首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analyses of variance for 111 characters from 55 races and subraces of maize from eastern South America grown at Piracicaba, S. P., Brazil, between 1960 and 1965, indicated that those characters which were least affected by environmental factors and interactions were reproductive characters. In particular, the component of variance due to differences among races for certain ear and kernel characters was greater than the sum of the corresponding components due to differences among years and race by year interactions. The converse was true for all vegetative characters. Tassel characters tended to be intermediate between ear and plant characters. While some indices had larger components of variance attributable to racial differences than to the effects of environment and/or environmental interaction, some commonly used ones, such as cob/rachis and rachilla/kernel indices, proved to be quite susceptible to environmental influences. Again, indices based upon solely vegetative characters were consistently influenced more strongly by environmental factors and interaction than were those based on reproductive characters.  相似文献   

2.
Gianola D  Heringstad B  Odegaard J 《Genetics》2006,173(4):2247-2255
Finite mixture models are helpful for uncovering heterogeneity due to hidden structure. Quantitative genetics issues of continuous characters having a finite mixture of Gaussian components as statistical distribution are explored in this article. The partition of variance in a mixture, the covariance between relatives under the supposition of an additive genetic model, and the offspring-parent regression are derived. Formulas for assessing the effect of mass selection operating on a mixture are given. Expressions for the genetic and phenotypic correlations between mixture and Gaussian traits and between two mixture traits are presented. It is found that, if there is heterogeneity in a population at the genetic or environmental level, then genetic parameters based on theory treating distributions as homogeneous can lead to misleading interpretations. Some peculiarities of mixture characters are: heritability depends on the mean values of the component distributions, the offspring-parent regression is nonlinear, and genetic or phenotypic correlations cannot be interpreted devoid of the mixture proportions and of the parameters of the distributions mixed.  相似文献   

3.
Changes in the genetic and environmental components of the phenotypic variance of 20 morphological characters were studied in Mexican migrant and sedentary populations. As far as the changes in variance components and the average values of traits were concerned, it was found that some traits were subjected to different forms of selection pressure, some changed within the limits of the norm reaction, and some remained unchanged.  相似文献   

4.
The degree of genetic determination of 25 quantitative dermatoglyphic characteristics has been studied on family: twin material: 45 pairs of MZ and 75 single-sex DZ twins; and 53 single-sex "parent-child" pairs. Approximating formulae were used to estimate main components of phenotypic variance due to additive interaction of genetic factors, to non-linear effects (intralocus dominance) and to the effect of total-familiar and random environmental factors. All the finger dermatoglyphic characteristics studied had a high degree of genetic determination (G greater than 0,80), and for most of them the contribution into the large variance of intralocus dominance effects was comparable with that of additive gene interaction, included in the determination of these characters. There are some palm dermatoglyphic characteristics ("ad" distance "cd" comb counting, "bad", "adt" and "cda" angles), which degree of genetic determination is low (G less than 0,35). At least ten quantitative finger and palm dermatogliphic characteristics with a high degree of genetic determination can be used for special studies in frames of multidimentional genetical analysis, including determination of twin zygosity type. Earlier described "indices" (using twin data) of relative role of genetic and environment factors in the determination of populational variability of quantitative characters are considered. None of them is shown to be a reliable estimate of the coefficient of genetic character determination. The use of these indices in practical studies can result in wrong conclusions on the degree and the character of genetic determination of quantitative characters.  相似文献   

