首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contrary to the long-held dogma according to which the adult mammalian brain does not produce neurons anymore, neuronal turnover has been reported in two discrete areas of the adult brain: the hippocampus and the olfactory bulb. Adult-generated neurons are produced from neural stem cells located in the hippocampal subgranular zone and the subventricular zone of the lateral ventricles. Recently, number of genetic and epigenetic factors that modulate proliferation of stem cells, migration, differentiation and survival of newborn neurons have been characterized. We know that neurogenesis increases in the diseased brain, after stroke or after traumatic brain injury. Importantly, progenitors from the subventricular zone, but not from the subgranular zone, are incorporated at the sites of injury, where they replace some of the degenerated neurons. Thus, the central nervous system has the capacity to regenerate itself after injury and, today, researchers develop strategies aimed at promoting neurogenesis in diseased areas. This basic research is attracting a lot of attention because of the hope that it will lead to regeneration and reconstruction therapy for the damaged brain. In this review, we discuss major findings concerning the organization of the neurogenic niche located in the subventricular zone and examine both intrinsic and extrinsic factors that regulate adult neurogenesis. Then, we present evidences for the intrinsic capability of the adult brain for cell replacement, and shed light on recent works demonstrating that one can greatly enhance appropriate brain cell replacement by using molecular cues known to endogenously control proliferation, migration, differentiation and/or survival of subventricular zone progenitors. Finally, we review some of the advantages and limits of strategies aimed at using endogenous progenitors and their relevance to human clinics.  相似文献   

2.
It is now well documented that active neurogenesis does exist throughout the life span in the brain of various species including human. Two discrete brain regions contain progenitor cells that are capable of differentiating into neurons or glia, the subventricular zone and the dentate gyrus of the hippocampal formation. Recent studies have shown that neurogenesis can be modulated by a variety of factors, including stress and neurohormones, growth factors, neurotransmitters, drugs of abuse, and also strokes and traumatic brain injuries. In particular, the hippocampal neurogenesis may play a role in neuroadaptation associated with pathologies, such as cognitive disorders and depression. The increased neurogenesis at sites of injury may represent an attempt by the central nervous system to regenerate after damage. We herein review the most significant data on hippocampal neurogenesis in brain under various pathological conditions, with a special attention to mood disorders including depression and addiction. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

3.
成年海马中神经发生及影响因素   总被引:1,自引:0,他引:1  
动物成年后在其中枢神经系统内仍有神经发生。成年神经发生的主要区域是海马齿状回的颗粒下层和脑室下区的侧脑室外侧壁。目前认为成年后的海马神经发生参与记忆的形成,尤其对癫痫和神经退行性疾病的缓解和治疗具有重要意义。成年海马的神经发生受多种生理、病理因素的调控。我们就近年来成年海马神经发生的影响因素及其可能机制进行综述。  相似文献   

4.
Development of neural stem cell in the adult brain   总被引:5,自引:0,他引:5  
New neurons are continuously generated in the dentate gyrus of the mammalian hippocampus and in the subventricular zone of the lateral ventricles throughout life. The origin of these new neurons is believed to be from multipotent adult neural stem cells. Aided by new methodologies, significant progress has been made in the characterization of neural stem cells and their development in the adult brain. Recent studies have also begun to reveal essential extrinsic and intrinsic molecular mechanisms that govern sequential steps of adult neurogenesis in the hippocampus and subventricular zone/olfactory bulb, from proliferation and fate specification of neural progenitors to maturation, navigation, and synaptic integration of the neuronal progeny. Future identification of molecular mechanisms and physiological functions of adult neurogenesis will provide further insight into the plasticity and regenerative capacity of the mature central nervous system.  相似文献   

