首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ca2+-sensing receptor (CaSR) regulates Ca2+ homeostasis in the body by monitoring extracellular levels of Ca2+ ([Ca2+]o) and amino acids. Mutations at the hinge region of the N-terminal Venus flytrap domain (VFTD) produce either receptor inactivation (L173P, P221Q) or activation (L173F, P221L) related to hypercalcemic or hypocalcemic disorders. In this paper, we report that both L173P and P221Q markedly impair the functional positive cooperativity of the CaSR as reflected by [Ca2+]o–induced [Ca2+]i oscillations, inositol-1-phosphate (IP1) accumulation and extracellular signal-regulated kinases (ERK1/2) activity. In contrast, L173F and P221L show enhanced responsiveness of these three functional readouts to [Ca2+]o. Further analysis of the dynamics of the VFTD mutants using computational simulation studies supports disruption in the correlated motions in the loss-of-function CaSR mutants, while these motions are enhanced in the gain-of-function mutants. Wild type (WT) CaSR was modulated by L-Phe in a heterotropic positive cooperative way, achieving an EC50 similar to those of the two activating mutations. The response of the inactivating P221Q mutant to [Ca2+]o was partially rescued by L-Phe, illustrating the capacity of the L-Phe binding site to enhance the positive homotropic cooperativity of CaSR. L-Phe had no effect on the other inactivating mutant. Moreover, our results carried out both in silico and in intact cells indicate that residue Leu173, which is close to residues that are part of the L-Phe-binding pocket, exhibited impaired heterotropic cooperativity in the presence of L-Phe. Thus, Pro221 and Leu173 are important for the positive homo- and heterotropic cooperative regulation elicited by agonist binding.  相似文献   

2.
3.
Agonist responses and channel kinetics of native α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors are modulated by transmembrane accessory proteins. Stargazin, the prototypical accessory protein, decreases desensitization and increases agonist potency at AMPA receptors. Furthermore, in the presence of stargazin, the steady-state responses of AMPA receptors show a gradual decline at higher glutamate concentrations. This “autoinactivation” has been assigned to physical dissociation of the stargazin-AMPA receptor complex and suggested to serve as a protective mechanism against overactivation. Here, we analyzed autoinactivation of GluA1–A4 AMPA receptors (all flip isoform) expressed in the presence of stargazin. Homomeric GluA1, GluA3, and GluA4 channels showed pronounced autoinactivation indicated by the bell-shaped steady-state dose response curves for glutamate. In contrast, homomeric GluA2i channels did not show significant autoinactivation. The resistance of GluA2 to autoinactivation showed striking dependence on the splice form as GluA2-flop receptors displayed clear autoinactivation. Interestingly, the resistance of GluA2-flip containing receptors to autoinactivation was transferred onto heteromeric receptors in a dominant fashion. To examine the relationship of autoinactivation to physical separation of stargazin from the AMPA receptor, we analyzed a GluA4-stargazin fusion protein. Notably, the covalently linked complex and separately expressed proteins expressed a similar level of autoinactivation. We conclude that autoinactivation is a subunit and splice form dependent property of AMPA receptor-stargazin complexes, which involves structural rearrangements within the complex rather than any physical dissociation.  相似文献   

