首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial Life beneath a High Arctic Glacier   总被引:13,自引:8,他引:5       下载免费PDF全文
The debris-rich basal ice layers of a high Arctic glacier were shown to contain metabolically diverse microbes that could be cultured oligotrophically at low temperatures (0.3 to 4°C). These organisms included aerobic chemoheterotrophs and anaerobic nitrate reducers, sulfate reducers, and methanogens. Colonies purified from subglacial samples at 4°C appeared to be predominantly psychrophilic. Aerobic chemoheterotrophs were metabolically active in unfrozen basal sediments when they were cultured at 0.3°C in the dark (to simulate nearly in situ conditions), producing 14CO2 from radiolabeled sodium acetate with minimal organic amendment (≥38 μM C). In contrast, no activity was observed when samples were cultured at subfreezing temperatures (≤−1.8°C) for 66 days. Electron microscopy of thawed basal ice samples revealed various cell morphologies, including dividing cells. This suggests that the subglacial environment beneath a polythermal glacier provides a viable habitat for life and that microbes may be widespread where the basal ice is temperate and water is present at the base of the glacier and where organic carbon from glacially overridden soils is present. Our observations raise the possibility that in situ microbial production of CO2 and CH4 beneath ice masses (e.g., the Northern Hemisphere ice sheets) is an important factor in carbon cycling during glacial periods. Moreover, this terrestrial environment may provide a model for viable habitats for life on Mars, since similar conditions may exist or may have existed in the basal sediments beneath the Martian north polar ice cap.  相似文献   

2.
This study aims to explore relationships between plant diversity and soil microbial function and the factors that mediate the relationships. Artificial plant communities (1, 2, 4 and 8 species) were established filled with natural and mine tailing soils, respectively. After 12 months, the plant species richness positively affected the soil microbial functional diversity in both soil environments but negatively affected microbial biomass and soil basal respiration in the natural soil. The root biomass positively correlated with the microbial biomass, cultural bacterial activity and soil basal respiration in both soil environments. Moreover, the Di (deviations between observed performances and expected performances from the monoculture performance of each species of mixture) of microbial biomass, cultural bacterial activity and soil basal respiration positively correlated with the Di of root biomass in both soil environments. Consistent with stress-gradient hypothesis, the Dmix (over-function index) of aboveground biomass positively correlated plant species richness in the mine tailing soil. Results suggest that the root biomass production is an important mechanism that affects the effects of plant diversity on soil microbial functions. Different responses of soil microbial function to increasing plant diversity may be due to root biomass production mediated by other factors.  相似文献   

3.
Microbial responses to three years of CO2 enrichment (600 μL L–1) in the field were investigated in calcareous grassland. Microbial biomass carbon (C) and soil organic C and nitrogen (N) were not significantly influenced by elevated CO2. Microbial C:N ratios significantly decreased under elevated CO2 (– 15%, P = 0.01) and microbial N increased by + 18% (P = 0.04). Soil basal respiration was significantly increased on one out of 7 sampling dates (+ 14%, P = 0.03; December of the third year of treatment), whereas the metabolic quotient for CO2 (qCO2 = basal respiration/microbial C) did not exhibit any significant differences between CO2 treatments. Also no responses of microbial activity and biomass were found in a complementary greenhouse study where intact grassland turfs taken from the field site were factorially treated with elevated CO2 and phosphorus (P) fertilizer (1 g P m–2 y–1). Previously reported C balance calculations showed that in the ecosystem investigated growing season soil C inputs were strongly enhanced under elevated CO2. It is hypothesized that the absence of microbial responses to these enhanced soil C fluxes originated from mineral nutrient limitations of microbial processes. Laboratory incubations showed that short-term microbial growth (one week) was strongly limited by N availability, whereas P was not limiting in this soil. The absence of large effects of elevated CO2 on microbial activity or biomass in such nutrient-poor natural ecosystems is in marked contrast to previously published large and short-term microbial responses to CO2 enrichment which were found in fertilized or disturbed systems. It is speculated that the absence of such responses in undisturbed natural ecosystems in which mineral nutrient cycles have equilibrated over longer periods of time is caused by mineral nutrient limitations which are ineffective in disturbed or fertilized systems and that therefore microbial responses to elevated CO2 must be studied in natural, undisturbed systems.  相似文献   