5.
After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether endogenous cell replacement (neurogenesis or gliogenesis) in the brain (subventricular zone, SVZ; corpus callosum, CC; hippocampus, HC; and motor cortex, MC) or cervical spinal cord might represent a structural correlate for spontaneous locomotor recovery after a thoracic spinal cord injury. Adult Fischer 344 rats received severe contusion injuries (200 kDyn) of the mid-thoracic spinal cord using an Infinite Horizon Impactor. Uninjured rats served as controls. From 4 to 14 days post-injury, both groups received injections of bromodeoxyuridine (BrdU) to label dividing cells. Over the course of six weeks post-injury, spontaneous recovery of locomotor function occurred. Survival of newly generated cells was unaltered in the SVZ, HC, CC, and the MC. Neurogenesis, as determined by identification and quantification of doublecortin immunoreactive neuroblasts or BrdU/neuronal nuclear antigen double positive newly generated neurons, was not present in non-neurogenic regions (MC, CC, and cervical spinal cord) and unaltered in neurogenic regions (dentate gyrus and SVZ) of the brain. The lack of neuronal replacement in the brain and spinal cord after spinal cord injury precludes any relevance for spontaneous recovery of locomotor function. Gliogenesis was increased in the cervical spinal cord remote from the injury site, however, is unlikely to contribute to functional improvement.  相似文献   

6.
Stroke potently stimulates cell proliferation in the subventricular zone of the lateral ventricles with subsequent neuroblast migration to the injured striatum and cortex. However, most of the cells do not survive and mature. Extracellular Wnt proteins promote adult neurogenesis in the neurogenic niches. The aim of the study was to examine the efficacy of Wnt signaling on neurogenesis and functional outcome after focal ischemic injury. Lentivirus expressing Wnt3a-HA (LV-Wnt3a-HA) or GFP (LV-GFP) was injected into the striatum or subventricular zone of mice. Five days later, focal ischemic injury was induced by injection of the vasoconstrictor endothelin-1 into the striatum of the same hemisphere. Treatment with LV-Wnt3a-HA into the striatum significantly enhanced functional recovery after ischemic injury and increased the number of BrdU-positive cells that differentiated into mature neurons in the ischemic striatum by day 28. Treatment with LV-Wnt3a-HA into the subventricular zone significantly enhanced functional recovery from the second day after injury and increased the number of immature neurons in the striatum and subventricular zone. This was accompanied by reduced dissemination of the neuronal injury. Our data indicate that Wnt signaling appears to contribute to functional recovery after ischemic injury by increasing neurogenesis or neuronal survival in the striatum.  相似文献   

7.
Until recently, it was believed that adult brains were unable to generate any new neurons. However, it is now commonly known that stem cells remain in the adult central nervous system and that adult vertebrates as well as adult invertebrates are currently adding new neurons in some specialized structures of their central nervous system. In vertebrates, the subventricular zone and the dentate gyrus of the hippocampus are the sites of neuronal precursor proliferation. In some insects, persistent neurogenesis occurs in the mushroom bodies, which are brain structures involved in learning and memory and considered as functional analogues of the hippocampus. In both vertebrates and invertebrates, secondary neurogenesis (including neuroblast proliferation and neuron differentiation) appears to be regulated by hormones, transmitters, growth factors and environmental cues. The functional implications of adult neurogenesis have not yet been clearly demonstrated and comparative study of the various model systems could contribute to better understand this phenomenon. Here, we review and discuss the common characteristics of adult neurogenesis in the various animal models studied so far.  相似文献   

8.
There are several known neurogenic areas including subventricular zone and subgranular layer in the dentate gyrus of the hippocampus. Both germinal centers exhibit an age-dependent decline in cell proliferation and neurogenesis, which may be associated with age-related decline in brain function. We recently identified the subcallosal zone (SCZ) as a novel neural stem cell niche with a potential to spontaneously produce new neuroblasts. We examined whether SCZ neurogenesis is also regulated by the age of mice. The number of newly generated neuroblasts was reduced in the SCZ with age, and only marginal number of DCX-labeled neuroblasts was found in 6-month-old SCZ, which is most likely due to reduced proliferation of progenitor cells and loss of neural stem cells (NSCs). This age-dependent changes in the SCZ occurred earlier than that of other neurogenic brain regions. The neurosphere assay in vitro confirmed the depletion of NSCs within the SCZ of young adults. However, marked induction of neuroblast production in the SCZ was seen in 6-month-old mice after traumatic brain injury. Taken together, these results indicate that a rapid decline in SCZ neurogenesis in mice is due to depletion of NSCs and reduced capacity to produce neuroblasts.  相似文献   

