首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Broadening the avenue of intersubgenomic heterosis in oilseed Brassica   总被引:1,自引:0,他引:1  
Accumulated evidence has shown that each of the three basic Brassica genomes (A, B and C) has undergone profound changes in different species, and has led to the concept of the “subgenome”. Significant intersubgenomic heterosis was observed in hybrids between traditional Brassica napus and first generation lines of new type B. napus. The latter were produced by the partial introgression of subgenomic components from different species into B. napus. To increase the proportion of exotic subgenomic components and thus achieve stronger heterosis, lines of first generation new type B. napus were intercrossed with each other, and subjected to intensive marker-assisted selection to develop the second generation of new type B. napus. The second generation showed better agronomic traits and a higher proportion of introgression of subgenomic components than did the first generation. Compared with the commercial hybrid and the hybrids produced with the first generation new type B. napus, the novel hybrids showed stronger heterosis for seed yield during the 2 years of field trials. The extent of heterosis showed a significant positive correlation with the introgressed subgenomic components in the parental new type B. napus. To increase the content of the exotic subgenomic components further and to allow sustainable breeding of novel lines of new type B. napus, we initiated the development of a gene pool for new type B. napus that contained a substantial amount of genetic variation in the Ar and Cc genome. We discuss new approaches to broaden the avenue of intersubgenomic heterosis in oilseed Brassica.  相似文献   

2.
This paper reports the observation on the intersubgenomic heterosis for seed yield among hybrids between natural Brassica napus (AnAnCnCn) and a new type of B. napus with introgressions of genomic components of Brassica rapa (ArAr). This B. napus was selected from the progeny of B. napus × B. rapa and (B. napus × B. rapa) × B. rapa based on extensive phenotypic and cytological observation. Among the 129 studied partial intersubgenomic hybrids, which were obtained by randomly crossing 13 lines of the new type of B. napus in F3 or BC1F3 to 27 cultivars of B. napus from different regions as tester lines, about 90% of combinations exceeded the yield of their respective tester lines, whereas about 75% and 25% of combinations surpassed two elite Chinese cultivars, respectively. This strong heterosis was further confirmed by reevaluating 2 out of the 129 combinations in a successive year and by surveying hybrids between 20 lines of the new type of B. napus in BC1F5 and its parental B. napus in two locations. Some DNA segments from B. rapa were identified with significant effects on seed yield and yield components of the new type of B. napus in BC1F5 and intersubgenomic hybrids in positive or negative direction. It seems that the genomic components introgressed from B. rapa contributed to improvement of seed yield of rapeseed.  相似文献   

3.
Intersubgenomic heterosis in rapeseed has been revealed in previous studies by using traditional Brassica napus (AnAnCnCn) to cross partial new type B. napus with Ar/Cc introgression from the genomes of B. rapa and B. carinata, respectively. To further enlarge the genetic basis of B. napus and to facilitate a sustained heterosis breeding in rapeseed, it is crucial to create a population for substantial new type B. napus diversified at both A/C genomes. In this experiment, hundreds of artificial hexaploid plants (ArArBcBcCcCc) involving hundreds of B. carinata/B. rapa combinations were first crossed with elite lines of partial new type B. napus. The pentaploid plants (AABCC) were open-pollinated in isolated conditions, and their offspring were successively self-pollinated and intensively selected for two generations. Thereafter, a population of substantial new type B. napus mainly with a genomic composition of ArArCcCc harbouring genetic diversity from 25 original cultivars of B. rapa and 72 accessions of B. carinata was constructed. The population was cytologically verified to have the correct chromosome constitution of AACC and differed genetically from traditional B. napus, in terms of the genome components of Ar/Cc and Bc as well as the novel genetic variations induced by the interspecific hybridisation process. Synchronously, rich phenotypic variation with plenty of novel valuable traits was observed in the population. The origin of the novel variations and the value of the population are discussed.  相似文献   

