stress and consequently suppress the physiological endocrine sensitivity to acute stressors (e.g. pathogenic diseases) in amphibians.  相似文献   

14.
Stress-induced expression of immediate early genes (IEGs) appears to be transient even if the exposure to the stressor persists. However, there are some exceptions which suggest that particular characteristics of stressors can affect the dynamics of IEG expression. We studied in selected telencephalic, diencephalic and brainstem regions the mRNA levels of two clearly distinct IEGs (c-fos and arc) during prolonged exposure to a severe stressor such as immobilization (IMO) and after releasing the rats from the situation. Although regional differences were observed with the two IEGs, overall, c-fos mRNA levels progressively declined over the course of 4 h of continuous exposure to IMO, whereas arc mRNA levels were maintained at high levels in the brain regions that express this gene under stress (telencephalon). Levels of CRF hnRNA in the hypothalamus paraventricular nucleus only slightly declined during prolonged exposure to IMO. Surprisingly, termination of exposure to IMO did not modify CRF gene expression in the paraventricular nucleus or the pattern of IEGs expression, with the exception of c-fos in the lateral septum. Thus, putative signals associated to the termination of exposure to IMO were unable to modify either IEG expression in most brain areas or CRF gene expression in the paraventricular nucleus.  相似文献   

15.
Stress is considered to be a risk factor of several diseases. The following hypotheses were tested: (1) single exposure to an intensive stressor is followed by endothelial stimulation and/or damage to endothelial cells, (2) potential stress-induced endothelial cell damage is reduced by repeated pretreatment with pentoxifylline and (3) pentoxifylline treatment modifies neuroendocrine activation during stress reflected by changes in hypothalamic-pituitary-adrenocortical (HPA) axis function. Rats were treated with saline or pentoxifylline (20 mg/kg, s.c.) once daily for 7 days and then exposed to single immobilization stress for 20 or 120 min. In saline pretreated rats, stress exposure was followed by a rise in endothelaemia, von Willebrand factor concentrations, adrenocorticotropic hormone (ACTH) and corticosterone release, as well as by enhanced gene expression of hypothalamic corticotropin releasing factor (CRH). Stress-induced changes were reduced by pretreatment with pentoxifylline. Significant inhibition was observed in endothelaemia, plasma ACTH and corticosterone concentration in the adrenals. Thus, signs of endothelial injury as well as stress-induced hormone levels were reduced by pretreatment with pentoxifylline, although there is no evidence for a causal relationship. This protective action of pentoxifylline might be of benefit in the prevention and therapy of some stress-related disorders.  相似文献   

16.
Exposure to stress during childhood and adolescence increases vulnerability to developing several psychopathologies in adulthood and alters the activity of the hypothalamic-pituitary-adrenal (HPA) axis, the prototypical stress system. Rodent models of juvenile stress appear to support this hypothesis because juvenile stress can result in reduced activity/exploration and enhanced anxiety, although results are not always consistent. Moreover, an in-depth characterization of changes in the HPA axis is lacking. In the present study, the long-lasting effects of juvenile stress on adult behavior and HPA function were evaluated in male rats. The juvenile stress consisted of a combination of stressors (cat odor, forced swim and footshock) during postnatal days 23–28. Juvenile stress reduced the maximum amplitude of the adrenocorticotropic hormone (ACTH) levels (reduced peak at lights off), without affecting the circadian corticosterone rhythm, but other aspects of the HPA function (negative glucocorticoid feedback, responsiveness to further stressors and brain gene expression of corticotrophin-releasing hormone and corticosteroid receptors) remained unaltered. The behavioral effects of juvenile stress itself at adulthood were modest (decreased activity in the circular corridor) with no evidence of enhanced anxiety. Imposition of an acute severe stressor (immobilization on boards, IMO) did not increase anxiety in control animals, as evaluated one week later in the elevated-plus maze (EPM), but it potentiated the acoustic startle response (ASR). However, acute IMO did enhance anxiety in the EPM, in juvenile stressed rats, thereby suggesting that juvenile stress sensitizes rats to the effects of additional stressors.  相似文献   

17.
There is a cost of stress that may result in the loss of normal biological function (e.g., growth). Repeated, and even single, applications of stressors have been shown to induce negative energy balance in rodents. However, here we addressed whether this energetic response changes during multiple stress exposure and whether there is complete recovery subsequent to the cessation of stress exposure. These questions were addressed in growing C57Bl/6 mice (31 day) by determining at different times the energetic and endocrine responses after the exposure to restraint (R) stress for 4 h applied once (R1), repeatedly over 3 days (R3), or repeatedly over 7 days (R7). Compared with control values, R elevated (P<0.05) plasma corticosterone and reduced plasma insulin-like growth factor I on all days of exposure to the stressor. Seven days, but not 1 or 3 days of R, decreased the net growth (126%, P<0.05) and deposition of fat (71%, P<0.05) and lean (60%, P<0.05) energy over the 7 days. Only R7 depressed the 7-day metabolizable energy intake (P<0.05), and R7, but not R1 or R3, increased the overall energy expenditure (10%, P<0.05). Our results demonstrate that repeated episodes of stress are energetically costly to the rapidly growing animal, but compensatory mechanisms mitigate this cost of repeated stress exposure and permit complete recovery of energy balance after the cessation of stress application.  相似文献   

18.
19.
We assessed the effects of cold and isolation stress on arginine vasopressin (AVP) mRNA in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Vasopressin mRNA levels were determined by in situ hybridization histochemistry at the cellular level. In posterior magnocellular neurons of the PVN isolation stress for 7 or 14 days increased vasopressin mRNA levels 28 and 29%, respectively, compared to group-housed controls. No significant alterations in vasopressin gene expression were observed in the SON after 7 or 14 days of isolation stress. Scattered magnocellular AVP mRNA-expressing cells of the medial parvocellular PVN showed increases of 19 and 34% after 7 and 14 days of isolation, respectively. We also studied the effect of cold or combined cold and isolation stress on vasopressin gene expression in the PVN and SON. Cold stress for 3 h daily for 4 consecutive days increased AVP mRNA levels in the posterior magnocellular PVN by 15%. Cold-isolated animals showed an increase of 21%. No significant effect on AVP mRNA levels in the SON was observed. In contrast to the posterior magnocellular PVN, cold or cold-isolation stress increased AVP mRNA in magnocellular neurons of the medial parvocellular region of the PVN by 25 and 43%, respectively, relative to control rats. These results suggest that psychological and metabolic stress may be added to the list of stressors that activate the hypothalamo-neurohypophysial system.  相似文献   

20.
Inositol 1,4,5-trisphosphate (IP3) receptors are intracellular calcium channels that are able to release calcium from intracellular stores upon activation by IP3 and modulation by calcium. IP3 receptors are involved in variety of processes during physiological, but also in the pathophysiological states. Unraveling their regulation and function, especially under the pathological situations can result in a development of new therapeutic strategies based on the IP3 receptor′s activation and/or blocking. To the stimuli that can modulate IP3 receptors belong several stress factors (e.g. immobilization stress, oxidative stress and hypoxia) and also apoptosis. Depending on the length and strength of the stress stimulus, expression of IP3 receptors can be increased, or decreased. Therefore, in this minireview modulation of IP3 receptors by some stressors is discussed. Since it was already shown that strong hypoxia might lead to the apoptosis induction, special focus will be given to the hypoxic stress and induction of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号