9.
Tailless (Tlx) is an orphan nuclear receptor which is specifically expressed in the neural stem cells of the two largest germinal neurogenesis zones in the adult mouse brain, the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus. By interacting with its cofactors, Tlx represses its target genes and plays an important role in the maintenance of adult NSCs. This review provides a snapshot of current knowledge about Tlx function in adult NSCs.  相似文献   

10.
神经再生(Neurogenesis)是指具有自我更新能力的神经干细胞(Neural Stem Cells,NSCs)经过迁移、增殖,最终分化为具有特定功能的神经细胞的过程。以往人们认为,神经再生只存在于胚胎期或外周神经系统,近几年发现,在成年动物的中枢神经系统也存在神经再生,研究发现侧脑室室管膜下区(SVZ)是神经再生发生的主要区域之一,产生新的神经元和神经胶质细胞通过RMS通路运输至嗅球进而对嗅觉损伤部分进行修复。本文主要从成年神经再生的发展、神经再生与疾病的关系、神经再生的过程等方面进行综述。  相似文献   

11.
Jin K  Minami M  Xie L  Sun Y  Mao XO  Wang Y  Simon RP  Greenberg DA 《Aging cell》2004,3(6):373-377
The adult mammalian brain retains the capacity for neurogenesis, by which new neurons may be generated to replace those lost through physiological or pathological processes. However, neurogenesis diminishes with aging, and this casts doubt on its feasibility as a therapeutic target for cell replacement therapy in stroke and neurodegenerative disorders, which disproportionately affect the aged brain. In previous studies, neurogenesis was stimulated by cerebral ischemia in young rodents, and the neurogenesis response of the aged rodent brain to physiological stimuli, such as hormonal manipulation and growth factors, was preserved. To investigate the effect of aging on ischemia-induced neurogenesis, transient (60 min) middle cerebral artery occlusion was induced in young adult (3-month) and aged (24-month) rats, who were also given bromodeoxyuridine to label newborn cells. As found in prior studies, basal neurogenesis in control, nonischemic rats was reduced with aging. Ischemia failed to stimulate neurogenesis in the dentate gyrus (DG) subgranular zone (SGZ), in contrast to results obtained previously after more prolonged (90-120 min) middle cerebral artery occlusion, but increased the number of BrdU-labeled cells in the forebrain subventricular zone (SVZ). This effect was less prominent in aged than in young adult rats, with fold-stimulation of BrdU incorporation reduced by approximately 20% and the total number of cells generated diminished by approximately 50%. BrdU-labeled cells in SVZ coexpressed neuronal lineage markers, consistent with newborn neurons. We conclude that ischemia-induced neurogenesis occurs in the aged brain, and that measures designed to augment this phenomenon might have therapeutic applications.  相似文献   

12.
Neural stem cells continually generate new neurons in very limited regions of the adult mammalian central nervous system. In the neurogenic regions there are unique and highly specialized microenvironments (niches) that tightly regulate the neuronal development of adult neural stem cells. Emerging evidence suggests that glia, particularly astrocytes, have key roles in controlling multiple steps of adult neurogenesis within the niches, from proliferation and fate specification of neural progenitors to migration and integration of the neuronal progeny into pre-existing neuronal circuits in the adult brain. Identification of specific niche signals that regulate these sequential steps during adult neurogenesis might lead to strategies to induce functional neurogenesis in other brain regions after injury or degenerative neurological diseases.  相似文献   

