首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Mutations in the X-linked Plp gene lead to dysmyelinating phenotypes and oligodendrocyte cell death. Here, we exploit the X inactivation phenomenon to show that a hierarchy exists in the influence of different mutant Plp alleles on oligodendrocyte survival. We used compound heterozygote mice to study the long-term fate of oligodendrocytes expressing either the jimpy or rumpshaker allele against a background of cells expressing a Plp-null allele. Although mutant and null oligodendrocytes were generated in equal numbers, the proportion expressing the mutant allele subsequently declined, but whereas those expressing the rumpshaker allele formed a reduced but stable population, the number of jimpy cells fell progressively. The age of decline in the jimpy cells in different regions of the CNS correlated with the temporal sequence of myelination. In compound heterozygotes expressing rumpshaker and jimpy alleles, oligodendrocytes expressing the former predominated and were more abundant than when the rumpshaker and null alleles were in competition. Thus, oligodendrocyte survival is not determined solely by cell intrinsic factors, such as the conformation of the misfolded PLP, but is influenced by neighboring cells, possibly competing for cell survival factors.  相似文献   

2.
We investigate the competition between alleles at a segregation distorter locus. The focus is on the invasion prospects of rare mutant distorter alleles in a population in which a wildtype and a resident distorter allele are present. The parameters are chosen to reflect the situation at the t complex of the house mouse, one of the best-studied examples of segregation distortion. By analyzing the invasion chances of rare alleles, we provide an analytical justification of earlier simulation results. We show that a new distorter allele can successfully invade even if it is inferior both at the gamete and at the individual level. In fact, newly arising distorter alleles have an inherent rareness advantage if their negative fitness consequences are restricted to homozygous condition. Likewise, rare mutant wildtype alleles may often invade even if their viability or fertility is reduced. As a consequence, the competition between alleles at a segregation distorter locus should lead to a high degree of polymorphism. We discuss the implications of this conclusion for the t complex of the house mouse and for the evolutionary stability of "honest" Mendelian segregation.  相似文献   

3.
We investigate the competition between alleles at a segregation distorter locus. The focus is on the invasion prospects of rare mutant distorter alleles in a population in which a wildtype and a resident distorter allele are present. The parameters are chosen to reflect the situation at the t complex of the house mouse, one of the best-studied examples of segregation distortion. By analyzing the invasion chances of rare alleles, we provide an analytical justification of earlier simulation results. We show that a new distorter allele can successfully invade even if it is inferior both at the gamete and at the individual level. In fact, newly arising distorter alleles have an inherent rareness advantage if their negative fitness consequences are restricted to homozygous condition. Likewise, rare mutant wildtype alleles may often invade even if their viability or fertility is reduced. As a consequence, the competition between alleles at a segregation distorter locus should lead to a high degree of polymorphism. We discuss the implications of this conclusion for the t complex of the house mouse and for the evolutionary stability of “honest” Mendelian segregation.  相似文献   

4.
5.
Genetic profile of cosmopolitan populations: effects of hidden subdivision   总被引:1,自引:0,他引:1  
Natural populations of many organisms exhibit excess of rare alleles in comparison with the predictions of the neutral mutation hypothesis. It has been shown before that either a population bottleneck or the presence of slightly deleterious mutations can explain this phenomenon. A third explanation is presented in this work, showing that hidden subdivision within a population can also lead to an excess of rare alleles in the total population when the expectations of the neutral model are based on the allele frequency profile of the entire population data. With two examples (mitochondrial DNA-morph distribution and isozyme allele frequency distributions), it is shown that most cosmopolitan human populations exhibit excess of rare as well as total allele counts, when these are compared with the expectations of the neutral mutation hypothesis. The mitochondrial data demonstrate that such excesses can be detected from genetic variation at a single locus as well, and this is not due to stochastic error of allele frequency distributions. Contrast of the present observations with the allele frequency profiles in agglomerated tribal populations from South and Central America shows that even when the neutral expectations hold for individual subpopulations, if all subpopulations are grouped into a single population, the pooled data exhibit an excess of total number of alleles that is mainly due to the excess of rare alleles. Therefore, a primary cause of the excess number of rare alleles could be the hidden subdivision, and the magnitude of the excess indicates the extent of substructuring. The two components of hidden subdivision are: 1) Number of subpopulations, and 2) the average genetic distance among them. The implications of this observation in estimating mutation rate are discussed indicating the difficulties of comparing mutation rates from different population surveys.  相似文献   