5.
The phenotypic variance (V(P)) may be divided into the genetic variance (V(G)), the general environmental variance (V(Eg)), and the special environmental variance (V(Es)). The latter is estimated through repeatability calculation (b). This value is considered the upper limit of heritability and represents maximum genetic variance proportion (V(Gm) = V(G) + V(Eg)) in relation to V(P) (b = (V(G) + V(Eg))/V(P)). This process allows an improved determination of biological relationships among groups from estimators maximizing the genetic information of quantitative characters. Two hundred and thirty-seven individuals inhabiting the northern coast of Chile for 4,000 years were taken as a sample. Measurement was made of six metric characters at both sides of the cranium. Special environmental values (es) were obtained by regression. The difference between these values and the phenotypic values (p) consists in the genetic values plus the general environmental values (g + eg). A mean b value of 0.83 indicated that V(Es) represents 17% of V(P). The results showed: 1) high stability of the maximum genetic variance in time and space, 2) high correlation between the biological relationships model, the phenotypic model, and the maximum genetic model, and 3) random distribution of the nongenetic variation, as expected from the quantitative genetics theory. These results support the use of phenotypic data for the interpretation of the evolution history of prehistoric populations.  相似文献   

6.
Genes and environment   总被引:1,自引:0,他引:1  
Many quantitative characters depend on the action of a large number of genes and environmental factors. The mode of inheritance of these characters is polygenic. The phenotypic variance of the character is the sum of the components, thus the genetic and the environmental variances (VP = VG + VE). The degree of genetic determination VG/VP and VE/VP are difficult to estimate in man. The heritability a related coefficient to VG/VP can be estimated from the degree of ressemblance between relatives. The heritability is the additive genetique variance as a proportion of the phenotypic variance. Polygenic threshold inheritance can account for the familial non mendelian distribution of multifactorial diseases.  相似文献   

7.
A study of monozygotic and dizygotic twins from the moment of their birth till 13 years of age showed that differences in twin genesis and conditions of prenatal development exert no statistically significant influence on formation of average indices. At different stages of ontogenesis contribution of the genetic determinant estimated by index H was different as to a degree of manifestation, directivity (+; -) sex-dependent peculiarities of realization.  相似文献   

8.
The heritability estimates of 25 external morphometric characters and 23 craniometric indices are obtained by use of variances in monoclonal all-female triploids and bisexual tetraploids of spined loaches (genus Cobitis, Cobitidae) collected from the same breeding biotope. Most of studied traits demonstrate low heritability confirming previous conclusion on the similarity between external morphometric characters and craniological indices in relative effects of genetic and environmental components in their total phenotypic variation. Low heritability estimates in most of external morphological traits correspond to their low diagnostic value in Cobitis species. As a whole, in spite of certain deviations, studies on clonal forms do not refute the concept on higher heritability estimates in diagnostically significant traits in comparison with traits without diagnostic values in the same taxonomic group. Low heritability in most morphometric traits more probably is resulted from their low additive genetic variation caused by strong selection of evolutionary developed specific body shape in spined loaches, because strong selection should reduce the genetic variance in body proportions to minimal size. Sex differences observed in heritability estimates should be interpreted as a result of linkage of several additive genes controlling these traits to sex chromosomes. A few characters demonstrating high heritability estimates up to 0.492–0.580 are of great interest for taxonomic and phylogenetic studies in genus Cobitis and related taxa.  相似文献   

9.
拟南芥(Arabidopsis thaliana)是植物生物学的模式植物, 在分子遗传学方面已经积累了丰富的研究成果, 但目前对拟南芥自然分布的生境特点、表型变化的环境依赖特征等研究很少, 极大地限制了对拟南芥进化动力和机制的理解。为了了解在微环境下拟南芥种群分布和表型性状的变化特点, 对天山北部分布于塔尔巴哈台山、阿尔泰山和天山的10个拟南芥种群的分布特征、表型的变化特点, 以及与综合环境因子的相互关系进行了分析。结果表明: 除分枝数外, 株高、株重、根重、单个果实重量、单株果数、单株果重、果长、果实开裂力度、单株果重/总重9个特征在种群间变化显著, 可塑性能力较强; 但方差分析和变异系数结果显示, 角果长度、果实开裂力度在种群内和种群间的变化相对较小。表型特征在山系间、经纬度和海拔间的变化规律不明显。拟南芥主要分布于pH值和HCO3 -含量低, 有机质丰富, 且有一定坡度的沙土地块上。种群内拟南芥分布频度很低, 在1.56%-10.69%之间, 空间自相关距离在15.4-46.7 cm之间变化较大, 10个种群均呈现极显著集群分布, 分布的集群性受果实开裂力度的影响显著, 而果实开裂力度随环境胁迫而极显著增加。总结认为: 天山北部拟南芥生长和分布主要受微环境的影响, 在干旱环境下, 拟南芥主要通过增加繁殖分配比例, 产生难开裂的果实, 促使种子短距离扩散于母株周围, 确保子代利用原适宜生境来生存繁衍。  相似文献   

