首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article reports the role of indigenous iron-oxidizing microorganisms in bioleaching of heavy metals from anaerobically digested sewage sludge in presence of toxic dyes namely, methylene blue (MB), Remazol black B (RBB) and mixture of both the dyes (DM). To achieve this goal, different concentrations of dyes (0, 500, 10,000, 15,000 and 25,000 mg/L) were added to the sewage sludge (initial pH ~ 7) and subsequently, the solubilization of heavy metals (Cu, Ni, Zn and Cr) was measured at time intervals of 48 h for 16 days. The results showed that an increase in dye concentration adversely affected the population of indigenous iron-oxidizing microorganisms, thereby decreased the bioleaching of metals. The metal solubilization from sludge is more adversely affected in presence of RBB and DM than MB. In majority of cases, the maximum metal solubilization was recorded at dye concentration of 5,000 mg/L. Two factor analyses (ANOVA) suggests the impact of both factors: dye concentration and dye type on metal leaching rate in sludge system.  相似文献   

2.
Iron- and sulfur-oxidizing bacteria identified as Thiobacillus ferrooxidans and T. thiooxidans were successfully enriched from various soil samples contaminated with heavy metals and organic compounds. Depending on the growth medium, the soil sample, and the type of contaminant, the indigenous isolates solubilized > 50% of most of the heavy metals present in the solid sample (As, Cd, Co, Cr, Cu, Ni, V, Zn, B, Be). Leaching with T. ferrooxidans strains resulted in total extraction of Cd, Co, Cu, and Ni. With sulfur-oxidizing bacteria > 80% of Cd, Co, Cu, and Zn was mobilized from rainwater sludge. Pb and Ba were not detected in the leachate, given the insolubility of their sulfate compounds. An increase in pulp density up to 20%, indicating 6.6% total organic carbon in the soil and rubble leach experiment (sample 557), did not inhibit the growth of the indigenous T. ferrooxidans strain. In view of these results, bioleaching appears to have some potential for remediation of heavy metal contaminated soils.  相似文献   

3.
Soil and wastewater treatment sludge are commonly brought together in mixtures for a variety of beneficial purposes. The mixtures contain bioacidifying (i.e., sulfur-oxidizing) microorganisms that can easily be activated through providing the appropriate substrate and environmental conditions. In this study, contaminated soil and sludge mixtures were subjected to controlled bio-acidification and the impacts of the process on the partitioning of heavy metals, nitrogen, and phosphorus were examined. Three successive bio-acidification cycles resulted in significant leaching of metals from sludge. The leaching results, expressed as fraction of total mass of metals in the sludge, averaged 67% for Cr, 96% for Ni, 24% for Zn; 16% for Cu; 23% for Cd; and 96% for Pb. Bio-acidification of the sludge also converted 28 to 45% of the organic nitrogen into ammonia and increased the soluble orthophosphates fraction of total phosphorus by approximately 18 to 20%. Bio-acidification also resulted in significant metals leaching from the contaminated soils in the soil/sludge mixtures. Soil/sludge mixtures were prepared using six soil particle sizes (less than 0.075?mm to 2.38?mm) contaminated with 22,500?mg/kg Zn, 14,000?mg/kg Pb, 1500?mg/kg Cr, 9500?mg/kg Cu, 1000?mg/kg Ni, and 1000?mg/kg Cd. The addition of metals to the soil inhibited the sulfur-oxidizing microorganisms, preventing bio-acidification in the mixtures containing 4 to 50?g soil in 130?ml sludge, and considerably slowing bio-acidification in the mixtures containing 1 to 3?g soil. Using a mixture that contained 2-g soil samples, three successive bio-acidification cycles resulted in significant cumulative metals leaching results. The leaching results, expressed as percentage of the mass of metals added to the soil, were in the range of 56 to 98% for Cr, 77 to 95% for Zn, 33 to 66% for Ni, 64 to 82% for Cu, and 10 to 33% for Pb, with the higher results in each range belonging to the larger size soil particles. On the other hand, only Cr was leached in neutralized soil samples. The results confirmed the potential for inhibition of the sulfur-oxidizing microorganisms and bio-acidification in contaminated soil/sludge mixtures, and the significant impacts of bio-acidification on the mobility of metals, nitrogen, and phosphorus. In addition, the results confirmed the potential for using controlled bioacidification for removing heavy metals from contaminated soil using the indigenous sulfur oxidizing microorganisms in sludge.  相似文献   