6.
We use the assignment technique and a new approach, the 'novel allele technique', to detect sex-biased dispersal in great reed warblers Acrocephalus arundinaceus. The data set consisted of immigrants and philopatric birds in a semi-isolated population in Sweden scored at 21 microsatellite loci. Fourteen cohorts were represented of which the four earliest were used to define a reference population. Female immigrants had lower assignment probability than males (i.e. were less likely to have been sampled in the reference population), and carried the majority of 'novel alleles' (i.e. alleles observed in the population for the first time). The difference in number of novel alleles between sexes was caused by a strong over-representation of females among the few individuals that carried several novel alleles, and there was a tendency for a corresponding female bias among individuals with low assignment probabilities. Immigrant males had similar or lower reproductive success than females. These results lead us to conclude that important interregional gene flow in great reed warblers depends on relatively few dispersing females, and that the novel allele technique may be a useful complement to the assignment technique when evaluating dispersal patterns from temporally structured data.  相似文献   

7.
Genomic instability within somatic stem cells may lead to the accumulation of mutations and contribute to cancer or other age-related phenotypes. However, determining the frequency of mutations that differ among individual stem cells is difficult from whole tissue samples because each event is diluted in the total population of both stem cells and differentiated tissue. Here the ability to expand neural stem/progenitor cells clonally permitted measurement of genomic alterations derived from a single initial cell. C57Bl/6 x DBA/2 hybrid mice were used and PCR analysis with strain-specific primers was performed to detect loss of heterozygosity on nine different chromosomes for each neurosphere. The frequency with which changes occurred in neurospheres derived from 2-month- and 2-year-old mice was compared. In 15 neurospheres derived from young animals both parental chromosomes were present for all nine chromosome pairs. In contrast, 16/17 neurospheres from old animals demonstrated loss of heterozygosity (LOH) on one or more chromosomes and seven exhibited a complete deletion of at least one chromosomal region. For chromosomes 9 and 19 there is a significant bias in the allele that is lost where in each case the C57Bl/6 allele is retained in 6/6 neurospheres exhibiting LOH. These data suggest that aging leads to a substantial mutational load within the neural stem cell compartment which can be expected to affect the normal function of these cells. Furthermore, the retention of specific alleles for chromosomes 9 and 19 suggests that a subset of mutational events lead to an allele-specific survival advantage within the neural stem cell compartment.  相似文献   

8.
Cell fusion studies have demonstrated that malignancy can be suppressed by a single dose of malignancy suppressor genes (MSGs), indicating that malignancy is a recessive phenotype. Correspondingly, it is widely believed that mutational inactivation of both alleles of tumor suppressor genes (TSGs), in familial and sporadic tumors, is the formal proof of the recessive nature of malignancy. Evidence presented here, however, shows that unlike MSGs, identified solely through cell fusion studies with no gene of this class yet cloned, many well-known TSGs have gene dosage effects and inhibit cellular growth in vitro. Moreover, homozygous inactivation of a growth-inhibitory TSG (GITSG) is not directly correlated with malignancy. An alternative interpretation is provided for the loss of wild-type alleles of these genes in the tumors. It is concluded that the MSGs and the GITSGs do not belong to the same class of genes. The functional classification of tumor-suppressing genes has important implications for developing effective cancer therapies.  相似文献   

9.
10.
Plasmids are extrachromosomal genetic elements in prokaryotes that have been recognized as important drivers of microbial ecology and evolution. Plasmids are found in multiple copies inside their host cell where independent emergence of mutations may lead to intracellular genetic heterogeneity. The intracellular plasmid diversity is thus subject to changes upon cell division. However, the effect of plasmid segregation on plasmid evolution remains understudied. Here, we show that genetic drift during cell division—segregational drift—leads to the rapid extinction of novel plasmid alleles. We established a novel experimental approach to control plasmid allele frequency at the levels of a single cell and the whole population. Following the dynamics of plasmid alleles in an evolution experiment, we find that the mode of plasmid inheritance—random or clustered—is an important determinant of plasmid allele dynamics. Phylogenetic reconstruction of our model plasmid in clinical isolates furthermore reveals a slow evolutionary rate of plasmid-encoded genes in comparison to chromosomal genes. Our study provides empirical evidence that genetic drift in plasmid evolution occurs at multiple levels: the host cell and the population of hosts. Segregational drift has implications for the evolutionary rate heterogeneity of extrachromosomal genetic elements.  相似文献   