4.
In the nervous system, voltage-gated Ca2+ channels regulate numerous processes critical to neuronal function including secretion of neurotransmitters, initiation of action potentials in dendritic regions of some neurons, growth cone elongation, and gene expression. Because of the critical role which Ca2+ channels play in signaling processes within the nervous system, disruption of their function will lead to profound disturbances in neuronal function. Voltage-gated Ca2+ channels are the targets of several relatively rare neurological or neuromuscular diseases resulting from spontaneously-occurring mutations in genes encoding for parts of the channel proteins, or from autoimmune attack on the channel protein responses. Mutations in CACNAIA, which encodes for the alpha1A subunit of P/Q-type Ca2+ channels, lead to symptoms seen in familial hemiplegic migraine, episodic ataxia type 2, and spinocerebellar ataxia type 6. Conversely, autoimmune attack on Ca2+ channels at motor axon terminals causes peripheral cholinergic nerve dysfunction observed in Lambert-Eaton Myasthenic Syndrome (LEMS), the best studied of the disorders targeting voltage-gated Ca2+ channels. LEMS is characterized by decreased evoked quantal release of acetylcholine (ACh) and disruption of the presynaptic active zones, the sites at which ACh is thought to be released. LEMS is generally believed to be due to circulating antibodies directed specifically at the Ca2+ channels located at or near the active zone of motor nerve terminals (P/Q-type) and hence involved in the release of ACh. However, other presynaptic proteins have also been postulated to be targets of the autoantibodies. LEMS has a high degree of coincidence (approximately 60%) with small cell lung cancer; the remaining 40% of patients with LEMS have no detectable tumor. Diagnosis of LEMS relies on characteristic patterns of electromyographic changes; these changes are observable at neuromuscular junctions of muscle biopsies from patients with LEMS. In the majority of LEMS patients, those having detectable tumor, the disease is thought to occur as a result of immune response directed initially against voltage-gated Ca2+ channels found on the lung tumor cells. In these patients, effective treatment of the underlying tumor generally causes marked improvement of the symptoms of LEMS as well. Animal models of LEMS can be generated by chronic administration of plasma, serum or immunoglobulin G to mice. These models have helped dramatically in our understanding of the pathogenesis of LEMS. This "passive transfer" model mimics the electrophysiological and ultrastructural findings seen in muscle biopsies of patients with LEMS. In this model, we have shown that the reduction in amplitude of Ca2+ currents through P/Q-type channels is followed by "unmasking" of an L-type Ca2+ current not normally found at the motor nerve terminal which participates in release of ACh from terminals of mice treated with plasma from patients with LEMS. It is unclear what mechanisms underlie the development of this novel L-type Ca2+ current involved in release of ACh at motor nerve terminals during passive transfer of LEMS.  相似文献   

5.
Ca2+ and Mg2+ are important mediators and regulators of intracellular Ca2+ signaling in muscle. The effects of changes of cytosolic [Ca2+] or [Mg2+] on elementary Ca2+ release events were determined, as functions of concentration and time, in single fast-twitch permeabilized fibers of rat and frog. Ca2+ sparks were identified and their parameters measured in confocal images of fluo-4 fluorescence. Solutions with different [Ca2+] or [Mg2+] were rapidly exchanged while imaging. Faster and spatially homogeneous changes of [Ca2+] (reaching peaks >100 microM) were achieved by photolysing Ca NP-EGTA with laser flashes. In both species, incrementing cytosolic [Ca2+] caused a steady, nearly proportional increase in spark frequency, reversible upon [Ca2+] reduction. A greater change in spark frequency, usually transient, followed sudden increases in [Ca2+] after a lag of 100 ms or more. The nonlinearity, lag, and other features of this delayed effect suggest that it requires increase of [Ca2+] inside the SR. In the frog only, increases in cytosolic [Ca2+] often resulted, after a lag, in sparks that propagated transversally. An increase in [Mg2+] caused a fall of spark frequency, but with striking species differences. In the rat, but not the frog, sparks were observed at 4-40 mM [Mg2+]. Reducing [Mg2+] below 2 mM, which should enable the RyR channel's activation (CICR) site to bind Ca2+, caused progressive increase in spark frequency in the frog, but had no effect in the rat. Spark propagation and enhancement by sub-mM Mg2+ are hallmarks of CICR. Their absence in the rat suggests that CICR requires RyR3 para-junctional clusters, present only in the frog. The observed frequency of sparks corresponds to a channel open probability of 10(-7) in the frog or 10(-8) in the rat. Together with the failure of photorelease to induce activation directly, this indicates a basal inhibition of channels in situ. It is proposed that relief of this inhibition could be the mechanism by which increased SR load increases spark frequency.  相似文献   

6.
《Inorganica chimica acta》1988,152(4):257-260
By using a conventional FT NMR spectrometer and probe, we first detected 43Ca NMR spectra of the Ca2+ (2.9 mM): calmodulin (0.725 mM) (1:1 per binding site) complex in 0.15 M N-2-hydroxyethylpiperazine N′-2-ethanesulfonic acid (HEPES)–K+ buffer (pH 7.2). The half-band width of the complex was nearly 160 Hz and the signal of the complex was located at the 2.13 ppm (43 Hz) lower field from that of the free Ca2+ ion. By adding trifluoperazine, melittin, substance P or glucagon, the half-band widths of the Ca2+–calmodulin complex (1:1 per binding site) were remarkably reduced and the chemical shifts of the complex moved back to the upper field. It is suggested that the Ca2+ ion may bind to Ca2+ low-affinity sites more tightly in the presence of those effectors than in their absence.  相似文献   