4.
In spite of its short history of being an oil crop in China, the Chinese semi-winter rapeseed (Brassica napus L., 2n = 38, AACC) has been improved rapidly by intentional introgression of genomic components from Chinese B. rapa (2n = 20, AA). As a result, the Chinese semi-winter rapeseed has diversified genetically from the spring and winter rapeseed grown in the other regions such as Europe and North America. The objectives of this study were to investigate the roles of the introgression of the genomic components from the Chinese B. rapa in widening the genetic diversity of rapeseed and to verify the role of this introgression in the evolution of the Chinese rapeseed. Ten lines of the new type of rapeseed, which were produced by introgression of Chinese B. rapa to Chinese normal rapeseed, were compared for genetic diversity using amplified fragment length polymorphism (AFLP) with three groups of 35 lines of the normal rapeseed, including 9 semi-winter rapeseed lines from China, 9 winter rapeseed lines from Europe and 17 spring rapeseed lines from Northern Europe, Canada and Australia. Analysis of 799 polymorphic fragments revealed that within the groups, the new type rapeseed had the highest genetic diversity, followed by the semi-winter normal rapeseed from China. Spring and winter rapeseed had the lowest genetic diversity. Among the groups, the new type rapeseed group had the largest average genetic distance to the other three groups. Principal component analysis and cluster analysis, however, could not separate the new type rapeseed group from Chinese normal rapeseed group. Our data suggested that the introgression of Chinese B. rapa could significantly diversify the genetic basis of the rapeseed and play an important role in the evolution of Chinese rapeseed. The use of new genetic variation for the exploitation of heterosis in Brassica hybrid breeding is discussed  相似文献   

5.
We used flow cytometry, chromosome counting and AFLP markers to investigate gene flow from the crop plant oilseed rape, Brassica napus (AACC) to wild B. rapa (AA) in the Netherlands. From 89 B. napus source populations investigated, all near cropping fields or at transhipment sites, only 19 contained a B. rapa population within a 2.5‐km radius. During our survey we found only three populations with F1 hybrids (AAC), as recognized by their nine extra chromosomes and by flow cytometry. These hybrids were all collected in mixed populations where the two species grew in close proximity. Populations with F1 hybrids were not close to crops, but instead were located on road verges with highly disturbed soils, in which both species were probably recruited from the soil seed bank. Many plants in the F2, BC1 or higher backcrosses are expected to carry one to eight C chromosomes. However, these plants were not observed among the hybrids. We further investigated introgression with molecular markers (AFLP) and compared sympatric B. rapa populations (near populations of B. napus) with control populations of B. rapa (no B. napus within at least 7 km). We found no difference between sympatric and control populations in the number of C markers in B. rapa, nor did we find that these sympatric populations closely resembled B. napus. Our data show that hybrids occur but also suggest no recent introgression of alleles from the crop plant B. napus into wild B. rapa in the Dutch populations studied.  相似文献   

6.
DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5′-CCGG sites in seedlings and buds by methylation-sensitive amplification polymorphism analysis. The methylation status of approximately a quarter of the methylation sites changed between seedlings and buds. These alterations were related closely to the genomic structure and heterozygous status among accessions. The methylation status in the majority of DNA methylation sites detected in hybrids was the same as that in at least one of the parental lines in both seedlings and buds. However, the association between patterns of cytosine methylation and heterosis varied among different traits and between tissues in hybrids of Brassica, although a few methylation loci were associated with heterosis. Our data suggest that changes in DNA methylation at 5′-CCGG sites are not associated simply with heterosis in the interspecific and intraspecific hybridizations derived from B. rapa and B. napus.  相似文献   

7.
Genomic in situ hybridization (GISH) methods were used to detect different genome components within Brassica amphidiploid species and to identify donor chromatin in hybrids between Brassica napus and Raphanus sativus. In Brassica juncea and Brassica carinata the respective diploid donor genomes could be reliably distinguished by GISH, as could all R-genome chromosomes in the intergeneric hybrids. The A- and C-genome components in B. napus could not be clearly distinguished from one another using GISH, confirming the considerable homoeology between these genomes. GISH methods will be extremely beneficial for monitoring chromatin transfer and introgression in interspecific Brassica hybrids. Received: 20 May 1997 / Accepted: 28 July 1997  相似文献   