11.
Dolgin ES  Otto SP 《Genetics》2003,164(3):1119-1128
The segregation of alleles disrupts genetic associations at overdominant loci, causing a sexual population to experience a lower mean fitness compared to an asexual population. To investigate whether circumstances promoting increased sex exist within a population with heterozygote advantage, a model is constructed that monitors the frequency of alleles at a modifier locus that changes the relative allocation to sexual and asexual reproduction. The frequency of these modifier alleles changes over time as a correlated response to the dynamics at a fitness locus under overdominant selection. Increased sex can be favored in partially sexual populations that inbreed to some extent. This surprising finding results from the fact that inbred populations have an excess of homozygous individuals, for whom sex is always favorable. The conditions promoting increased levels of sex depend on the selection pressure against the homozygotes, the extent of sex and inbreeding in the population, and the dominance of the invading modifier allele.  相似文献   

12.
Heterosis or Neutrality?   总被引:12,自引:3,他引:9       下载免费PDF全文
G. A. Watterson 《Genetics》1977,85(4):789-814
Various statistics have been proposed on an ad hoc basis to test whether alleles at a locus are selectively neutral. By considering population models in which selection operates, this paper shows that the population homozygosity is a powerful test statistic for testing departures from neutrality, in the direction of heterozygote advantage or disadvantage. The sample homozygosity plays a similar role when only sample data are available. Some numerical examples are included, showing the application of the test.—An analysis is made of the effect of heterosis on such quantities as the expected number of alleles in the population or sample, the effective number of alleles, the expected homozygosity, and on the population and sample allele frequency distributions generally.  相似文献   

13.
The p53 tumour suppressor gene is activated following cellular exposure to DNA-damaging agents. The functions of wild-type p53 protein include transient blocking of cell cycle progression, direct or indirect stimulation of DNA repair machinery and triggering of apoptosis if DNA repair fails. Therefore, the status of p53 protein may be critically associated with tumour cell radiosensitivity.
In the present study we examine the intrinsic radiosensitivity of 20 human carcinoma cell lines derived from 15 patients with different types of head and neck tumour. Radiosensitivities were measured in a 96-well plate clonogenic assay in terms of the mean inactivation dose, surviving fraction at 2 Gy, and constants α and β in the linear quadratic survival curve. The p53 allele status was determined by amplifying exons 4–10 by the polymerase chain reaction (PCR), screening for mutations using single-strand conformation polymorphism (SSCP) analysis and determining the exact type and location of a mutation by direct sequencing. The results showed that prevalence of p53 mutations in squamous cell carcinoma (SCC) cell lines is high (80%), and that deletion of one or both wild-type alleles is common (75%). Intrinsic radiosensitivity of the cell lines varied greatly in terms of mean inactivation dose, from 1.4±0.1 to 2.6±0.2 Gy. Radiosensitivity correlated well with the p53 allele status so that cell lines carrying a wild-type p53 allele were significantly ( P <0.01) more radioresistant (mean inactivation dose 2.23±0.15 Gy) than cell lines which lacked a wild-type gene (1.82±0.24 Gy).
Evaluation of our own results and those published in the literature lead us to conclude that absence of the wild-type p53 allele in human head and neck cancer cell lines is associated with increased radiosensitivity. However, the sensitivity is also strongly dependent on the exact type and location of the p53 mutation.  相似文献   

14.

The emergence and persistence of polymorphism within populations generally requires specific regimes of natural or sexual selection. Here, we develop a unified theoretical framework to explore how polymorphism at targeted loci can be generated and maintained by either disassortative mating choice or balancing selection due to, for example, heterozygote advantage. To this aim, we model the dynamics of alleles at a single locus A in a population of haploid individuals, where reproductive success depends on the combination of alleles carried by the parents at locus A. Our theoretical study of the model confirms that the conditions for the persistence of a given level of allelic polymorphism depend on the relative reproductive advantages among pairs of individuals. Interestingly, equilibria with unbalanced allelic frequencies were shown to emerge from successive introduction of mutants. We then investigate the role of the function linking allelic divergence to reproductive advantage on the evolutionary fate of alleles within the population. Our results highlight the significance of the shape of this function for both the number of alleles maintained and their level of genetic divergence. Large number of alleles are maintained with substantial replacement of alleles, when disassortative advantage slowly increases with allelic differentiation . In contrast, few highly differentiated alleles are predicted to be maintained when genetic differentiation has a strong effect on disassortative advantage. These opposite effects predicted by our model explain how disassortative mate choice may lead to various levels of allelic differentiation and polymorphism, and shed light on the effect of mate preferences on the persistence of balanced and unbalanced polymorphism in natural population.