7.
Abstract

The β2-adrenergic receptor (β2AR) couples to Gs, activating adenylyl cyclase (AC) and increasing cAMP. Such signaling undergoes desensitization with continued agonist exposure. β2AR also couple to Gi after receptor phosphorylation by the cAMP dependent protein kinase A, but the efficiency of such coupling is not known. Given the PKA dependence of β2AR-Gi coupling, we explored whether this may be a mechanism of agonist-promoted desensitization. HEK293 cells were transfected to express β2AR or β2AR and Giα2, and then treated with vehicle or the agonist isoproterenol to evoke agonist-promoted β2AR desensitization. Membrane AC activities showed that Giα2 overexpression decreased basal levels, but the fold-stimulation of the AC over basal by agonist was not altered. However, with treatment of the cells with isoproterenol prior to membrane preparation, a marked decrease in agonist-stimulated AC was observed with the cells overexpressing Giα2. in the absence of such overexpression, β2AR desensitization was 23 ± 7%, while with 5-fold Giα2 overexpression desensitization was 58 ± 5% (p<0.01, n=4). the effect of Gi on desensitization was receptor-specific, in that forskolin responses were not altered by Giα2 overexpression. Thus, acquired β2AR coupling to Gi is an important mechanism of agonist-promoted desensitization, and pathologic conditions that increase Gi levels contribute to β2AR dysfunction.  相似文献   

8.
Cl conductance in cultured embryonic chick cardiac myocytes was characterized using whole-cell patch clamp techniques. Following elimination of cation currents in Na+and K+-free internal and external solutions, the basal whole-cell current was predominantly a Cl current. Cl-sensitive current (I Cl) was defined as the difference between the whole-cell currents recorded in normal and low [Cl] o when measured in the same cell. The whole-cell current in the absence or presence of 10 m cAMP was time independent, displayed outward rectification with the pipette [Cl] < 40 mm, and was not saturated with a physiological Cl gradient. The Cl current was also activated by 1 m forskolin and inhibited by 0.3 mm anthracene-9-carboxylic acid (9-AC). Forskolin was less effective than cAMP (internal dialysis) in activating the Cl current. The cAMP- or forskolin-activated and basal Cl current were reasonably fit by the Goldman-Hodgkin-Katz equation. The calculated P Cl in the presence of cAMP was increased by fiveto sixfold over the basal level. In the presence of 5 mm EGTA to decrease free [Ca2+] i , the whole-cell current could not be stimulated by cAMP, forskolin or IBMX (0.1 mm). These data suggest that cultured chick cardiac myocytes have a low basal Cl conductance, which, as in some mammalian cardiac ventricular myocytes, can be activated by cAMP. However, this study shows that the activation process requires physiological free [Ca2+] i .This study was supported by grants from the National Institutes of Health (HL-17670, HL-27105 and HL-07107) for M.L. and by Institutional funds of the University of Arkansas for Medical Sciences for S.L.We thank Meei-Yueh Liu, Kathleen Mitchell, and Shirley Revels for their technical assistance.  相似文献   

9.
When the receptors for platelet-derived growth factor (PDGF) are activatedthey aggregate, become tyrosine-phosphorylated and elicit a cascade ofdown-stream signals, including mobilization of Ca2+ from intra- andextracellular stores. Receptor mobility in the plane of the membrane isa prerequisite for receptor aggregation and further signalling. Using humanforeskin fibroblasts (AG 1523) and fluorescence recovery afterphotobleaching (FRAP), we therefore assessed the lateral mobilitycharacteristics of PDGF-2 receptors by their diffusioncoefficient (D), and fraction of mobile receptors (R). This was done oncells stimulated with either normal human serum (NHS) or PDGF underdifferent Ca2+-conditions.The results suggest that both intra- and extracellular free Ca2+influence the mobility characteristics of the PDGF-2receptor. Interestingly, the extracellular Ca2+ seems to imposegeneral restrictions on the mobility of receptors, since R increased whenextracellular Ca2+ was quenched with EGTA, whereas intracellularclamping of Ca2+ transients with MABTAM (BAPT/AM) primarily affectedD. When both intra- and extracellular Ca2+ were quenced, D remainedlow and R high, further supporting the proposition that they achievedistinct effects. Inhibition of tyrosine phosphorylation with Erbstatin,partly inhibited the NHS effects and released PDGF-induced receptorimmobilization. Ratio imaging with Fura-2 displayed that both NHS and PDGFinduced changes in intracellular free [Ca2+]. In view of the presentdata it might have important effects on the state of the receptor in themembrane, for instance by regulating its lateral mobility, communicationwith other receptors and signalling functions in the membrane.  相似文献   

