首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Severe and fatal malaria is associated with the failure of host defenses to control parasite replication, excessive secretion of proinflammatory cytokines such as TNF-alpha, and sequestration of parasitized erythrocytes (PEs) in vital organs. The identification of CD36 as a major sequestration receptor has led to the assumption that it contributes to the pathophysiology of severe malaria and has prompted the development of antiadherence therapies to disrupt the CD36-PE interaction. This concept has been challenged by unexpected evidence that individuals deficient in CD36 are more susceptible to severe and cerebral malaria. In this study, we demonstrate that CD36 is the major receptor mediating nonopsonic phagocytosis of PEs by macrophages, a clearance mechanism of potential importance in nonimmune hosts at the greatest risk of severe malaria. CD36-mediated uptake of PEs occurs via a novel pathway that does not involve thrombospondin, the vitronectin receptor, or phosphatidylserine recognition. Furthermore, we show that proliferator-activated receptor gamma-retinoid X receptor agonists induce an increase in CD36-mediated phagocytosis and a decrease in parasite-induced TNF-alpha secretion. Specific up-regulation of monocyte/macrophage CD36 may represent a novel therapeutic strategy to prevent or treat severe malaria.  相似文献   

2.
Flow cytometry has become a powerful technique to measure intracellular cytokine production in lymphocytes and monocytes. Appropriate inhibition of the secretion of the produced cytokines is required for studying intracellular cytokine expression. The aim of this study was to compare the capacity of cytokine secretion inhibitors, monensin and brefeldin A, in order to trap cytokine production (interleukin-1 beta [IL-1beta], IL-6, tumor necrosis factor-alpha [TNF-alpha]) within peripheral blood monocytes. A two-color flow cytometric technique was used to measure intracellular spontaneous and lipopolysaccharide (LPS)-stimulated IL-1beta, IL-6, and TNF-alpha production in monocytes (CD14+) of whole blood cultures. The viability of monensin-treated monocytes was slightly lower than that of brefeldin A-inhibited monocytes, as measured with propidium iodide (PI). The percentage of IL-6 and TNF-alpha-producing monocytes after 8 h of culture without stimulation revealed significant lower values for monensin-treated than for brefeldin A-treated monocytes. The percentages for stimulated cells did not differ. The spontaneous intracellular production in molecules of equivalent soluble fluorochrome units (MESF) of IL-1beta, IL-6, and TNF-alpha after 8 h of culture was higher in brefeldin A than in monensin-inhibited monocytes. The LPS-stimulated intracellular production of IL-1beta, IL-6, and TNF-alpha was increased in brefeldin A-inhibited monocytes. In conclusion, for flow cytometric determination of intracellular monocytic cytokines (IL-1beta, IL-6, and TNF-alpha), brefeldin A is a more potent, effective, and less toxic inhibitor of cytokine secretion than monensin.  相似文献   

3.
Nanogram quantities of the bacterial superantigen Staphylococcal Enterotoxin A (SEA) induced significant amounts of extracellular IL-1 alpha and IL-1 beta in human peripheral blood mononuclear cells. Induction of maximal IL-1 alpha and IL-1 beta levels by lipopolysaccharide (LPS) required microgram quantities. LPS induced detectable extracellular IL-1 content within 3-6 hr and maximal levels were detected already after 12 hr. Induction of IL-1 production by SEA showed a delayed release with peak values after 24-48 hr. IL-1 beta was the major species of IL-1 seen in both SEA- and LPS-stimulated culture supernatants. SEA was in general a relatively stronger inducer of extracellular IL-1 alpha than LPS. SEA-induced extracellular IL-1 production in human monocytes was entirely dependent on the presence of T cells, whereas addition of T cells to LPS-stimulated purified human monocytes only marginally enhanced the extracellular IL-1 production. The capacity to induce extracellular IL-1 production in monocytes in response to SEA was high in the CD4+ 45RO+ memory T cell subset, whereas CD4+ 45RA+ naive T cells and CD8+ T cells had lower IL-1-inducing capacity. The T cell help for IL-1 production could not be replaced by a panel of T cell-derived recombinant lymphokines added to SEA-stimulated monocytes, including IFN-gamma and TNF, indicating the participation of cell membrane-bound ligands or hitherto unidentified soluble mediators.  相似文献   