  相似文献   

15.
A method is developed for simulating the allele frequencies in an equilibrium or transient population under the effects of neutral mutation and random drift. The method is based on diffusion theory and is fast so that it can be used to study in detail the distribution of heterozygosity or any quantity that can be expressed as a function of allele frequencies. It has been applied to study the distribution of heterozygosity and the distributions of the frequencies of the first three most frequent alleles in a population. It also has been applied to study the distribution of the number of alleles shared by two populations that were derived from a common stock.  相似文献   

16.
Dysfunction of Tumour Suppressor Genes (TSGs) is a common feature in carcinogenesis. Epigenetic abnormalities including DNA hypermethylation or aberrant histone modifications in promoter regions have been described for interpreting TSG inactivation. However, in many instances, how TSGs are silenced in tumours are largely unknown. Given that miRNA with low expression in tumours is another recognized signature, we hypothesize that low expression of miRNA may reduce the activity of TSG related enhancers and further lead to inactivation of TSG during cancer development. Here, we reported that low expression of miRNA in cancer as a recognized signature leads to loss of function of TSGs in breast cancer. In 157 paired breast cancer and adjacent normal samples, tumour suppressor gene GPER1 and miR-339 are both downregulated in Luminal A/B and Triple Negative Breast Cancer subtypes. Mechanistic investigations revealed that miR-339 upregulates GPER1 expression in breast cancer cells by switching on the GPER1 enhancer, which can be blocked by enhancer deletion through the CRISPR/Cas9 system. Collectively, our findings reveal novel mechanistic insights into TSG dysfunction in cancer development, and provide evidence that reactivation of TSG by enhancer switching may be a promising alternative strategy for clinical breast cancer treatment.  相似文献   

17.
S P Huang  B S Weir 《Genetics》2001,159(3):1365-1373
Previously reported methods for estimating the number of different alleles at a single locus in a population have not described a useful general result. Using the number of alleles observed in a sample gives an underestimate for the true number of alleles. The similar problem of estimating the number of species in a population was first investigated in 1943. In this article we use the sample coverage method proposed by Chao and Lee in 1992 to estimate the number of alleles in a population when there are unequal allele frequencies. Simulation studies under the recurrent mutation model show that, for reasonable sample sizes, a significantly better estimate of the true number can be obtained than that using only the observed alleles. Results under the stepwise mutation model and infinite-allele model are presented. Possible applications include improving the characterization of the prior distribution for the allele frequencies, adjusting the estimates of genetic diversity, and estimating the range of microsatellite alleles.  相似文献   

18.
19.
Summary The pattern of X-chromosome inactivation was analyzed, by means of two different DNA probes (pSPT-PGK and M27), in several cell lineages derived from females belonging to a pedigree with X-linked immunodeficiency with hyper-IgM (HIGM1). Non-random X-chromosome inactivation was demonstrated in T cells, B cells, and neutrophils, but not in fibroblasts, of obligate carriers, suggesting that different hematopoietic cell lineages are primarily involved in HIGM1. Preferential inactivation of the paternally derived X-chromosome was demonstrated by analysis of segregation of the alleles defined by the pSPT-PGK and M27 probes. The possibility that the HIGM1 mutation may confer a proliferative and/or differential advantage to hematopoietic precursors carrying the mutated allele on the active X-chromosome is discussed.  相似文献   

20.
Erythrocyte glucose-6-phosphate dehydrogenase (G6PD) was examined by 13% starch gel electrophoresis in 74 mules (42 females and 32 males), 35 donkeys, and ten horses. The quantitative expression of the parental alleles at the Gpd locus varies greatly in female mules from the hemizygous expression of the maternal allele to that of the paternal. The data obtained indicate that the X chromosomes are randomly inactivated in female mules. No selective advantage of a cell population with a maternally (or paternally) derived X active was found in female mule erythrocytes. It is suggested that the phenotypic variability in the expression of the parental Gpd alleles is related to the random proportions established between cells having either a maternal or paternal X active in an initiator (stem) cell group giving rise to erythroid tissue. Initiator cell numbers estimated for erythroid tissue (six or seven) are close to those reported for human females and intergeneric fox hybrids. These numbers may vary depending on the duration of the time of determination and the division rate of initiator cells at determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号