首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Replacement of endogenous genes by homologous recombination is rare in plants; the majority of genetic modifications are the result of transforming DNA molecules undergoing random genomic insertion by way of non-homologous recombination. Factors that affect chromatin remodeling and DNA repair are thought to have the potential to enhance the frequency of homologous recombination in plants. Conventional tools to study the frequencies of genetic recombination often rely on stable transformation-based approaches, with these systems being rarely capable of high-throughput or combinatorial analysis. We developed a series of vectors that use chemiluminescent (LUC and REN) reporter genes to assay the relative frequency of homologous and non-homologous recombination in plants. These transient assay vectors were used to screen 14 candidate genes for their effects on recombination frequencies in Nicotiana benthamiana plants. Over-expression of Arabidopsis genes with sequence similarity to SNM1 from yeast and XRCC3 from humans enhanced the frequency of non-homologous recombination when assayed using two different donor vectors. Transient N. benthamiana leaf systems were also used in an alternative assay for preliminary measurements of homologous recombination frequencies, which were found to be enhanced by over-expression of RAD52, MIM and RAD51 from yeast, as well as CHR24 from Arabidopsis. The findings for the assays described here are in line with previous studies that analyzed recombination frequencies using stable transformation. The assays we report have revealed functions in non-homologous recombination for the Arabidopsis SNM1 and XRCC3 genes, so the suppression of these genes' expression offers a potential means to enhance the gene targeting frequency in plants. Furthermore, our findings also indicate that plant gene targeting frequencies could be enhanced by over-expression of RAD52, MIM, CHR24, and RAD51 genes.  相似文献   

2.
Meiosis is an essential process for sexually reproducing organisms, leading to the formation of specialized generative cells. This review intends to highlight current knowledge of early events during meiosis derived from various model organisms, including plants. It will particularly focus on cis- and trans-requirements of meiotic DNA double strand break (DSB) formation, a hallmark event during meiosis and a prerequisite for recombination of genetic traits. Proteins involved in DSB formation in different organisms, emphasizing the known factors from plants, will be introduced and their functions outlined. Recent technical advances in DSB detection and meiotic recombination analysis will be reviewed, as these new tools now allow analysis of early meiotic recombination in plants with incredible accuracy. To anticipate future directions in plant meiosis research, unpublished results will be included wherever possible.  相似文献   

3.
H Puchta 《Genetics》1999,152(3):1173-1181
Homologous recombination between ectopic sites is rare in higher eukaryotes. To test whether double-strand breaks (DSBs) can induce ectopic recombination, transgenic tobacco plants harboring two unlinked, nonfunctional homologous parts of a kanamycin resistance gene were produced. To induce homologous recombination between the recipient locus (containing an I-SceI site within homologous sequences) and the donor locus, the rare cutting restriction enzyme I-SceI was transiently expressed via Agrobacterium in these plants. Whereas without I-SceI expression no recombination events were detectable, four independent recombinants could be isolated after transient I-SceI expression, corresponding to approximately one event in 10(5) transformations. After regeneration, the F1 generation of all recombinants showed Mendelian segregation of kanamycin resistance. Molecular analysis of the recombinants revealed that the resistance gene was indeed restored via homologous recombination. Three different kinds of reaction products could be identified. In one recombinant a classical gene conversion without exchange of flanking markers occurred. In the three other cases homologous sequences were transferred only to one end of the break. Whereas in three cases the ectopic donor sequence remained unchanged, in one case rearrangements were found in recipient and donor loci. Thus, ectopic homologous recombination, which seems to be a minor repair pathway for DSBs in plants, is described best by recombination models that postulate independent roles for the break ends during the repair process.  相似文献   