4.
Cytokines play a pivotal role in the pathogenesis of septic shock. Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) stimulate the progression of septic shock whereas the anti-inflammatory cytokine IL-10 has counterregulative potency. The amino acid glycine (GLY) has been shown to protect against endotoxin shock in the rat by inhibiting TNF-alpha production. In the current study we investigated the role of GLY on lipopolysaccharide (LPS) -induced cell surface marker expression, phagocytosis, and cytokine production on purified monocytes from healthy donors. GLY did not modulate the expression of HLA-DR and CD64 on monocytes, whereas CD11b/CD18 expression (P<0.05) and E. coli phagocytosis (P<0.05) decreased significantly. GLY decreased LPS-induced TNF-alpha production (P<0.01) and increased IL-10 expression of purified monocytes. Similarly, in a whole blood assay, GLY reduced TNF-alpha (P<0.0001) and IL-1beta (P<0.0001) synthesis and increased IL-10 expression (P<0.05) in a dose-dependent manner. The inhibitory effects of GLY were neutralized by strychnine, and the production of IL-10 and TNF-alpha was augmented by anti-IL-10 antibodies. Furthermore, GLY decreased the amount of IL-1beta and TNF-alpha-specific mRNA. Our data indicate that GLY has a potential to be used as an additional immunomodulatory tool in the early phase of sepsis and in different pathophysiological situations related to hypoxia and reperfusion.  相似文献   

5.
The effect of selective PDE-I (vinpocetine), PDE-III (milrinone, CI-930), PDE-IV (rolipram, nitroquazone), and PDE-V (zaprinast) isozyme inhibitors on TNF-alpha and IL-1beta production from LPS stimulated human monocytes was investigated. The PDE-IV inhibitors caused a concentration dependent inhibition of TNF-alpha production, but only partially inhibited IL-1beta at high concentrations. High concentrations of the PDE-III inhibitors weakly inhibited TNF-alpha, but had no effect on IL-1beta production. PDE-V inhibition was associated with an augmentation of cytokine secretion. Studies with combinations of PDE isozyme inhibitors indicated that PDE-III and PDE-V inhibitors modulate rolipram's suppression of TNF production in an additive manner. These data confirm that TNF-alpha and IL-1beta production from LPS stimulated human monocytes are differentially regulated, and suggest that PDE-IV inhibitors have the potential to suppress TNF levels in man.  相似文献   

6.
BACKGROUND: The use of whole blood (WB) in studying lipopolysaccharide (LPS)-induced cellular activation preserves the milieu in which LPS-cell interaction occurs in vivo. However, little information is available on using such a system at a single-cell level. We evaluated LPS binding and cell activation in WB by using flow cytometry. The influence of heparin or EDTA as anticoagulants was also addressed. METHODS: Blood was obtained from healthy donors in EDTA and/or heparin tubes. Biotinylated LPS (LPSb) was used to evaluate cell binding of LPS in WB. Cells were surface stained with appropriate antibodies and LPSb was detected by adding streptavidin-allophycocyanin (APC). LPS-induced activation was evaluated by the expression of surface activation markers and by the detection of intracellular tumor necrosis factor-alpha (TNF-alpha). RESULTS: LPSb bound promptly to monocytes in EDTA- and heparin-treated blood. In EDTA-treated blood, membrane-bound LPSb decreased after 60 min of incubation, whereas it remained detectable in heparinized blood during the 6 h of incubation. LPS induced TNF-alpha and enhanced the expression of HLA-DR in monocytes, as well as the expression of CD69 in T and B lymphocytes. Induction of both TNF-alpha in monocytes and CD69 in lymphocytes was more efficient in heparinized blood. CONCLUSION: Detection of membrane-bound LPSb on monocytes differed in EDTA or heparin-treated blood, and cell activation was better obtained in heparinized blood.  相似文献   