8.
Brassica napus (AnAnCnCn) is an important worldwide oilseed crop, but it is a young allotetraploid with a short evolutionary history and limited genetic diversity. To significantly broaden its genetic diversity and create a novel heterotic population for sustainable rapeseed breeding, this study reconstituted the genome of B. napus by replacing it with the subgenomes from 122 accessions of Brassica rapa (ArAr) and 74 accessions of Brassica carinata (BcBcCcCc) and developing a novel gene pool of B. napus through five rounds of extensive recurrent selection. When compared with traditional B. napus using SSR markers and high‐throughput SNP/Indel markers through genotyping by sequencing, the newly developed gene pool and its homozygous progenies exhibited a large genetic distance, rich allelic diversity, new alleles and exotic allelic introgression across all 19 AC chromosomes. In addition to the abundant genomic variation detected in the AC genome, we also detected considerable introgression from the eight chromosomes of the B genome. Extensive trait variation and some genetic improvements were present from the early recurrent selection to later generations. This novel gene pool produced equally rich phenotypic variation and should be valuable for rapeseed genetic improvement. By reconstituting the genome of B. napus by introducing subgenomic variation within and between the related species using intense selection and recombination, the whole genome could be substantially reorganized. These results serve as an example of the manipulation of the genome of a young allopolyploid and provide insights into its rapid genome evolution affected by interspecific and intraspecific crosses.  相似文献   

9.
The tri-genomic hybrid (ABC, 2n=27) between Brassica carinata (BBCC, 2n=34) and B. rapa (AA, 2n=20) is a unique material for studying genome relationships among Brassica species and a valuable bridge for transferring desirable characteristics from one species to the other within the genus Brassica. The crossability between B. carinata and B. rapa was varied with the cultivar of B. rapa. Hybrid pollen mother cells (PMCs), confirmed by morphological observation and molecular marker assay, could be grouped into 20 classes on the basis of chromosome pairing configurations. More than 30% of the PMCs had nine or more bivalents. Genomic in situ hybridization confirmed that two of the bivalents most likely belonged to the B genome. Nearly one-half of the PMCs had trivalents (0–2) and quadrivalents (0–2), which revealed partial homology among the A, B, and C genomes and suggested that there is a good possibility to transfer genes by means of recombination among the three genomes. The advantages of using the tri-genomic hybrids as bridge material for breeding new types of B. napus are discussed.  相似文献   

10.
 There is strong evidence indicating that gene flow from transgenic B. napus into weedy wild relatives is inevitable following commercial release. Research should now focus on the transmission, stability, and impact of transgene expression after the initial hybridization event. The present study investigated the transfer of a phosphinothricin-tolerance transgene by inter-specific hybridization between B. rapa and two transgenic B. napus lines. The expression of the transgene was monitored in the F1 hybrids and in subsequent backcross generations. The transgene was transmitted relatively easily into the F1 hybrids and retained activity. Large differences in the transmission frequency of the transgene were noted between offspring of the two transgenic lines during backcrossing. The most plausible explanation of these results is that the line showing least transmission during backcrossing contains a transgene integrated into a C-genome chromosome. Approximately 10% of offspring retained the tolerant trait in the BC3 and BC4 generations. The implications of these findings for the stable introgression of transgenes carried on one of the chromosomes of the C-genome from B. napus and into B. rapa are briefly discussed. Received: 5 November 1996 / Accepted: 21 February 1997  相似文献   

11.
Blackleg (stem canker) caused by the fungus Leptosphaeria maculans is one of the most damaging diseases of oilseed rape (Brassica napus). Crop relatives represent a valuable source of “new” resistance genes that could be used to diversify cultivar resistance. B. rapa, one of the progenitors of B. napus, is a potential source of new resistance genes. However, most of the accessions are heterozygous so it is impossible to directly detect the plant genes conferring specific resistance due to the complex patterns of avirulence genes in L. maculans isolates. We developed a strategy to simultaneously characterize and introgress resistance genes from B. rapa, by homologous recombination, into B. napus. One B. rapa plant resistant to one L. maculans isolate was used to produce B. rapa backcross progeny and a resynthesized B. napus plant from which a population of doubled haploid lines was derived after crossing with natural B. napus. We then used molecular analyses and resistance tests on these populations to identify and map the resistance genes and to characterize their introgression from B. rapa into B. napus. Three specific genes conferring resistance to L. maculans (Rlm1, Rlm2 and Rlm7) were identified in B. rapa. Comparisons of genetic maps showed that two of these genes were located on the R7 linkage group, in a region homologous to the region on linkage group N7 in B. napus, where these genes have been reported previously. The results of our study offer new perspectives for gene introgression and cloning in Brassicas.  相似文献   