4.
Liu YG  Zhou M  Zeng GM  Wang X  Li X  Fan T  Xu WH 《Bioresource technology》2008,99(10):4124-4129
The aim of this study was to determine the effect of substrate concentration (elemental sulfur) on remobilization of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria. Also, the variation in the binding forms of heavy metals before and after bioleaching was explored. This work showed the laboratory results of bioleaching experiments on Pb-Zn-Cu mine tailings. The results showed that 97.54% Zn, 97.12% Cu, and 44.34% Pb could be removed from mine tailings by the bioleaching experiment after 13 days at 2% w/v substrate concentration. The results also indicated that substrate concentration 2% was found to be best to bacterial activity and metal solubilization of the five substrate concentration tested (0.5%, 1%, 2%, 3%, and 5%) under the chosen experimental conditions. The bioleaching had a significant impact on changes in partitioning of heavy metals.  相似文献   

5.
The presence of heavy metals in the sludges produced in wastewater treatment plants restricts their use for agricultural purposes. This study looks at different types of sludge (aerobic, anaerobic, unstabilised, sludge from a waste stabilisation pond, sludge from an extended aeration plant and heat treated sludge) and compares the distribution of heavy metals with the treatment that they have undergone. In addition, the total quantity of metals (Cd, Cr, Cu, Ca, K, Fe, Mg, Ni, Na, Pb and Zn) and some agronomic parameters necessary for characterising a sludge as suitable for use as amendment were determined. The BCR method for heavy metal speciation was followed. Principal component analysis (PCA) was applied in order to obtain more information about metal speciation in the sewage sludges. It was confirmed that the concentration of heavy metals did not exceed the limits set out by European legislation and that the stabilisation treatment undergone by the sludges strongly influenced the heavy metal distribution and the phases to which they were associated. The waste stabilisation pond sludge, which has undergone a higher degree of mineralisation than the others, shows a lower metal bioavailability index since practically all the heavy metals in it are associated to the oxidisable and residual fraction. On the other hand the unstabilised sludge, which, along with that exposed to extended aeration, contains the highest accumulations of heavy metals in the most easily assimilable fractions.  相似文献   

6.
研究了污泥生物沥滤对重金属(Cu、Pb和Zn)形态、营养物质和SO42-存在形式的影响,分析生物沥滤污泥土地利用的适用性。结果表明:生物沥滤后,污泥上清液中重金属通过固液分离而去除,污泥中Cu、Pb和Zn的去除率分别为84.1%、34.8%和80.0%,残存于污泥中的重金属含量大幅降低,且生物有效性低,提高了污泥土地利用的安全性。污泥经生物沥滤后氮、磷和钾的流失分别为38.2%、52.1%和42.8%,但仍能保持较好的肥效。采用X-射线衍射光谱分析发现,残留于污泥中的SO24-主要与Ca2 相结合,较为稳定,生物沥滤后的污泥施用于土地后对环境影响较小。  相似文献   