7.
Foey AD  Feldmann M  Brennan FM 《Cytokine》2000,12(10):1496-1505
Interleukin 10 is a potent anti-inflammatory and immunomodulatory cytokine. Little is known regarding its induction in monocytes/macrophages, however LPS, a reproducible trigger of IL-10, is augmented by direct contact with T cells. In this context, the role of CD40-ligation is investigated. In the rheumatoid synovium, IL-10 is produced by tissue macrophages. Monocytes primed with M-CSF, a cytokine present in rheumatoid joints, produced IL-1beta, TNF-alpha and IL-10 upon CD40-ligation at an IL-1: TNF-alpha: IL-10 ratio of 10:0.5:1. IFN-gamma-primed monocytes, however, predominantly produced TNF-alpha and IL-1beta. Both differentiated monocytes display an endogenous IL-10 activity regulatable by CD40 stimulation. Additionally, these monocytes display differential control by exogenous and endogenous IL-1 and TNF-alpha. M-CSF-primed monocyte IL-10 production was dependent on endogenous TNF-alpha and, to a lesser extent, IL-1, whereas IFN-gamma-primed monocytes were partially dependent on endogenous IL-1. The addition of exogenous IL-1 augments CD40 induced IL-10 production by IFN-gamma-primed monocytes. These data indicate that CD40 ligation regulates cell contact mediated macrophage IL-10 and that the route of differentiation determines the cytokine profile.  相似文献   

8.
Mycobacterium tuberculosis bacilli readily activate CD4(+) and gammadelta T cells. CD4(+) and gammadelta T cells were compared for their ability to regulate IFN-gamma, TNF-alpha, and IL-10 production, cytokines with significant roles in the immune response to M. tuberculosis. PBMC from healthy tuberculin positive donors were stimulated with live M. tuberculosis-H37Ra. CD4(+) and gammadelta T cells were purified by negative selection and tested in response to autologous monocytes infected with M. tuberculosis. Both subsets produced equal amounts of secreted IFN-gamma. However, the precursor frequency of IFN-gamma secreting gammadelta T cells was half that of CD4(+) T cells, indicating that gammadelta T cells were more efficient producers of IFN-gamma than CD4(+) T cells. TNF-alpha production was markedly enhanced by addition of CD4(+) and gammadelta T cells to M. tuberculosis infected monocytes, and TNF-alpha was produced by both T cells and monocytes. No differences in TNF-alpha enhancement were noted between CD4(+) and gammadelta T cells. IL-10 production by M. tuberculosis infected monocytes was not modulated by CD4(+) or gammadelta T cells. Thus CD4(+) and gammadelta T cells had similar roles in differential regulation of IFN-gamma, TNF-alpha, and IL-10 secretion in response to M. tuberculosis infected monocytes. However, the interaction between T cells and infected monocytes differed for each cytokine. IFN-gamma production was dependent on antigen presentation and costimulators provided by monocytes. TNF-alpha levels were increased by addition of TNF-alpha produced by T cells and IL-10 production by monocytes was not modulated by CD4(+) or gammadelta T cells.  相似文献   

9.
The cytokine-inducing activities of fungal polysaccharides were examined in human monocytes in culture, with special reference to CD14 and Toll-like receptors (TLRs). Tumor necrosis factor alpha (TNF-alpha) production by monocytes was markedly induced in a dose-dependent manner upon stimulation with cell walls from Candida albicans and mannan from Saccharomyces cerevisiae and C. albicans, although relatively high concentrations (10 to 100 microg/ml) of stimulants were required for activation as compared with the reference lipopolysaccharide (LPS) (1 to 10 ng/ml). The yeast form C. albicans and its mannan and cell wall fractions exhibited higher TNF-alpha production than respective preparations from the hyphal form. Only slight TNF-alpha production was induced by the S. cerevisiae glucan. The TNF-alpha production triggered by reference LPS and purified fungal mannans required the presence of LPS-binding protein (LBP), and these responses were inhibited by anti-CD14 and anti-TLR4 antibodies, but not by anti-TLR2 antibody. In contrast to the activity of LPS, the activity of purified S. cerevisiae mannan was not inhibited by polymyxin B. These findings suggested that the mannan-LBP complex is recognized by CD14 on monocytes and that signaling through TLR4 leads to the production of proinflammatory cytokines in a manner similar to that induced by LPS.  相似文献   