12.
Introgression of genomic variation between and within related crop species is a significant evolutionary approach for population differentiation, genome reorganization and trait improvement. Using the Illumina Infinium Brassica 60K SNP array, we investigated genomic changes in a panel of advanced generation new‐type Brassica napus breeding lines developed from hundreds of interspecific crosses between 122 Brassica rapa and 74 Brassica carinata accessions, and compared them with representative accessions of their three parental species. The new‐type B. napus population presented rich genetic diversity and abundant novel genomic alterations, consisting of introgressions from B. rapa and B. carinata, novel allelic combinations, reconstructed linkage disequilibrium patterns and haplotype blocks, and frequent deletions and duplications (nonrandomly distributed), particularly in the C subgenome. After a much shorter, but very intensive, selection history compared to traditional B. napus, a total of 15 genomic regions with strong selective sweeps and 112 genomic regions with putative signals of selective sweeps were identified. Some of these regions were associated with important agronomic traits that were selected for during the breeding process, while others were potentially associated with restoration of genome stability and fertility after interspecific hybridization. Our results demonstrate how a novel method for population‐based crop genetic improvement can lead to rapid adaptation, restoration of genome stability and positive responses to artificial selection.  相似文献   

13.
For the transfer of genes from B. tournefortii (TT) to the allotetraploid oilseed brassicas, B. juncea AABB, B. carinata BBCC and B. napus AACC, B. tournefortii was first crossed with the three basic diploid species, B. campestris (AA), B. nigra (BE) and B. oleracea (CC), to produce the allodiploids TA, TB and TC. These were tetraploidized by colchicine treatment to produce the allotetraploids TTAA, TTBB and TTCC, which were further crossed with B. juncea and B. napus to produce three-genome hybrids with substitution-type genomic configurations: TACC, TBAA and TCAA. These hybrids along with another hybrid TCBB produced earlier, the three allodiploids, their allotetraploids and the four diploid parent species were studied for their male meiotic behaviour. The diploid parent and the allotetraploids (TTAA, TTBB and TTCC) showed regular meiosis although the pollen viability was generally low in the allotetraploids. In the allodiploids (TA, TB and TC) only some end-to-end associations were observed without any clearly discernible chiasmata or exchange points. Chromosomes involved in end-to-end associations were randomly distributed at the metaphase/anaphase-I stages. In contrast, the three-genome hybrids (TACC, TBAA, TCAA and TCBB) showed normal bivalents whose number exceeded the expected bivalent values. Bivalents arising out of homoeologous pairing were indistinguishable from normal pairs by their disjunction pattern but could be distinguished on the basis of the heteromorphy of the homoeologous chromosomes. The three-genome hybrids could be backcrossed to allotetraploid oilseed brassicas as they had some fertility. In contrast, the allodiploids could neither be selfed nor back-crossed. On the basis of their meiotic stability, in terms of more pronounced homoeologous pairing and fertility for backcrossing, the three-genome configurations provide the best possible situation for the introgression of alien genes from the secondary gene pool to the allotetraploid oilseed crops B. juncea, B. napus and B. carinata.  相似文献   

14.
Understanding how host‐plant characteristics affect behavioral and physiological responses of insect herbivores is of considerable importance in the development of resistant crop germplasm. Feeding, oviposition preference, larval development, and oviposition behavior of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (= Ceutorhynchus assimilis Payk.) (Coleoptera: Curculionidae), were investigated on eight Brassicaceae species that differed in their glucosinolate profiles. The least preferred host plants for feeding and oviposition were the Sinapis alba L. lines while the Brassica carinata L. line was most preferred. Larval development occurred most rapidly on Brassica rapa L. and slowest on S. alba. Larval weight was highest on B. napus L. and lowest on S. alba. Total glucosinolate levels did not influence C. obstrictus larval growth or development; however high levels of specific glucosinolates such as p‐hydroxybenzyl and 3‐butenyl glucosinolate were associated with increased developmental time or reduced weight. The time required for oviposition behavioral events was measured on different host‐plant species: B. rapa, B. napus, B. napus×S. alba, B. tournefortii Gouan., B. juncea (L.) Czern, B. carinata, B. nigra (L.) Koch., and S. alba. The early steps in the sequence were completed faster on more susceptible host plants (B. carinata, B. napus, and B. rapa) than on relatively resistant ones (B. tournefortii and B. juncea). Females explored pods of B. nigra and S. alba, but oviposition occurred only rarely on these species. There was no significant difference in the location on the pod on which oviposition occurred among the different plant species. Mean eggs laid per female weevil were highest on the B. napus×S. alba hybrid and lowest on B. nigra and S. alba.  相似文献   