10.
The genetic covariance structure for life-history characters in two populations of cyclically parthenogenetic Daphnia pulex indicates considerable positive correlation among important fitness components, apparently at odds with the expectation if antagonistic pleiotropy is the dominant cause of the maintanence of genetic variation. Although there is no genetic correlation between offspring size and offspring number, present growth and present reproduction are both strongly positively correlated genetically with future reproduction, and early maturity is genetically correlated with larger clutch size. Although the ubiquity of antagonistic pleiotropy has been recently questioned, there are peculiarities of cyclical parthenogenesis that could lead to positive life-history covariance even when negative covariance would be expected in a similar sexual species. These include the influence of nonadditive gene action on evolution in clonally reproducing organisms, and the periodic release of hidden genetic variance within populations of cyclical parthenogens. Examination of matrix similarity, using the bootstrap for distribution-free hypothesis testing, reveals no evidence to suggest that the genetic covariance matrices differ between the populations. However, there is considerable evidence that the phenotypic and environmental covariance matrices differ between populations. These results indicate approximate stability of the genetic covariance matrix within species, an important assumption of many phenotypic evolution models, but should caution against the use of phenotypic in place of genetic covariance matrices.  相似文献   

11.
Large-scale geographical variation in phenotypic traits within species is often correlated to local environmental conditions and population density. Such phenotypic variation has recently been shown to also be influenced by genetic structuring of populations. In ungulates, large-scale geographical variation in phenotypic traits, such as body mass, has been related to environmental conditions and population density, but little is known about the genetic influences. Research on the genetic structure of moose suggests two distinct genetic lineages in Norway, structured along a north-south gradient. This corresponds with many environmental gradients, thus genetic structuring provides an additional factor affecting geographical phenotypic variation in Norwegian moose. We investigated if genetic structure explained geographical variation in body mass in Norwegian moose while accounting for environmental conditions, age and sex, and if it captured some of the variance in body mass that previously was attributed to environmental factors. Genetic structuring of moose was the most important variable in explaining the geographic variation in body mass within age and sex classes. Several environmental variables also had strong explanatory power, related to habitat diversity, environmental seasonality and winter harshness. The results suggest that environmental conditions, landscape characteristics, and genetic structure should be evaluated together when explaining large-scale patterns in phenotypic characters or life history traits. However, to better understand the role of genetic and environmental effects on phenotypic traits in moose, an extended individual-based study of variation in fitness-related characters is needed, preferably in an area of convergence between different genetic lineages.  相似文献   

12.
Olson DM  Andow DA 《Heredity》2002,88(6):437-443
A quantitative genetic study revealed genetic and environmental sources of variance in percentage parasitism of European corn borer egg masses and secondary sex ratios by Trichogramma nubilale. Full and half-sib groups of T. nubilale were obtained from a nested mating design, which permitted the partitioning of the variance of T. nubilale parasitism of European corn borer egg masses into additive genetic variance, maternal/dominant variance and environmental variance. A mother-daughter regression of the percentage of an egg mass parasitized allowed a determination of the direction of a potential response to selection in the event of maternal effects. No or very little additive genetic effects were associated with the percentage of eggs within a mass parasitized and secondary sex ratios, but a significant amount of the variance for both traits had a maternal and/or dominant genetic source. The relationship between mothers and daughters in egg mass parasitism was positive, and 55.4% of the progeny of a given mother had behaviors that resemble their mother. Most of the variance had an environmental and/or unknown genetic source implying potentially high phenotypic plasticity associated with all these traits. The presence of maternal effects and phenotypic plasticity could have multiple and complex effects on progeny characters and potential responses to selection.  相似文献   