10.
CD93 is a highly glycosylated transmembrane protein expressed on monocytes, neutrophils, endothelial cells, and stem cells. Antibodies directed at CD93 modulate phagocytosis, and CD93-deficient mice are defective in the clearance of apoptotic cells from the inflamed peritoneum. In this study we observe that CD93, expressed on human monocytes and neutrophils, is susceptible to phorbol dibutyrate-induced protein ectodomain shedding in a time- and dose-dependent manner. The soluble fragment found in culture supernatant retains the N-terminal carbohydrate recognition domain and the epidermal growth factor repeats after ectodomain cleavage. Importantly, a soluble form of the CD93 ectodomain was detected in human plasma, demonstrating that shedding is a physiologically relevant process. Inhibition of metalloproteinases with 1,10-phenanthroline inhibited shedding, but shedding was independent of TNF-alpha-converting enzyme (a disintegrin and metalloproteinase 17). Phorbol dibutyrate-induced CD93 shedding on monocytes was accompanied by decreased surface expression, whereas neutrophils displayed an increase in surface expression, suggesting that CD93 shed from the neutrophil surface was rapidly replaced by CD93 from intracellular stores. Cross-linking CD93 on human monocytes with immobilized anti-CD93 mAbs triggered shedding, as demonstrated by a decrease in cell-associated, full-length CD93 concomitant with an increase in CD93 intracellular domain-containing cleavage products. In addition, the inflammatory mediators, TNF-alpha and LPS, stimulated ectodomain cleavage of CD93 from monocytes. These data demonstrate that CD93 is susceptible to ectodomain shedding, identify multiple stimuli that trigger shedding, and identify both a soluble form of CD93 in human plasma and intracellular domain containing cleavage products within cells that may contribute to the physiologic role of CD93.  相似文献   

11.
Matrix metalloproteinase-9 (MMP-9), secreted by activated monocytes, degrades matrix proteins, disrupts basal lamina, and activates TNF-alpha from its precursors. In turn, TNF-alpha enhances synthesis of MMP-9 in monocytes. We show here that trophozoite-parasitized RBCs/hemozoin-fed adherent human monocytes displayed increased MMP-9 activity and protein/mRNA expression, produced TNF-alpha time-dependently, and showed higher matrix invasion ability. MMP-9 activation was specific for trophozoite/hemozoin-fed monocytes, was dependent on TNF-alpha production, and abrogated by anti-TNF-alpha Ab and by a specific inhibitor of MMP-9/MMP-13 activity. Hemozoin-induced enhancement of MMP-9 and TNF-alpha production would have a 2-fold effect: to start and feed a cyclic reinforcement loop in which hemozoin enhances production of TNF-alpha, which in turn induces both activation of MMP-9 and shedding of TNF-alpha into the extracellular compartment; and, second, to disrupt the basal lamina of endothelia. Excess production of TNF-alpha and disruption of the basal lamina with extravasation of blood cells into perivascular tissues are hallmarks of severe malaria. Pharmacological inhibition of MMP-9 may offer a new chance to control pathogenic mechanisms in malaria.  相似文献   

12.
The scavenger receptor CD36 plays important roles in malaria, including the sequestration of parasite-infected erythrocytes in microvascular capillaries, control of parasitemia through phagocytic clearance by macrophages, and immunity. Although the role of CD36 in the parasite sequestration and clearance has been extensively studied, how and to what extent CD36 contributes to malaria immunity remains poorly understood. In this study, to determine the role of CD36 in malaria immunity, we assessed the internalization of CD36-adherent and CD36-nonadherent Plasmodium falciparum-infected red blood cells (IRBCs) and production of pro-inflammatory cytokines by DCs, and the ability of DCs to activate NK, and T cells. Human DCs treated with anti-CD36 antibody and CD36 deficient murine DCs internalized lower levels of CD36-adherent IRBCs and produced significantly decreased levels of pro-inflammatory cytokines compared to untreated human DCs and wild type mouse DCs, respectively. Consistent with these results, wild type murine DCs internalized lower levels of CD36-nonadherent IRBCs and produced decreased levels of pro-inflammatory cytokines than wild type DCs treated with CD36-adherent IRBCs. Further, the cytokine production by NK and T cells activated by IRBC-internalized DCs was significantly dependent on CD36. Thus, our results demonstrate that CD36 contributes significantly to the uptake of IRBCs and pro-inflammatory cytokine responses by DCs, and the ability of DCs to activate NK and T cells to produce IFN-γ. Given that DCs respond to malaria parasites very early during infection and influence development of immunity, and that CD36 contributes substantially to the cytokine production by DCs, NK and T cells, our results suggest that CD36 plays an important role in immunity to malaria. Furthermore, since the contribution of CD36 is particularly evident at low doses of infected erythrocytes, the results imply that the effect of CD36 on malaria immunity is imprinted early during infection when parasite load is low.  相似文献   