15.
Erwinia soft rot is a destructive disease of Brassica rapa vegetables. Reliable sources of resistance and control methods are limited, so development of highly resistant breeding lines is desirable. Protoplasts from B. rapa and B. oleracea genotypes selected for resistance to soft rot were fused in order to combine different sources of resistance. Twelve somatic hybrids (synthetic B. napus) were obtained and confirmed by morphology, nuclear DNA content, and RAPD analysis. They were normal looking plants that easily set seeds following self-pollination and backcrossing to B. rapa. Assays of detached leaves or seedlings inoculated in a mist-chamber showed that most somatic hybrids had lower disease severity ratings than the B. rapa fusion partner and a commercial variety of B. napus. Some progeny from selfing or backcrossing of somatic hybrids to B. rapa showed much more resistance than either fusion partner. The offspring populations of the somatic hybrids (F1–S1 and F1–BC1) clearly moved to the resistant direction compared to the parents; the percentage of resistant plants increased from 21% (average of parents) to 36% (F1–S1) and 48% (F1–BC1). These results suggest that it may be possible to obtain highly resistant B. rapa lines by further backcrossing and selection. Received: June 1999 / Accepted: 29 July 1999  相似文献   

16.
Novel rapid cycling Brassica napus lines have been produced by protoplast fusion between rapid cycling B. oleracea and rapid cycling B. rapa. Fusion products were selected based on iodoacetate inactivation and regeneration ability. A total of 36 plants was recovered from 3 regenerating calli. All were confirmed as somatic hybrids by morphological features, flow cytometric estimation of nuclear DNA content, RAPD analysis and/or DNA hybridization. Plants from two of the calli contained chloroplasts from B. rapa, and plants from the third contained B. oleracea chloroplasts. Some plants flowered in vitro, but on average flowering was initiated 22 days after transfer to soil. Although seed set was fairly low after self pollination, more seeds were obtained from pollination of open flowers than from pollination of buds. Seeds of the somatic hybrid B. napus showed novel fatty acid compositions, different from the mean of the two parental lines. Flowering was monitored in plants grown from seeds of the somatic hybrids, rapid cycling B. napus (CrGC 5-1) and the two diploid parental genotypes. Progeny of the somatic hybrids flowered faster and were more vigorous than rapid cycling B. napus (CrGC 5-1). The improved lines contain chloroplasts from B. rapa, unlike rapid cycling B. napus (CrGC 5-1), which has B. oleracea chloroplasts. The somatic hybrid lines produced may be useful for genetic studies or further in vitro manipulations.Abbreviations CrGC Crucifer Genetics Cooperative, University of Wisconsin-Madison - MES 1-morpholino-ethane sulfonate - MS-3,0 Murashige and Skoog medium containing 3% sucrose and no growth regulators - RAPD random amplified polymorphic DNA - RC rapid cycling - RFLP restriction fragment length polymorphism - std standard deviation - TE 10mM Tris, 1 mM EDTA, pH 8  相似文献   

17.

Background and Aims

Oilseed rape (Brassica napus) is an important oil crop worldwide. The aim of this study was to identify the variation in nitrogen (N) efficiency of new-type B. napus (genome ArArCcCc) genotypes, and to characterize some critical physiological and molecular mechanisms in response to N limitation.

Methods

Two genotypes with contrasting N efficiency (D4-15 and D1-1) were identified from 150 new-type B. napus lines, and hydroponic and pot experiments were conducted. Root morphology, plant biomass, N uptake parameters and seed yield of D4-15 and D1-1 were investigated. Two traditional B. napus (genome AnAnCnCn) genotypes, QY10 and NY7, were also cultivated. Introgression of exotic genomic components in D4-15 and D1-1 was evaluated with molecular markers.

Key Results

Large genetic variation existed among traits contributing to the N efficiency of new-type B. napus. Under low N levels at the seedling stage, the N-efficient new-type D4-15 showed higher values than the N-inefficient D1-1 line and the traditional B. napus QY10 and NY7 genotypes with respect to several traits, including root and shoot biomass, root morphology, N accumulation, N utilization efficiency (NutE), N uptake efficiency (NupE), activities of nitrate reductase (NR) and glutamine synthetase (GS), and expression levels of N transporter genes and genes that are involved in N assimilation. Higher yield was produced by the N-efficient D4-15 line compared with the N-inefficient D1-1 at maturity. More exotic genome components were introgressed into the genome of D4-15 (64·97 %) compared with D1-1 (32·23 %).