13.
Prion diseases are irreversible progressive neurodegenerative diseases, leading to severe incapacity and death. They are characterized in the brain by prion amyloid deposits, vacuolisation, astrocytosis, neuronal degeneration, and by cognitive, behavioural and physical impairments. There is no treatment for these disorders and stem cell therapy therefore represents an interesting new approach. Gains could not only result from the cell transplantation, but also from the stimulation of endogenous neural stem cells (NSC) or by the combination of both approaches. However, the development of such strategies requires a detailed knowledge of the pathology, particularly concerning the status of the adult neurogenesis and endogenous NSC during the development of the disease. During the past decade, several studies have consistently shown that NSC reside in the adult mammalian central nervous system (CNS) and that adult neurogenesis occurs throughout the adulthood in the subventricular zone of the lateral ventricle or the Dentate Gyrus of the hippocampus. Adult NSC are believed to constitute a reservoir for neuronal replacement during normal cell turnover or after brain injury. However, the activation of this system does not fully compensate the neuronal loss that occurs during neurodegenerative diseases and could even contribute to the disease progression. We investigated here the status of these cells during the development of prion disorders. We were able to show that NSC accumulate and replicate prions. Importantly, this resulted in the alteration of their neuronal fate which then represents a new pathologic event that might underlie the rapid progression of the disease.  相似文献   

14.
Cultured Rat Astrocytes Give Rise to Neural Stem Cells   总被引:4,自引:0,他引:4  
Previously, we reported the occurrence of neural stem cells (NSCs) around an area of damage after rat traumatic brain injury (TBI), but it was unclear if this was due to blastgenesis in astrocytes, or to NSCs migrating from the subventricular zone (SVZ). In this study, NSCs were isolated and cultured from cultured type 1 astrocytes taken from newborn rat cortex in which the subventricular zone and hippocampus had been discarded. All cultured type 1 astrocytes showed glial fibrillary acidic protein (GFAP) immunopositivity. Nestin immunopositive spheres were isolated from type 1 astrocytes and cultured in the presence of bFGF and EGF in the medium. Neurospheres differentiated into Tuj1-, GFAP- and A2B5-positive cells after 4 days of culture without bFGF and EGF. These results indicate that isolated neurospheres from brain cortex astrocytes can differentiate into neurons and glia and might contribute to neurogenesis and neuroplasticity.  相似文献   

15.
Electroactive materials have been investigated as next-generation neuronal tissue engineering scaffolds to enhance neuronal regeneration and functional recovery after brain injury. Graphene, an emerging neuronal scaffold material with charge transfer properties, has shown promising results for neuronal cell survival and differentiation in vitro. In this in vivo work, electrospun microfiber scaffolds coated with self-assembled colloidal graphene, were implanted into the striatum or into the subventricular zone of adult rats. Microglia and astrocyte activation levels were suppressed with graphene functionalization. In addition, self-assembled graphene implants prevented glial scarring in the brain 7 weeks following implantation. Astrocyte guidance within the scaffold and redirection of neuroblasts from the subventricular zone along the implants was also demonstrated. These findings provide new functional evidence for the potential use of graphene scaffolds as a therapeutic platform to support central nervous system regeneration.  相似文献   

16.
Neurogenesis in the adult central nervous system   总被引:8,自引:0,他引:8  
Contrary to the long-held dogma, neurogenesis occurs throughout adulthood, and neural stem cells reside in the adult central nervous system (CNS) in mammals. The developmental process of the brain may thus never end, and the brain may be amenable to repair. Neurogenesis is modulated in a wide variety of physiological and pathological conditions, and is involved in processes such as learning and memory and depression. However, the relative contribution of newly generated neuronal cells to these processes, as well as to CNS plasticity, remains to be determined. Thus, not only neurogenesis contributes to reshaping the adult brain, it will ultimately lead us to redefine our knowledge and understanding of the nervous system.  相似文献   