7.
Summary A small plot field experiment with two types of sewage sludge, one poor and one rich in heavy metals, applied in moderate and heavy quantities, and compared with NPK-fertilizer, was carried out 1973 and 1974, in potatoes. The chemical composition of the NPK-fertilizer and the sludges, and the amounts applied are found in Tables 1 and 2.The sludge increased the content of total Cd, Ni and Pb and the content of readily soluble Cu and Zn in the soil. The increase was greatest for Cu and Zn, and was more pronounced the second than the first year (Table 3). The small quantities of heavy metals in NPK-fertilizer did not influence the soil analytical values.Digested sludge increased the yield of tubers significantly, but based on the amounts of nutrients applied, NPK-fertilizer was much more efficient than sludge (Table 4). It is suggested that low utilization of N, or lack of K, is mainly responsible for the lower efficiency of sludge. Toxicity in the plants due to sludge was not observed.Application of 40–80 tons/ha of sludge dry matter, rich in heavy metals, increased considerably the concentration of Cu and Zn in the tubers, whereas 10–20 tons/ha did not influence the concentration (Table 6). The content of Hg, Ni and Pb in the tubers was very little influenced by sludge application. The Cd-concentration was mostly below 0.05 mg/kg of fresh tubers, and the analytical technique was not accurate enough to detect possible influence of increasing amounts of Cd in sludge. Generally, less than 0.5% of the heavy metals applied was accumulated in the tubers. The concentration of heavy metals in fresh tubers was in all cases below suggested maximum tolerable values for food. re]19760203  相似文献   

8.
A mixed culture of two fast-growing bacterial strains for heavy-metal solubilization of municipal sewage sludge has been developed. Strain VA-7 decreases the initial sludge pH (7-8.5) to a value between 4.0 and 4.5. Then, strain VA-4 begins growing and further reduces the pH to values below 2.0. The rapid decrease of sludge pH by a mixed culture through sulfur oxidation into sulfuric acid solubilizes the toxic metals (Cd 83-96%, Cr 16-54%, Cu 85-87%, Mn 91-94%, Ni 78-79%, Pb 28-46%, Zn 82-96%) to levels recommended for intensive use of residual sludge in agriculture. A study of the physiological and metabolic characteristics of these strains revealed that isolate VA-7 is a strain of Thiobacillus thioparus (ATCC 55127), while isolate VA-4 corresponds to a Thiobacillus thiooxidans (ATCC 55128). These bacterial strains possess distinctive physiological characteristics that allow them to easily grow and solubilize heavy metals in municipal sludge.  相似文献   

9.
The use of surfactants as a method for solubilization and removal of heavy metal contamination from soil has been reported before. Biosurfactants produced by some microorganisms are able to modify the surface of various metals and aggregate on interphases favoring the metal separation process from contaminated environments. We evaluated the feasibility of enhancing the removal of metal ions from mineral waste/contaminated soils using alternate cycles of treatment with rhamnolipid biosurfactants and bioleaching with a mixed bacterial culture of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Bioleaching alone removed 50% Zn and 19% Fe. When rhamnolipids were used at low concentration (0.4 mg/mL), 11% Fe and 25% Zn were removed, while at 1 mg/mL 19% Fe and 52% Zn removal were achieved. When using a cyclic treatment combining bioleaching and biosurfactants, metal removal reached up to 36% for Fe and 63% to 70% for Zn.  相似文献   

10.
Column experiments were conducted to investigate the removal of heavy metals from two mine tailings (El Arteal and Jaravías) using sewage sludge as a reactive material. When sewage sludge is used as a reactive material on the El Arteal tailings (sample SA), Fe, Mn, Zn and Pb are removed and Cu and Ni are mobilized. The experiments carried out on the Jaravías tailings give similar results, showing the retention of Cu, Pb, Fe and Mn and the mobilization of Ni and Zn. An analysis performed using the PHREEQC numerical code suggests that the retention of Fe in the sewage sludge may be caused by the precipitation of Fe(OH)2.7Cl0.3 and possibly pyrite, and that the retention of Pb at high pH may be caused by the formation of stable phase minerals such as Pb(OH)2 and PbS in these conditions. Ni mobilization in the column experiments with the two tailings samples may be caused by the presence of significant amounts of leachable Ni in the sewage sludge. The complexation of metals with dissolved organic matter, calculated with the Minteq model, may be moderate.  相似文献   