13.
Divergent response to LPS and bacteria in CD14-deficient murine macrophages   总被引:10,自引:0,他引:10  
Gram-negative bacteria and the LPS constituent of their outer membranes stimulate the release of inflammatory mediators believed to be responsible for the clinical manifestations of septic shock. The GPI-linked membrane protein, CD14, initiates the signaling cascade responsible for the induction of this inflammatory response by LPS. In this paper, we report the generation and characterization of CD14-null mice in which the entire coding region of CD14 was deleted. As expected, LPS failed to elicit TNF-alpha and IL-6 production in macrophages taken from these animals, and this loss in responsiveness is associated with impaired activation of both the NF-kappaB and the c-Jun N-terminal mitogen-activated protein kinase pathways. The binding and uptake of heat-killed Escherichia coli, measured by FACS analysis, did not differ between CD14-null and wild-type macrophages. However, in contrast to the findings with LPS, whole E. coli stimulated similar levels of TNF-alpha release from CD14-null and wild-type macrophages at a dose of 10 bioparticles per cell. This effect was dose dependent, and at lower bacterial concentrations CD14-deficient macrophages produced significantly less TNF-alpha than wild type. Approximately half of this CD14-independent response appeared to be mediated by CD11b/CD18, as demonstrated by receptor blockade using neutrophil inhibitory factor. An inhibitor of phagocytosis, cytochalasin B, abrogated the induction of TNF-alpha in CD14-deficient macrophages by E. coli. These data indicate that CD14 is essential for macrophage responses to free LPS, whereas other receptors, including CD11b/CD18, can compensate for the loss of CD14 in response to whole bacteria.  相似文献   

14.
The CD69 glycoprotein is an early activation antigen of T and B lymphocytes but it expression is induced in vitro on cells of most hematopoietic lineages, including neutrophils after stimulation with PMA or fMLP. In this study, we investigated whether CD69 expression on human neutrophils could be modulated by inflammatory or anti-inflammatory cytokines (IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, G-CSF, GM-CSF, TNF-alpha, TGF-beta, IFN-alpha, IFN-gamma). Resting neutrophils from healthy subjects did not express CD69 on the cell surface; moreover, a preformed intracellular pool of CD69 was not evident in these cells. CD69 was barely detectable on these cells after overnight incubation in medium while overnight incubation with GM-CSF, IFN-gamma or IFN-alpha significantly induced CD69 expression on neutrophils with GM-CSF appearing to be the most potent inducer. This induction was dependent on a new protein synthesis as it was significantly inhibited by cycloheximide (about 50% inhibition). CD69 cross-linking on GM-CSF-primed neutrophils sinergized with LPS and increased TNF-alpha production and secretion suggesting a role for CD69-positive neutrophils in the pathogenesis and maintenance of different inflammatory diseases.  相似文献   

15.
16.
CD36 is a scavenger receptor that has been implicated in malaria pathogenesis as well as innate defense against blood-stage infection. Inflammatory responses to Plasmodium falciparum GPI (pfGPI) anchors are believed to play an important role in innate immune response to malaria. We investigated the role of CD36 in pfGPI-induced MAPK activation and proinflammatory cytokine secretion. Furthermore, we explored the role of this receptor in an experimental model of acute malaria in vivo. We demonstrate that ERK1/2, JNK, p38, and c-Jun became phosphorylated in pfGPI-stimulated macrophages. In contrast, pfGPI-induced phosphorylation of JNK, ERK1/2, and c-Jun was reduced in Cd36(-/-) macrophages and Cd36(-/-) macrophages secreted significantly less TNF-alpha in response to pfGPI than their wild-type counterparts. In addition, we demonstrate a role for CD36 in innate immune response to malaria in vivo. Compared with wild-type mice, Cd36(-/-) mice experienced more severe and fatal malaria when challenged with Plasmodium chabaudi chabaudi AS. Cd36(-/-) mice displayed a combined defect in cytokine induction and parasite clearance with a dysregulated cytokine response to infection, earlier peak parasitemias, higher parasite densities, and higher mortality rates than wild-type mice. These results provide direct evidence that pfGPI induces TNF-alpha secretion in a CD36-dependent manner and support a role for CD36 in modulating host cytokine response and innate control of acute blood-stage malaria infection in vivo.  相似文献   