10.
Summary Ehrlich ascites tumor cells resuspended in hypotonic medium initially swell as nearly perfect osmometers, but subsequently recover their volume within 5 to 10 min with an associated KCl loss. 1. The regulatory volume decrease was unaffected when nitrate was substituted for Cl, and was insensitive to bumetanide and DIDS. 2. Quinine, an inhibitor of the Ca2+-activated K+ pathway, blocked the volume recovery. 3. The hypotonic response was augmented by addition of the Ca2+ ionophore A23187 in the presence of external Ca2+, and also by a sudden increase in external Ca2+. The volume response was accelerated at alkaline pH. 4. The anti-calmodulin drugs trifluoperazine, pimozide, flupentixol, and chlorpromazine blocked the volume response. 5. Depletion of intracellular Ca2+ stores inhibited the regulatory volume decrease. 6. Consistent with the low conductive Cl permeability of the cell membrane there was no change in cell volume or Cl content when the K+ permeability was increased with valinomycin in isotonic medium. In contrast, addition of the Ca2+ ionophore A23187 in isotonic medium promoted Cl loss and cell shrinkage. During regulatory volume decrease valinomycin accelerated the net loss of KCl, indicating that the conductive Cl permeability was increased in parallel with and even more than the K+ permeability. It is proposed that separate conductive K+ and Cl channels are activated during regulatory volume decrease by release of Ca2+ from internal stores, and that the effect is mediated by calmodulin.  相似文献   

11.
Application of fluid pressure (FP) using pressurized fluid flow suppresses the L-type Ca2+ current through both enhancement of Ca2+ release and intracellular acidosis in ventricular myocytes. As FP-induced intracellular acidosis is more severe during the inhibition of Na+–H+ exchange (NHE), we examined the possible role of NHE in the regulation of ICa during FP exposure using HOE642 (cariporide), a specific NHE inhibitor. A flow of pressurized (∼16 dyn/cm2) fluid was applied onto single rat ventricular myocytes, and the ICa was monitored using a whole-cell patch-clamp under HEPES-buffered conditions. In cells pre-exposed to FP, additional treatment with HOE642 dose-dependently suppressed the ICa (IC50 = 0.97 ± 0.12 μM) without altering current–voltage relationships and inactivation time constants. In contrast, the ICa in control cells was not altered by HOE642. The HOE642 induced a left shift in the steady-state inactivation curve. The suppressive effect of HOE642 on the ICa under FP was not altered by intracellular high Ca2+ buffering. Replacement of external Cl with aspartate to inhibit the Cl-dependent acid loader eliminated the inhibitory effect of HOE642 on ICa. These results suggest that NHE may attenuate FP-induced ICa suppression by preventing intracellular H+ accumulation in rat ventricular myocytes and that NHE activity may not be involved in the Ca2+-dependent inhibition of the ICa during FP exposure.  相似文献   

12.
Cardiac mitochondrial matrix (m) free Ca2+ ([Ca2+]m) increases primarily by Ca2+ uptake through the Ca2+ uniporter (CU). Ca2+ uptake via the CU is attenuated by extra-matrix (e) Mg2+ ([Mg2+]e). How [Ca2+]m is dynamically modulated by interacting physiological levels of [Ca2+]e and [Mg2+]e and how this interaction alters bioenergetics are not well understood. We postulated that as [Mg2+]e modulates Ca2+ uptake via the CU, it also alters bioenergetics in a matrix Ca2+–induced and matrix Ca2+–independent manner. To test this, we measured changes in [Ca2+]e, [Ca2+]m, [Mg2+]e and [Mg2+]m spectrofluorometrically in guinea pig cardiac mitochondria in response to added CaCl2 (0–0.6 mM; 1 mM EGTA buffer) with/without added MgCl2 (0–2 mM). In parallel, we assessed effects of added CaCl2 and MgCl2 on NADH, membrane potential (ΔΨm), and respiration. We found that >0.125 mM MgCl2 significantly attenuated CU-mediated Ca2+ uptake and [Ca2+]m. Incremental [Mg2+]e did not reduce initial Ca2+uptake but attenuated the subsequent slower Ca2+ uptake, so that [Ca2+]m remained unaltered over time. Adding CaCl2 without MgCl2 to attain a [Ca2+]m from 46 to 221 nM enhanced state 3 NADH oxidation and increased respiration by 15 %; up to 868 nM [Ca2+]m did not additionally enhance NADH oxidation or respiration. Adding MgCl2 did not increase [Mg2+]m but it altered bioenergetics by its direct effect to decrease Ca2+ uptake. However, at a given [Ca2+]m, state 3 respiration was incrementally attenuated, and state 4 respiration enhanced, by higher [Mg2+]e. Thus, [Mg2+]e without a change in [Mg2+]m can modulate bioenergetics independently of CU-mediated Ca2+ transport.  相似文献   