11.
Summary Two municipal sludges, one from a highly industrialized city, Chicago, Il, and another from a little industrialized, highly agricultural area, Tucson, AZ are compared for winter barley production on Pima c 1 (Typic torrifluvent). Both sludges were responsible for highly significant additions of Zn, Cu, Ni, Cd and P to the soil each year when applied at the rates of 100 mt/ha singly and 20 mt/ha each year for 4 years. Nitrogen responses for barley straw and grain were observed from both sludges. Tucson sludge appears to be attractive as a potential fertilizer, not only as an NPK source, but also for its organic matter and minimal amounts of heavy metals. The Chicago sludge with relatively high levels of heavy metals, particularly Cd, appears poorly suited as a fertilizer, if used for an extended period of time, because of the plant's tendency to take up elevated levels of certain heavy metals. Some parts of barley plants proved to be a better indicator of heavy metal uptake and concentration than others. The diagnostic-tissue test promises to be a useful tool to warn against undesirable accumulation of heavy metals. Fortunately, when compared with other plant parts, the heavy metal in grain was the least altered as a result of continued sewage sludge use on arid land. The soil's neutral to slightly alkaline pH and the presence of lime throughout the soil profile appeared to be critical factors in keeping plant uptake of heavy metals relatively low as compared with soils of other climates.  相似文献   

12.
The losses of weight and organic matter of a sludge caused by thermal treatments at 180 degrees C, 300 degrees C and 400 degrees C were determined in order to assess how the possibilities of sludge use were influenced. The sludge heated at 180 degrees C lost small amounts of weight and organic matter (9.8%) but the losses from the two other treatments were large enough (92.2% and 99.9% in organic matter) to preclude the use of the sludges as organic amendments. The concentration and potential lability and leachability of Cr, Cu, Fe, Mn, Ni, Pb and Zn in the native sludge and in the thermal-treated sludge samples were studied by means of a five-step chemical fractionation method and a column experiment. As a consequence of heating, the trace metals were more strongly fixed in the treated sludges, as could be seen by the decrease with temperature of the ratio between the sum of the first two sequential-extracted fractions and the residual fraction. The leaching results showed that, for the native sludge, the quantities of studied metals leached were larger than for the sludge heated to 180 degrees C. The order of leachability of metals was the same in both cases, and the same equation could be used to calculate the quantities of metals leached. The amounts of metals leached correlated significantly with the first extracted fraction (exchangeable metals) and an equation could be used to calculate the quantities leached, as a function of that fraction.  相似文献   

13.
The present study was conducted to assess the suitability of sewage sludge amendment (SSA) in soil for Beta vulgaris var. saccharifera (sugar beet) by evaluating the heavy metal accumulation and physiological responses of plants grown at a 10%, 25%, and 50% sewage sludge amendment rate. The sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently increasing accumulation in plant parts. Cd, Pb, Ni, and Cu concentrations in roots were significantly higher in plants grown at 25% as compared to 50% SSA; however, Cr and Zn concentration was higher at 50% than 25% SSA. The concentrations of heavy metal showed a trend of Zn > Ni > Cu > Cr > Pb > Cd in roots and Zn > Cu > Ni > Cr > Pb > Cd in leaves. The only instance in which the chlorophyll content did not increase after the sewage sludge treatments was 50%. There were approximately 1.12-fold differences between the control and 50% sewage sludge application for chlorophyll content. The sewage sludge amendment led to a significant increase in Pb, Cr, Cd, Cu, Zn, and Ni concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency (US EPA). The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake and the leaf and root concentrations of Ni, Zn, Cd, Cu, Cr, Pb, and Zn in plants as compared to those grown on unamended soil. More accumulation occurred in roots and leaves than in shoots for most of the heavy metals. The concentrations of Cd, Cr, and Pb were more than the permissible limits of national standards in the edible portion of sugar beet grown on different sewage sludge amendment ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet may not be a good option due to risk of contamination of Cr, Pb, and Cd.  相似文献   