17.
18.
Pulmonary surfactant protein A (SP-A) plays an important part in Ab-independent host defense mechanisms of the lung. In this study we investigated how SP-A interacts with distinct serotypes of bacterial LPS and modulates LPS-elicited cellular responses. SP-A bound to rough forms but not to smooth forms of LPS. In the macrophage-like cell line U937, SP-A inhibited mRNA expression and secretion of TNF-alpha induced by smooth LPS, but rough LPS-induced TNF-alpha expression was unaffected by SP-A. When U937 cells and rat alveolar macrophages were preincubated with SP-A, smooth LPS failed to induce TNF-alpha secretion, whereas rough LPS-induced TNF-alpha secretion was modestly increased. To clarify the mechanism by which SP-A modulates LPS-elicited cellular responses, we further examined the interaction of SP-A with CD14, which is known as a major LPS receptor. Western blot analysis revealed that CD14 was one of the SP-A binding proteins isolated from solubilized U937 cells. In addition, SP-A directly bound to recombinant soluble CD14 (rsCD14). When rsCD14 was preincubated with SP-A, the binding of rsCD14 to smooth LPS was significantly reduced but the association of rsCD14 with rough LPS was augmented. These results demonstrate the different actions of SP-A upon distinct serotypes of LPS and indicate that the direct interaction of SP-A with CD14 constitutes a likely mechanism by which SP-A modulates LPS-elicited cellular responses.  相似文献   

19.
《Cellular signalling》2014,26(4):705-715
Visfatin is a novel multifunctional adipocytokine with inflammatory properties. Although a link between visfatin and atherosclerosis has recently been suggested, its actions in the development of atherosclerosis remain unknown. Therefore, we investigated a potential role and underlying mechanism(s) of visfatin in monocytes/macrophages differentiation, a critical early step in atherogenesis, using phorbol-12-myristate-13-acetate (PMA)-stimulated THP-1 cell models. The co-incubation of PMA with visfatin-induced CD36 expression with a concomitant increase in the phagocytosis of latex beads compared with PMA alone treatment. Moreover, visfatin markedly increased interleukin (IL)-1β secretion by enhancing IL-1β mRNA stability in a short-term incubation. Visfatin also significantly elevated the secretion of IL-6 as well as IL-1β in a longer incubation period, which was partially suppressed by nuclear factor-κB (NF-κB) inhibitor, BAY11-7082, and c-Jun-N-terminal kinase (JNK) inhibitor, SP600125. Furthermore, silencing IL-1β successfully blocked IL-6 secretion, CD36 expression, and NF-κB activation in response to visfatin. Collectively, these results suggest that visfatin enhances the IL-1β-dependent induction of IL-6 and CD36 via distinct signaling pathways mediated by JNK and NF-κB, respectively, and consequently, leading to the acceleration of monocytes/macrophages differentiation.  相似文献   

20.
Molecular mechanisms of Plasmodium falciparum placental adhesion   总被引:2,自引:0,他引:2  
In natural Plasmodium falciparum infections, parasitized erythrocytes (PEs) circulate in the peripheral blood for a period corresponding roughly to the first part of the erythrocytic life cycle (ring stage). Later, in blood-stage development, parasite-encoded adhesion molecules are inserted into the erythrocyte membrane, preventing the circulation of the PEs. The principal molecule mediating PE adhesion is P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the polymorphic var gene family. The population of parasites is subject to clonal antigenic variation through changes in var expression, and a single PfEMP1 variant is expressed at the PE surface in a mutually exclusive manner. In addition to its role in immune evasion, switches in PfEMP1 expression may be associated with fundamental changes in parasite tissue tropism in malaria patients. A switch from CD36 binding to chondroitin sulphate A (CSA) binding may lead to extensive sequestration of PEs in placenta syncytiotrophoblasts. This is probably a key event in malaria pathogenesis during pregnancy. The CSA-binding phenotype of mature PEs is linked to another distinct adhesive phenotype: the recently described CSA-independent cytoadhesion of ring-stage PEs. Thus, a subpopulation of PEs that sequentially displays these two different phenotypes may bind to an individual endothelial cell or syncytiotrophoblast throughout the asexual blood-stage cycle. This suggests that non-circulating (cryptic) parasite subpopulations are present in malaria patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号