4.
Genomic homologous recombination in planta.   总被引:8,自引:1,他引:7       下载免费PDF全文
S Gal  B Pisan  T Hohn  N Grimsley    B Hohn 《The EMBO journal》1991,10(6):1571-1578
A system for monitoring intrachromosomal homologous recombination in whole plants is described. A multimer of cauliflower mosaic virus (CaMV) sequences, arranged such that CaMV could only be produced by recombination, was integrated into Brassica napus nuclear DNA. This set-up allowed scoring of recombination events by the appearance of viral symptoms. The repeated homologous regions were derived from two different strains of CaMV so that different recombinant viruses (i.e. different recombination events) could be distinguished. In most of the transgenic plants, a single major virus species was detected. About half of the transgenic plants contained viruses of the same type, suggesting a hotspot for recombination. The remainder of the plants contained viruses with cross-over sites distributed throughout the rest of the homologous sequence. Sequence analysis of two recombinant molecules suggest that mismatch repair is linked to the recombination process.  相似文献   

5.
Horizontal gene transfer (HGT) is part of prokaryotic life style and a major factor in evolution. In principle, any combinations of genetic information can be explored via HGT for effects on prokaryotic fitness. HGT mechanisms including transformation, conjugation, transduction, and variations of these plus the role of mobile genetic elements are summarized with emphasis on their potential to translocate foreign DNA. Complementarily, we discuss how foreign DNA can be integrated in recipient cells through homologous recombination (HR), illegitimate recombination (IR), and combinations of both, site-specific recombination, and the reconstitution of plasmids. Integration of foreign DNA by IR is very low, and combinations of IR with HR provide intermediate levels compared to the high frequency of homologous integration. A survey of studies on potential HGT from various transgenic plants indicates very rare transfer of foreign DNA. At the same time, in prokaryotic habitats, genes introduced into transgenic plants are abundant, and natural HGT frequencies are relatively high providing a greater chance for direct transfer instead of via transgenic plants. It is concluded that potential HGT from transgenic plants to prokaryotes is not expected to influence prokaryotic evolution and to have negative effects on human or animal health and the environment.  相似文献   

6.
Recently, site-specific recombination methods in plants have been developed to delete selection markers to produce marker-free transgenic plants or to integrate the transgene into a pre-determined genomic location to produce site-specific transgenic plants. However, these methods have been developed independently, and although the strategies of producing marker-free site-specific integration plants have been discussed, the concept has not been demonstrated. In the present study, we combined two approaches to site-specific recombination and demonstrated the concepts for removing the marker after site-specific integration for producing marker-free site-specific transgenic plants.  相似文献   

7.
减数分裂重组不仅保证了真核生物有性生殖过程中染色体数量的稳定,还通过父母亲本间遗传物质的互换在后代中产生遗传变异。因此,减数分裂重组是遗传多样性形成的重要途径,也是生物多样性和物种进化的主要动力。在绝大多数真核生物中,不管染色体数目的多少或基因组的大小,减数分裂重组的形成都受到严格的调控,但抑制减数分裂重组的分子机理目前仍不清楚。近年来,通过正向遗传学筛选鉴定出多个减数分裂重组抑制基因,揭示了抑制基因的功能和调控途径。本文基于拟南芥中减数分裂重组抑制基因的研究现状,综述了植物减数分裂重组抑制基因研究取得的突破性进展,并结合基因功能与其调控网络阐述了抑制植物减数分裂重组的分子机理。  相似文献   

8.
We have isolated a hyperrecombinogenic Nicotiana tabacum mutant. The mutation, Hyrec, is dominant and segregates in a Mendelian fashion. In the mutant, the level of mitotic recombination between homologous chromosomes is increased by more than three orders of magnitude. Recombination between extrachromosomal substrates is increased six- to ninefold, and intrachromosomal recombination is not affected. Hyrec plants were found to perform non-homologous end joining as efficiently as the wild type, ruling out the possibility that the increase in homologous recombination is due to a defect in end joining. In addition, Hyrec plants show significant resistance to gamma-irradiation, whereas UV resistance is not different from the wild type. This suggests that homologous recombination can be strongly up-regulated in plants. Moreover, Hyrec constitutes a novel type of mutation: no similar mutant was reported in plants and hyperrecombinogenic mutants from other organisms usually show sensitivity to DNA damaging agents. We discuss the insight that this mutant provides into understanding the mechanisms of recombination plus the potential application for gene targeting in plants.  相似文献   