13.
By transforming dichotomous characters (for instance the presence or absence of a certain disease) to zero-one characters it is possible to estimate the variance and variance components. This paper explains the peculiarities occurring in the linear model and estimation functions and the application of the method for heritability estimation.  相似文献   

14.
A population in which there is stabilizing selection acting on quantitative traits toward an intermediate optimum becomes monomorphic in the absence of mutation. Further, genotypes that show least environmental variation are also favored, such that selection is likely to reduce both genetic and environmental components of phenotypic variance. In contrast, intraspecific competition for resources is more severe between phenotypically similar individuals, such that those deviating from prevailing phenotypes have a selective advantage. It has been shown previously that polymorphism and phenotypic variance can be maintained if competition between individuals is "effectively" stronger than stabilizing selection. Environmental variance is generally observed in quantitative traits, so mechanisms to explain its maintenance are sought, but the impact of competition on its magnitude has not previously been studied. Here we assume that a quantitative trait is subject to selection for an optimal value and to selection due to competition. Further, we assume that both the mean and variance of the phenotypic value depend on genotype, such that both may be affected by selection. Theoretical analysis and numerical simulations reveal that environmental variance can be maintained only when the genetic variance (in mean phenotypic value) is constrained to a very low level. Environmental variance will be replaced entirely by genotypic variance if a range of genotypes that vary widely in mean phenotype are present or become so by mutation. The distribution of mean phenotypic values is discrete when competition is strong relative to stabilizing selection; but more genotypes segregate and the distribution can approach continuity as competition becomes extremely strong. If the magnitude of the environmental variance is not under genetic control, there is a complementary relationship between the levels of environmental and genetic variance such that the level of phenotypic variance is little affected.  相似文献   

15.
The genetic and environmental components of variance for two quantitative characters were measured in the descendants of Drosophila melanogaster populations which had been grown for several generations at densities of 100, 200, 300, and 400 eggs per vial. Populations subject to intermediate densities had a greater proportion of phenotypic variance available for selection than populations from either extreme. Selection on either character would be least effective under pure r-selection, a frequent attribute of selection programs.  相似文献   

16.
Despite great interest in sexual selection, relatively little is known in detail about the genetic and environmental determinants of secondary sexual characters in natural populations. Such information is important for determining the way in which populations may respond to sexual selection. We report analyses of genetic and large-scale environmental components of phenotypic variation of two secondary sexual plumage characters (forehead and wing patch size) in the collared flycatcher Ficedula albicollis over a 22-year period. We found significant heritability for both characters but little genetic covariance between the two. We found a positive association between forehead patch size and a large-scale climatic index, the North Atlantic Oscillation (NAO) index, but not for wing patch. This pattern was observed in both cross-sectional and longitudinal data suggesting that the population response to NAO index can be explained as the result of phenotypic plasticity. Heritability of forehead patch size for old males, calculated under favorable conditions (NAO index > or = median), was greater than that under unfavorable conditions (NAO index < median). These changes occurred because there were opposing changes in additive genetic variance (VA) and residual variance (VR) under favorable and unfavorable conditions, with VA increasing and VR decreasing in good environments. However, no such effect was detected for young birds, or for wing patch size in either age class. In addition to these environmental effects on both phenotypic and genetic variances, we found evidence for a significant decrease of forehead patch size over time in older birds. This change appears to be caused by a change in the sign of viability selection on forehead patch size, which is associated with a decline in the breeding value of multiple breeders. Our data thus reveal complex patterns of environmental influence on the expression of secondary sexual characters, which may have important implications for understanding selection and evolution of these characters.  相似文献   