14.
弋良朋  王祖伟 《生态学报》2017,37(20):6855-6862
根际是控制植物养分动态的重要因素,养分动态也影响着根际土壤环境。当土壤被污水污泥改良后,根际土壤中的养分和重金属性质也会发生变化。目前很少有人研究施用污泥的土壤中植物根系对根际重金属有效性和分布的影响。采用根垫—冰冻薄层切片法对施用污泥后土壤中油菜根际的养分和重金属分布情况进行研究,以期探明污泥改良土壤中根际重金属的活化特征。当土壤施用污泥后,根际土壤中DTPA提取态Zn,Cd,Ni,Mn,有效磷,有效钾和铵态氮被显著消耗,而根际土壤中DTPA提取态Cu没有明显的消耗或积累。当土壤中施用大量污泥时,根际土壤的pH值随着离根表面距离的增加而增加。无论土壤是否用污泥处理,油菜根际土壤中可交换态Cu都显著减少。当土壤被50%污泥改良时,在距离根表面0—2 mm处的油菜根际土壤中碳酸盐结合态,铁锰氧化物结合态,有机物结合态,残渣态的Cu和Zn都被消耗较多。污泥的施用对油菜的生长有促进作用。随着污泥施用量的增加,油菜地上部分Cu和Zn的含量没有显著变化。施用污泥量小于25%的土壤中,污泥没有增加重金属的可利用性和移动性。除了Cu,油菜根际土壤中DTPA提取态Zn,Cd,Ni的减少表明施用污泥的土壤中重金属的活化是非常有限的。  相似文献   

15.
Rainbow trout were fed for 10 weeks with a nutritionally balanced diet containing 30% by weight of activated sewage sludge. The whole body concentrations of nine heavy metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb), together with four major cations (Ca, Mg, Na, K) were determined at the beginning and end of the experiment and at three intermediate stages. Fish fed on the diet containing sewage sludge had significantly elevated levels of Cr, Fe, Ni, Pb and reduced levels of Na and K compared with controls, though the values obtained for all groups fell within the range reported for uncontaminated fish. The Ni and Zn showed a marked increase towards the end of the experiment, suggesting that they might have continued to rise after 70 days.  相似文献   

16.
The application of sewage sludge to land may increase the concentration of heavy metals in soil. Of considerable concern is the effect of heavy metals on soil microorganisms, especially those involved in the biocycling of elements important to soil productivity. Bradyrhizobium japonicum is a soil bacterium involved in symbiotic nitrogen fixation with Glycine max, the common soybean. To examine the effect of metal-rich sludge application on B. japonicum, the MICs for Pb, Cu, Al, Fe, Ni, Zn, Cd, and Hg were determined in minimal media by using laboratory reference strains representing 11 common serogroups of B. japonicum. Marked differences were found among the B. japonicum strains for sensitivity to Cu, Cd, Zn, and Ni. Strain USDA 123 was most sensitive to these metals, whereas strain USDA 122 was most resistant. In field studies, a silt loam soil amended 11 years ago with 0, 56, or 112 Mg of digested sludge per ha was examined for total numbers of B. japonicum by using the most probable number method. Nodule isolates from soybean nodules grown on this soil were serologically typed, and their metal sensitivity was determined. The number of soybean rhizobia in the sludge-amended soils was found to increase with increasing rates of sludge. Soybean rhizobia strains from 11 serogroups were identified in the soils; however, no differences in serogroup distribution or proportion of resistant strains were found between the soils. Thus, the application of heavy metal-containing sewage sludge did not have a long-term detrimental effect on soil rhizobial numbers, nor did it result in a shift in nodule serogroup distribution.  相似文献   