9.
10.
Induction of intrachromosomal homologous recombination in whole plants   总被引:7,自引:3,他引:4  
The influence of different factors on frequencies of intrachromosomal homologous recombination in whole Arabidopsis thaliana and tobacco plants was analyzed using a disrupted β-glucuronidase marker gene. Recombination frequencies were enhanced severalfold by DNA damaging agents like UV-light or MMS (methyl methanesulfonate). Applying 3-methoxybenzamide (3-MB), an inhibitor of poly(ADP)ribose polymerase (PARP), an enzyme that is postulated to be involved in DNA repair, enhanced homologous recombination frequencies strongly. These findings indicate that homologous recombination is involved in DNA repair and can (at least partially) compensate for other DNA repair pathways. Indications that recombination in plants can be induced by environmental stress factors that are not likely to be involved in DNA metabolism were also found; Arabidopsis plants growing in a medium containing 0.1 M NaCl exhibited elevated recombination frequencies. The possible general effects of ‘environmental’ challenges on genome flexibility are discussed.  相似文献   

11.
We report on the development of five missense mutants and one recombination substrate of the beta-glucuronidase (GUS)-encoding gene of Escherichia coli and their use for detecting mutation and recombination events in transgenic Arabidopsis (Arabidopsis thaliana) plants by reactivation of GUS activity in clonal sectors. The missense mutants were designed to find C:G-to-T:A transitions in a symmetrical sequence context and are in that respect complementary to previously published GUS point mutants. Small peptide tags (hemagglutinin tag and Strep tag II) and green fluorescent protein were translationally fused to GUS, which offers possibilities to check for mutant GUS production levels. We show that spontaneous mutation and recombination events took place. Mutagenic treatment of the plants with ethyl methanesulfonate and ultraviolet-C increased the number of mutations, validating the use of these constructs to measure mutation and recombination frequencies in plants exposed to biotic or abiotic stress conditions, or in response to different genetic backgrounds. Plants were also subjected to heavy metals, methyl jasmonate, salicylic acid, and heat stress, for which no effect could be seen. Together with an ethyl methanesulfonate mutation induction level much higher than previously described, the need is illustrated for many available scoring systems in parallel. Because all GUS missense mutants were cloned in a bacterial expression vector, they can also be used to score mutation events in E. coli.  相似文献   

12.
Summary Co-segregation studies of isozyme markers and male fertility restoration showed that a restorer gene from radish was introduced into rapeseed along with an isozyme marker (Pgi-2). The radish chromosome segment carrying these genes was introgressed into rapeseed through homoeologous recombination, substituting for some of the rapeseed alleles. By crossing heterozygous restored plants to male-sterile lines and to maintainers, tight linkage was found between the restorer gene and the marker. The recombination fraction was estimated at 0.25 ± 0.02%. Although few restored plants lacked the radish isozyme marker, it was still possible to distinguish male-fertile from male-sterile plants by their PGI-2 patterns. Furthermore, homozygous and heterozygous restored plants could be separated by specific PGI-2 phenotypes. Thus, the Pgi-2 marker is now currently used in restorer breeding programs.  相似文献   