17.
A model of multivariate phenotypic evolution is analysed under the assumption that all characters have the same variance or at least constant ratios of variance. The rate of evolution is examined as a function of the amount of phenotypic variance in a variety of adaptive landscapes (fitness functions). It is demonstrated that the effect of variation depends on the type of adaptive landscape. In “well behaved” adaptive landscapes the rate of evolution can theoretically increase without limits, depending on the amount of heritable phenotypic variation. However, in other adaptive landscapes there are upper limits to the rate of evolution which cannot be exceeded if phenotypic variation is developmentally unconstrained, i. e. if it is the same for all characters. Further it is shown that the maximal rate of evolution becomes small if the number of characters becomes large. Fitness functions of this type are called malignant. It is argued that malignant fitness functions are more adequate models for the evolution of typical organismic systems, because they are models of functionally interdependent characters. It is concluded that there are upper limits to the rate of phenotypic evolution if the variation of functionally interdependent characters is developmentally unconstrained. The possible role of developmental constraints in adaptive phenotypic evolution is discussed.  相似文献   

18.
Variation in 15 phenotypic traits is investigated in 349 craniums of seven geographic populations. Differences between geographic populations are ascertained, and phenotypic peculiarities of the subspecies are determined by principal component analysis and cluster analysis using the measure of the contribution to variability of populations and of subspecies similarity. Variations in populations of the Siberian and Himalayan subspecies in nonmetric characters are established. Differences between the craniums from populations are shown to be manifested to a greater degree than between the craniums of subspecies. The analysis of nonmetric characters showed the lack of a rare phene as a diagnostic feature of the musk deer.  相似文献   

19.
The mechanisms translating genetic to phenotypic variation determine the distribution of heritable phenotypic variance available to selection. Pleiotropy is an aspect of this structure that limits independent variation of characters. Modularization of pleiotropy has been suggested to promote evolvability by restricting genetic covariance among unrelated characters and reducing constraints due to correlated response. However, modularity may also reduce total genetic variation of characters. We study the properties of genotype-phenotype maps that maximize average conditional evolvability, measured as the amount of unconstrained genetic variation in random directions of phenotypic space. In general, maximal evolvability occurs by maximizing genetic variance and minimizing genetic covariance. This does not necessarily require modularity, only patterns of pleiotropy that cancel on average. The detailed structure of the most evolvable genotype-phenotype maps depends on the distribution of molecular variance. When molecular variance is determined by mutation-selection equilibrium either highly pleiotropic or highly modular genotype-phenotype maps can be optimal, depending on the mutation rate and the relative strengths of stabilizing selection on the characters.  相似文献   

20.
We examined sources of variability in stature, body mass, and body mass index (BMI) in families of black and white elementary schoolchildren from Philadelphia, Pennsylvania. The sample consisted of 445 black and 379 white children, 7-13 years old, and their parents (total n = 2016). The sample was distributed among 596 nuclear families, each representing an independent pedigree. Maximum-likelihood-based variance decomposition methods were used to simultaneously estimate ethnic group-specific effects of genes, sex, age by sex, and unmeasured environmental factors on stature, body mass, and BMI. Likelihood ratio tests were performed to assess the significance of h2 estimates and differences in sigma g and sigma e between black and white families. Genes account for moderate proportions of the phenotypic variance (h2) of these traits in black and white children. In black and white children, respectively, h2 estimates were 0.37 and 0.53 for stature, 0.37 and 0.31 for body mass, and 0.38 and 0.24 for BMI (p < 0.0005). Although the differences in h2 between ethnic groups were not significant (stature, p = 0.23; body mass, p = 0.49; BMI, p = 0.14), black children exhibited a significantly greater total residual phenotypic standard deviation (sigma e and sigma g) in body mass and BMI and a significantly greater sigma e for stature compared with white children. The larger residual phenotypic variance in the black sample is likely due to exposure to unmeasured environmental factors that are not accounted for in this model. Given that sigma g for stature is not significantly different between ethnic groups, the slightly lower estimates in black children are due to the increased contribution of the environment to the phenotypic variance in this trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号