13.
Glycine (Gly) is considered an obligatory co-agonist at NMDA receptors. Müller glia from the retina harbor functional NMDA receptors, as well as low and high affinity Gly transporters, the later identified as GLYT1. We here studied the regulation of Gly transport in primary cultures of Müller glia, as this process could contribute to the modulation of NMDA receptor activity at glutamatergic synapses in the retina. We demonstrate that neither glutamate stimulation nor the activation or inhibition of protein kinases A or C modify transport. In order to assess a function for Ca2+ and calmodulin (CaM)-dependent processes in the regulation of Gly transport, we explored the participation of Ca2+ concentration, CaM and Ca2+/CaM-dependent enzymes on Gly transporter activity. ATP and carbachol, known to induce Ca2+ waves in Müller cells, as well as caffeine-induced Ca2+ release from intracellular stores stimulated transport, whereas Ca2+ chelation by BAPTA-AM markedly reduced transport. CaM inhibitors W-7, ophiobolin A, R-24571 and trifluoperazine, induced a specific dose-dependent inhibition of transport. The inhibition of CaMKII by the autocamtide-2-related inhibitory peptide or by KN62 caused a decrease in transport which, in the case of KN62, was due to the abolition of the high affinity component, ascribed to GLYT1. Our results further suggest that Gly transport is under cytoskeletal control, as activation of calpain by major increases in [Ca2+]i induced by ionophores, as well as actin destabilization clearly inhibit uptake. We here demonstrate for the first time the participation of CaM, CaMKII and the actin cytoskeleton in the regulation of Gly transport in glia. Ca2+ waves are induced in Müller cells by distinct neuroactive compounds released by neurons and glia, hence the regulation of [Gly] by this system may be of physiological relevance in the control of retinal excitability.  相似文献   

14.
15.
WHIM (warts, hypogammaglobulinemia, infections, and myelokatexis) syndrome is a rare immunodeficiency syndrome linked to heterozygous mutations of the chemokine receptor CXCR4 resulting in truncations of its cytoplasmic tail. Leukocytes from patients with WHIM syndrome display impaired CXCR4 internalization and enhanced chemotaxis in response to its unique ligand SDF-1/CXCL12, which likely contribute to the clinical manifestations. Here, we investigated the biochemical mechanisms underlying CXCR4 deficiency in WHIM syndrome. We report that after ligand activation, WHIM-associated mutant CXCR4 receptors lacking the carboxy-terminal 19 residues internalize and activate Erk 1/2 slower than wild-type (WT) receptors, while utilizing the same trafficking endocytic pathway. Recruitment of β-Arrestin 2, but not β-Arrestin 1, to the active WHIM-mutant receptor is delayed compared to the WT CXCR4 receptor. In addition, while both kinases Grk3 and Grk6 bind to WT CXCR4 and are critical to its trafficking to the lysosomes, Grk6 fails to associate with the WHIM-mutant receptor whereas Grk3 associates normally. Since β-Arrestins and Grks play critical roles in phosphorylation and internalization of agonist-activated G protein-coupled receptors, these results provide a molecular basis for CXCR4 dysfunction in WHIM syndrome.  相似文献   