17.
南京城市土壤重金属含量及其影响因素   总被引:82,自引:5,他引:77  
研究了南京城市土壤重金属含量、来源及其与土壤性质的关系。结果表明,南京城市土壤中,Fe、Ni、Co、V污染不明显,但受到了不同程度的Mn、Cr、Cu、Zn、Pb污染,其中:Pb污染非常严重;重金属在土壤剖面分布没有规律性;Fe、Ni、Co、V元素主要来源于原土壤物质,Cu、Zn、Pb、Cr元素主要来源于人为输入,Mn可能在不同的土壤中来源不同;Fe、Cr、Ni、Co、V元素含量之间均呈极显著正相关,Cu、Zn、Pb、Cr元素含量之间均呈极显著正相关。Fe、Co、V、Ni含量与粘粒含量、CEC呈极显著正相关;Cu、Zn、Pb含量与粘粒含量呈极显著负相关;Cu、Zn、Pb、Cr含量与有机碳呈极显著正相关,Pb含量与pH呈极显著正相关。  相似文献   

18.
于2011年8月采集了珠江口桂山岛海域12个站点的表层沉积物, 对沉积物中重金属的含量进行了测定。结果表明, 桂山岛沉积物中重金属含量与国内外港湾相比属于中等水平, Pb、Cr、Ni、Cu、Zn、Mn平均含量分别为40.06、31.29、14.17、30.67、100.18、599.76 mg/kg。富集系数法和 Hakanson潜在生态风险指数法评价表明:桂山岛沉积物各重金属元素的富集顺序为Cu﹥Pb﹥Zn﹥Mn﹥Cr﹥Ni, 其中Cu、Pb、Zn和Mn富集系数大于1;该海域重金属潜在生态风险总体上处于低水平, 从空间上看, S11危害最为严重。进一步通过主成分分析研究沉积物中重金属的来源, 发现前2个主成分贡献率分别为44.38%、42.61%, 表明重金属主要有2个来源:工业和生活污水排放、岩石的自然风化与侵蚀过程。  相似文献   

19.
Zhang P  Zhu Y  Zhang G  Zou S  Zeng G  Wu Z 《Bioresource technology》2009,100(3):1394-1398
The aim of this work was to study the effect of ratio of substrate dosage to solid content (Sd/SC) on sewage sludge bioleaching. The inocula--indigenous sulfur-oxidizing bacteria were enriched and cultured from the fresh activated sludge to a wastewater treatment plant. The results showed that Sd/SC significantly influenced the sludge bioleaching process. With increase in Sd/SC the sludge bioleaching was enhanced, which was represented by the acceleration of sludge acidification, oxidizing environment formation, and substrate (sulfur) utilization. Higher Sd/SC was more efficient to solubilize the heavy metals and total phosphorus (TP) than lower Sd/SC, while total nitrogen (TN) release was not influenced by Sd/SC. Zinc and copper were efficiently bioleached because of sludge acidification and sludge oxidation, but lead was bioleached with a low efficiency because of the formation of low soluble PbSO(4) precipitates. After bioleaching the biotoxicity of sewage sludge greatly reduced.  相似文献   

20.
The present study focused on micronutrients and nonessential toxic heavy metals quantification and their bio-concentration in soil–rice system in Haryana, India. Composite samples of rice grains and paddy fields' soil were collected, processed and analyzed for heavy metals. Nutrient and heavy metals' content of paddy fields' soil varied over a wide range, having highest Fe content followed by Cu > Cr > Pb > Ni > Zn > Co > Cd. Most of the metals viz. Fe, Zn, Cu and Co found profusely in rice grains were essential micronutrients. Bio-concentration factors (BCFs) in rice grains were in the following order: Zn (0.11) > Co (0.10) > Cu (0.08) = Cr (0.08) > Ni (0.02) > Pb (0.011) > Cd (0.009) > Fe (0.003), indicating higher accumulation of micronutrients than non-essential toxic heavy metals. Principal component analysis revealed three factors accounting for 70% of the total variance which supported correlation among electrical conductivity (EC)-Na, EC-cation exchange capacity (CEC), CEC-Na, pH-TOC, and BCFCu-BCFZn. Health risk indices anticipated that the grains are safe for consumption as non-carcinogenic hazard quotients were less than unity for all the studied heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号