13.
DNA helicases are enzymes that are able to unwind DNA by the use of the energy-equivalent ATP. They play essential roles in DNA replication, DNA repair, and DNA recombination in all organisms. As homologous recombination occurs in somatic and meiotic cells, the same proteins may participate in both processes, albeit not necessarily with identical functions. DNA helicases involved in genome stability and meiotic recombination are the focus of this review. The role of these enzymes and their characterized interaction partners in plants will be summarized. Although most factors are conserved in eukaryotes, plant-specific features are becoming apparent. In the RecQ helicase family, Arabidopsis thaliana RECQ4A has been shown before to be the functional homologue of the well-researched baker's yeast Sgs1 and human BLM proteins. It was surprising to find that its interaction partners AtRMI1 and AtTOP3α are absolutely essential for meiotic recombination in plants, where they are central factors of a formerly underappreciated dissolution step of recombination intermediates. In the expanding group of anti-recombinases, future analysis of plant helicases is especially promising. While no FBH1 homologue is present, the Arabidopsis genome contains homologues of both SRS2 and RTEL1. Yeast and mammals, on the other hand. only possess homologues of either one or the other of these helicases. Plants also contain several other classes of helicases that are known from other organisms to be involved in the preservation of genome stability: FANCM is conserved with parts of the human Fanconi anaemia proteins, as are homologues of the Swi2/Snf2 family and of PIF1.  相似文献   

14.
To create hybrid chromosomes, we tested the Cre-lox system to mediate recombination between Arabidopsis thaliana and Nicotiana tabacum chromosomes. Protoplasts of the two plants were fused to allow site-specific recombination to join a promoter from tobacco to a hygromycin resistance coding-region from Arabidopsis. The expected recombination junction was detected in hygromycin-resistant calli. Analysis of one hybrid suspension cell line revealed the presence of markers corresponding to the north arm of Arabidopsis chromosome III, but not markers from other chromosome arms. However, these markers were not detected in regenerated plants. With a second hybrid cell line we obtained a single hygromycin-resistant progeny from approximately 18 000 self-fertilized seeds of one regenerated plant. Molecular analysis of this hybrid indicated that a small portion of the north arm of Arabidopsis chromosome V is present in the tobacco genome. However, neither the recombination junction nor Arabidopsis DNA was detected in tissue from the plant grown without selection or in the subsequent generation. Thus interspecies transfer of a chromosome arm between plant cells is possible, but maintenance of the hybrid chromosome in a plant is unlikely. The feasibility of site-specific recombination between genomes of different species offers new possibilities for engineering hybrid chromosomes that may be maintained in cell culture.  相似文献   

15.
We have tested the CinH-RS2 and ParA-MRS site-specific deletion systems in tomato (Solanum lycopersicum L.). The ParA-MRS system is derived from the broad-host-range plasmid RK2, where the 222 aa ParA recombinase recognizes a 133 bp multimer resolution site (MRS). The CinH-RS2 system is derived from Acinetobacter plasmids pKLH2 and pKLH204, where the 188 amino acid CinH recombinase recognizes a 113-bp recombination site known as RS2. In this study, target lines containing a DNA segment flanked by recombination sites were crossed to recombinase-expressing lines producing CinH or ParA recombinase. CinH-mediated recombination of RS2 substrates was detected in 2 of 3 F1 plants that harbor both the target and recombinase loci. On the other hand, recombination mediated by ParA was not detected among F1 plants, but was found among 13 of 47 F2 plants. These data show that both systems can mediate site-specific DNA deletion in the tomato genome, and, upon further refinement, can provide additional molecular tools for tomato improvement through precise genome manipulation. As the target construct also contains additional recombination sites for site-specific integration by other recombination systems, these tomato lines could be used for future testing of gene stacking through site-specific integration.  相似文献   

16.
17.
Homologous DNA recombination in eukaryotes is necessary to maintain genome stability and integrity and for correct chromosome segregation and formation of new haplotypes in meiosis. At the same time, genetic determination and nonrandomness of meiotic recombination restrict the introgression of genes and generation of unique genotypes. As one of the approaches to study and induce meiotic recombination in plants, it is recommended to use the recA gene of Escherichia coli. It is shown that the recA and NLS-recA-licBM3 genes have maternal inheritance and are expressed in the progeny of transgenic tomato plants. Plants expressing recA or NLS-recA-licBM3 and containing one T-DNA insertion do not differ in pollen fertility from original nontransgenic forms and can therefore be used for comparative studies of the effect of bacterial recombinases on meiotic recombination between linked genes.  相似文献   