Conclusions

The N-efficient new-type B. napus identified in this research had higher N efficiency (and tolerance to low-N stress) than traditional B. napus cultivars, and thus could have important potential for use in breeding N-efficient B. napus cultivars in the field.  相似文献   

18.
Summary Attempts were made to produce intergeneric hybrids between Enarthrocarpus lyratus, a wild species, and several species of crop brassicas: B. campestris, B. nigra, B. oleracea, B. juncea, B. napus and B. Carinata. Hybrids using E. lyratus as female parent were realized by means of embryo rescue in four combinations — E. lyratus x B. campestris, E. lyratus x B. oleracea, E. lyratus x B. napus and E. lyratus x B. carinata. Reciprocal crosses showed strong pre-fertilization barriers and yielded no hybrids except in one combination — B. Juncea x E. Lyratus — in which a single hybrid could be realized. All of the hybrids were multiplied in vitro through the multiplication of axillary shoots. Morphological and cytological studies confirmed hybridity. All hybrids were completely pollen sterile except for E. lyratus x B. carinata, which showed 2% pollen fertility. Attempts to double the chromosome number through the in vitro application of colchicine to axillary meristems of F1 hybrids were successful in only one hybrid, E. lyratus x B. oleracea. Cytological studies of the hybrids indicated the presence of a partial homology between the genomes of E. lyratus and crop brassicas. Backcross progenies were raised from all of the five F1 hybrids to develop malesterile alloplasmic lines.  相似文献   

19.
Cross-compatible relatives of crop species contribute to the uncertainty regarding the potential risk of transgene escape from genetically modified varieties. The most successful crossing partner of oilseed rape (Brassica napus L.) is diploid Brassica rapa L. Variation of ploidy level among B. rapa cultivars has, until recently, been neglected in the context of gene flow and hybridisation with oilseed rape. We estimated the extent of hybridisation between autotetraploid B. rapa varieties (female) and B. napus (pollen donor) under experimental field conditions. Morphology, variation of relative DNA amount, and microsatellite markers were used to distinguish between intraspecific offspring of tetraploid B. rapa and interspecific hybrids with B. napus. Of 517 seed progenies of tetraploid B. rapa, 45 juvenile plants showed species specific morphological traits of oilseed rape. The detection of putative hybrids based on variation in relative DNA amounts was problematic due to the occurrence of aneuploidy. In total, 84 offspring showed relative DNA amounts deviating from tetraploid B. rapa, four of which were hexaploids. Of the 205 offspring analysed at three microsatellite loci, 67 had oilseed rape alleles. Based on molecular evidence a minimum hybridisation rate of 13.0% was estimated. A few mother plants accounted for the majority of hybrids. The mean pollen viability of hybrids between B. napus and tetraploid B. rapa (80.6%) was high in comparison with mean pollen viability of triploid hybrids between B. napus and diploid B. rapa. Therefore, the occurrence of tetraploid B. rapa should be taken into consideration when estimating the likelihood of gene flow from oilseed rape to close relatives at the landscape level. Tetraploid B. rapa is a common component of several seed mixtures and establishes feral populations in northwest Germany. Assuming a similar abundance of diploid and tetraploid B. rapa, gene flow from B. napus to tetraploid may be more likely than gene flow to diploid B. rapa.  相似文献   

20.
Introgression of genes from allotetraploid Brassica napus into its diploid wild relative B. rapa is generally considered to be inevitable. As a means to minimize a potential ecological risk in environments where B. rapa is growing, the insertion of transgenes into chromosome regions of B. napus with a very low probability of transfer to backcross generations with B. rapa has been proposed. Recently, the progeny of four backcross generations between transgenic herbicide-tolerant B. napus and B. rapa was studied in selection experiments (Metz et al. 1997). The rapid decrease in the frequency of herbicide-tolerant plants was explained by selection against the C-chromosomes of B. napus in favor of the homeologous A-chromosomes. Obviously, such C-chromosomes could be potential candidates as safe integration sites for transgenes. We considered these safety aspects using a simple population genetic model. Theory and experiments, however, do not favor the chromosomes of B. napus as safe candidates with respect to the introgression of transgenes into wild populations of B. rapa. Received: 5 July 1999 / Accepted: 29 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号