17.
Opiate drugs, such as codeine, morphine, and heroin, are powerful analgesics, but also are used as drugs of abuse because of their psychogenic properties. Many studies have shown that opiates impact on cellular proliferation in the adult and developing brain, although anatomical pathologies are lacking in in utero exposed infants and opioid knockout mice. Recent research has defined a context-dependent role for the opioid system in neurogenesis in the adult hippocampus with exercise. Opioids have been shown to interact with proliferating cells of the postnatal subventricular zone of the lateral ventricles. The subventricular zone is also a region of adult neurogenesis, a fact that was not well established at the time this earlier research was conducted. Although a relationship between opioids and fetal neurogenesis has yet to be firmly established, many studies have implicated the opioid system in this process. One common factor that links neurogenesis in adult, postnatal, and fetal structures is the involvement of neuronal progenitor cells of the astrocytic lineage. It is therefore of interest that opioids have been consistently shown to impact upon astrocytic proliferation. It is the intention of this paper to review the literature that has established a role for the opioid system in neurogenesis in vivo in fetal, postnatal, and adult animals and to examine the links of opioids to modulation of astrocytic proliferation.  相似文献   

18.
Neural stem cells (NSCs) lose their competency to generate region-specific neuronal populations at an early stage during embryonic brain development. Here we investigated whether epigenetic modifications can reverse the regional restriction of mouse adult brain subventricular zone (SVZ) NSCs. Using a variety of chemicals that interfere with DNA methylation and histone acetylation, we showed that such epigenetic modifications increased neuronal differentiation but did not enable specific regional patterning, such as midbrain dopaminergic (DA) neuron generation. Only after Oct-4 overexpression did adult NSCs acquire a pluripotent state that allowed differentiation into midbrain DA neurons. DA neurons derived from Oct4-reprogrammed NSCs improved behavioural motor deficits in a rat model of Parkinson's disease (PD) upon intrastriatal transplantation. Here we report for the first time the successful differentiation of SVZ adult NSCs into functional region-specific midbrain DA neurons, by means of Oct-4 induced pluripotency.  相似文献   

19.
In the adult brain, neurogenesis under physiological conditions occurs in the subventricular zone and in the dentate gyrus. Although the exact molecular mechanisms that regulate neural stem cell proliferation and differentiation are largely unknown, several factors have been shown to affect neurogenesis. Decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. Furthermore, in pathological conditions of the central nervous system associated with neuroinflammation, inflammatory mediators such as cytokines and chemokines can affect the capacity of brain stem cells and alter neurogenesis. In this review, we summarize the state of the art on the effects of neuroinflammation on adult neurogenesis and discuss the use of the lipopolysaccharide-model to study the effects of inflammation and reactive-microglia on brain stem cells and neurogenesis. Furthermore, we discuss the possible causes underlying reduced neurogenesis with normal aging and potential anti-inflammatory, pro-neurogenic interventions aimed at improving memory deficits in normal and pathological aging and in neurodegenerative diseases.  相似文献   

20.
Although neurogenesis occurs in restricted regions of the adult mammalian brain, neural stem cells (NSCs) produce very few neurons during ageing or after injury. We have recently discovered that the endogenous bile acid tauroursodeoxycholic acid (TUDCA), a strong inhibitor of mitochondrial apoptosis and a neuroprotective in animal models of neurodegenerative disorders, also enhances NSC proliferation, self-renewal, and neuronal conversion by improving mitochondrial integrity and function of NSCs. In the present study, we explore the effect of TUDCA on regulation of NSC fate in neurogenic niches, the subventricular zone (SVZ) of the lateral ventricles and the hippocampal dentate gyrus (DG), using rat postnatal neurospheres and adult rats exposed to the bile acid. TUDCA significantly induced NSC proliferation, self-renewal, and neural differentiation in the SVZ, without affecting DG-derived NSCs. More importantly, expression levels of mitochondrial biogenesis-related proteins and mitochondrial antioxidant responses were significantly increased by TUDCA in SVZ-derived NSCs. Finally, intracerebroventricular administration of TUDCA in adult rats markedly enhanced both NSC proliferation and early differentiation in SVZ regions, corroborating in vitro data. Collectively, our results highlight a potential novel role for TUDCA in neurologic disorders associated with SVZ niche deterioration and impaired neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号