18.
SUMMARY: The coding sequences of Cre (site-specific recombinase from bacteriophage P1) and FLP (yeast 2-microm plasmid site-specific recombinase) were fused in frame to produce a novel, dual-function, site-specific recombinase gene. Transgenic maize plants containing the Cre::FLP fusion expression vector were crossed to transgenic plants containing either the loxP or FRT excision substrate. Complete and precise excisions of chromosomal fragments flanked by the respective target sites were observed in the F1 and F2 progeny plants. The episomal DNA recombination products were frequently lost. Non-recombined FRT substrates found in the F1 plants were recovered in the F2 generation after the Cre::FLP gene segregated out. They produced the recombination products in the F3 generation when crossed back to the FLP-expressing plants. These observations may indicate that the efficiency of site-specific recombination is affected by the plant developmental stage, with site-specific recombination being more prevalent in developing embryos. The Cre::FLP fusion protein was also tested for excisions catalysed by Cre. Excisions were identified in the F1 plants and verified in the F2 plants by polymerase chain reaction and Southern blotting. Both components of the fusion protein (FLP and Cre) were functional and acted with similar efficiency. The crossing strategy proved to be suitable for the genetic engineering of maize using the FLP or Cre site-specific recombination system.  相似文献   

19.
Living cells suffer numerous and varied alterations of their genetic material. Of these, the DNA double-strand break (DSB) is both particularly threatening and common. Double-strand breaks arise from exposure to DNA damaging agents, but also from cell metabolism-in a fortuitous manner during DNA replication or repair of other kinds of lesions and in a programmed manner, for example during meiosis or V(D)J gene rearrangement. Cells possess several overlapping repair pathways to deal with these breaks, generally designated as genetic recombination. Genetic and biochemical studies have provided considerable amounts of data about the proteins involved in recombination processes and their functions within these processes. Although they have long played a key role in building understanding of genetics, relatively little is known at the molecular level of the genetic recombination processes in plants. The use of reverse genetic approaches and the public availability of sequence tagged mutants in Arabidopsis thaliana have led to increasingly rapid progress in this field over recent years. The rapid progress of studies of recombination in plants is obviously not limited to the DSB repair machinery as such and we ask readers to understand that in order to maintain the focus and to rest within a reasonable length, we present only limited discussion of the exciting advances in the of plant meiosis field, which require a full review in their own right . We thus present here an update on recent advances in understanding of the DSB repair machinery of plants, focussing on Arabidopsis and making a particular effort to place these in the context of more general of understanding of these processes.  相似文献   

20.
Shao R  Barker SC 《Gene》2011,473(1):36-43
The mitochondrial (mt) genome of the human body louse, Pediculus humanus, consists of 18 minichromosomes. Each minichromosome is 3 to 4 kb long and has 1 to 3 genes. There is unequivocal evidence for recombination between different mt minichromosomes in P. humanus. It is not known, however, how these minichromosomes recombine. Here, we report the discovery of eight chimeric mt minichromosomes in P. humanus. We classify these chimeric mt minichromosomes into two groups: Group I and Group II. Group I chimeric minichromosomes contain parts of two different protein-coding genes that are from different minichromosomes. The two parts of protein-coding genes in each Group I chimeric minichromosome are joined at a microhomologous nucleotide sequence; microhomologous nucleotide sequences are hallmarks of non-homologous recombination. Group II chimeric minichromosomes contain all of the genes and the non-coding regions of two different minichromosomes. The conserved sequence blocks in the non-coding regions of Group II chimeric minichromosomes resemble the "recombination repeats" in the non-coding regions of the mt genomes of higher plants. These repeats are essential to homologous recombination in higher plants. Our analyses of the nucleotide sequences of chimeric mt minichromosomes indicate both homologous and non-homologous recombination between minichromosomes in the mitochondria of the human body louse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号