16.
E2–25K/Hip2 is an unusual ubiquitin-conjugating enzyme that interacts with the frameshift mutant of ubiquitin B (UBB+1) and has been identified as a crucial factor regulating amyloid-β neurotoxicity. To study the structural basis of the neurotoxicity mediated by the E2–25K-UBB+1 interaction, we determined the three-dimensional structures of UBB+1, E2–25K and the E2–25K/ubiquitin, and E2–25K/UBB+1 complex. The structures revealed that ubiquitin or UBB+1 is bound to E2–25K via the enzyme MGF motif and residues in α9 of the enzyme. Polyubiquitylation assays together with analyses of various E2–25K mutants showed that disrupting UBB+1 binding markedly diminishes synthesis of neurotoxic UBB+1-anchored polyubiquitin. These results suggest that the interaction between E2–25K and UBB+1 is critical for the synthesis and accumulation of UBB+1-anchored polyubiquitin, which results in proteasomal inhibition and neuronal cell death.  相似文献   

17.
We examined changes in nuclear peroxisome proliferator-activated receptor γ (PPARγ) in the striatum in methamphetamine (METH)-induced dopaminergic neurotoxicity, and also examined effects of treatment with drugs possessing PPARγ agonistic properties. The marked reduction of nuclear PPARγ-expressed cells was seen in the striatum 3 days after METH injections (4 mg/kg × 4, i.p. with 2-h interval). The reduction of dopamine transporter (DAT)-positive signals and PPARγ expression, and accumulation of activated microglial cells were significantly and dose-dependently attenuated by four injections of a nonsteroidal anti-inflammatory drug and a PPARγ ligand, ibuprofen (10 or 20 mg/kg × 4, s.c.) given 30 min prior to each METH injection, but not by either a low or high dose of aspirin. Either treatment of ibuprofen or aspirin, that showed no effects on METH-induced hyperthermia, significantly blocked the METH-induced striatal cyclooxygenase (COX) expression. Furthermore, the treatment of an intrinsic PPARγ ligand 15d-PG J2 also attenuated METH injections-induced reduction of striatal DAT. Therefore, the present study suggests the involvement of reduction of PPARγ expression in METH-induced neurotoxicity. Taken together with the previous report showing protective effects of other PPARγ ligand, these results imply that the protective effects of ibuprofen against METH-induced neurotoxicity may be based, in part, on its anti-inflammatory PPARγ agonistic properties, but not on its COX-inhibiting property or hypothermic effect. Special issue article in honor of Dr. Akitane Mori.  相似文献   

18.
The GluA2 subunit of the AMPA receptor (AMPAR) dominantly blocks AMPAR Ca2+ permeability, and its trafficking to the synapse regulates AMPAR-dependent synapse Ca2+ permeability. Here we show that GluA2 trafficking from the endoplasmic reticulum (ER) to the plasma membrane of cultured hippocampal neurons requires Ca2+ release from internal stores, the activity of Ca2+/calmodulin activated kinase II (CaMKII), and GluA2 interaction with the PDZ protein, PICK1. We show that upon Ca2+ release from the ER via the IP3 and ryanodine receptors, CaMKII that is activated enters a complex that contains PICK1, dependent upon the PICK1 BAR (Bin-amphiphysin-Rvs) domain, and that interacts with the GluA2 C-terminal domain and stimulates GluA2 ER exit and surface trafficking. This study reveals a novel mechanism of regulation of trafficking of GluA2-containing receptors to the surface under the control of intracellular Ca2+ dynamics and CaMKII activity.  相似文献   

19.
AMPA receptors are tetrameric glutamate-gated ion channels that mediate fast synaptic neurotransmission in mammalian brain. Their subunits contain a two-lobed N-terminal domain (NTD) that comprises over 40% of the mature polypeptide. The NTD is not obligatory for the assembly of tetrameric receptors, and its functional role is still unclear. By analyzing full-length and NTD-deleted GluA1–4 AMPA receptors expressed in HEK 293 cells, we found that the removal of the NTD leads to a significant reduction in receptor transport to the plasma membrane, a higher steady state-to-peak current ratio of glutamate responses, and strongly increased sensitivity to glutamate toxicity in cell culture. Further analyses showed that NTD-deleted receptors display both a slower onset of desensitization and a faster recovery from desensitization of agonist responses. Our results indicate that the NTD promotes the biosynthetic maturation of AMPA receptors and, for membrane-expressed channels, enhances the stability of the desensitized state. Moreover, these findings suggest that interactions of the NTD with extracellular/synaptic ligands may be able to fine-tune AMPA receptor-mediated responses, in analogy with the allosteric regulatory role demonstrated for the NTD of NMDA receptors.  相似文献   

20.
Neurochemical Research - Nicotine abuse adversely affects brain and causes apoptotic neurodegeneration. Curcumin- a bright yellow chemical compound found in turmeric is associated with...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号