4.
Interactions among protozoa (mixed cultures of ciliates, flagellates and naked amoebae), bacteria-feeding nematodes (Pellioditis pellio Schneider) and the endogeic earthworm species Aporrectodea caliginosa (Savigny) were investigated in experimental chambers with soil from a beechwood (Fagus sylvatica L.) on limestone. Experimental chambers were planted with the grass Hordelymus europeaus L. (Poaceae) and three compartments separated by 45-m mesh were established: rhizosphere, intermediate and non-rhizosphere. The experiment lasted for 16 weeks and the following parameters were measured at the end of the experiment: shoot and root mass of H. europaeus, carbon and nitrogen content in shoots and roots, density of ciliates, amoebae, flagellates and nematodes, microbial biomass (SIR), basal respiration, streptomycin sensitive respiration, ammonium and nitrate contents, phosphate content of soil compartments. In addition, leaching of nutrients (nitrogen and phosphorus) and leachate pH were measured at regular intervals in leachate obtained from suction cups in the experimental chambers. Protozoa stimulated the recovery of nitrifying bacteria following defaunation (by chloroform fumigation) and increased nitrogen losses as nitrate in leachate. In contrast, protozoa and nematodes reduced leaching of phosphate, an effect ascribed to stimulation of microbial growth early in the experiment. Earthworms strongly increased the amount of extractable mineral nitrogen whereas it was strongly reduced by protozoa and nematodes. Both protozoa and nematodes reduced the stimulatory effect of earthworms on nitrogen mineralization. Microbial biomass, basal respiration, and numbers of protozoa and nematodes increased in the vicinity of the root. Protozoa generally caused a decrease in microbial biomass whereas nematodes and earthworms reduced microbial biomass only in the absence of protozoa. None of the animals studied significantly affected basal respiration, but specific respiration of microorganisms (O2 consumption per unit biomass) was generally higher in animal treatments. The stimulatory effect of nematodes and earthworms, however, occurred only in the absence of protozoa. The sensitivity of respiration to streptomycin suggested that protozoa selectively grazed on bacterial biomass but the bacterial/fungal ratio appeared to be unaffected by grazing of P. pellio. Earthworms reduced root biomass of H. europaeus, although shoot biomass remained unaffected, and concentrations of nitrogen in shoots and particularly in roots were strongly increased by earthworms. Both nematodes and protozoa increased plant biomass, particularly that of roots. This increase in plant biomass was accompanied by a marked decrease in nitrogen concentrations in roots and to a lesser extent in shoots. Generally, the effects of protozoa on plant growth considerably exceeded those of nematodes. It is concluded that nematodes and protozoa stimulated plant growth by non-nutritional effects, whereas the effects of earthworms were caused by an increase in nutrient supply to H. europaeus.  相似文献   

5.
The processing of leaves in temperate streams has been the subject of numerous studies but equivalent tropical ecosystems have received little attention. We investigated leaf breakdown of a tropical tree species (Hura crepitans, Euphorbiaceae), in a tropical stream using leaf bags (0.5 mm mesh) over a period of 24 days. We followed the loss of mass and the changes in adenosine triphosphate (ATP) concentrations and respiration rates associated with the decomposing leaves. The breakdown rate was fast (k=?0.0672/d, kd=?0.0031/degree‐day), with 81 percent loss of the initial mass within 24 days. This high rate was probably related to the stable and high water temperature (22°C) favoring strong biological activity. Respiration rates increased until day 16 (1.1 mg O2/h/g AFDM), but maximum ATP concentrations were attained at day 9 (725 nmol ATP/g AFDM) when leaf mass remaining was 52 percent. To determine the relative importance of fungi and bacteria during leaf decomposition, ATP concentrations, and respiration rates were determined in samples treated with antibiotics, after incubation in the stream. The results of the samples treated with the antifungal or the bacterial antibiotic suggest a higher contribution of the fungal community for total microbial biomass and a higher contribution of the bacterial community for microbial respiration rates, especially during the later stages of leaf decomposition. However, these results should be analyzed with caution since both antibacterial and antifungal agents did not totally eliminate microbial activity and biomass.  相似文献   

6.
Microbial communities associated with Arctic fjord ice polluted with petroleum oils were investigated in this study. A winter field experiment was conducted in the Van Mijen Fjord (Svalbard) from February to June 2004, in which the ice was contaminated with a North Sea paraffinic oil. Holes were drilled in the ice and oil samples frozen into the ice at the start of the experiment. Samples, including cores of both oil-contaminated and clean ice, were collected from the field site 33, 74, and 112 days after oil application. The sampled cores were separated into three sections and processed for microbiological and chemical analyses. In the oil-contaminated cores, enumerations of total prokaryotic cells by fluorescence microscopy and colony-forming units (CFU) counts of heterotrophic prokaryotes both showed stimulation of microbial growth, while concentrations of oil-degrading prokaryotes remained at similar levels in contaminated and clean ice. Analysis of polymerase chain reaction (PCR)-amplified bacterial 16S rRNA gene fragments by denaturing gradient gel electrophoresis (DGGE) revealed that bacterial communities in oil-contaminated ice generated fewer bands than communities in clean ice, although banding patterns changed both in contaminated and clean ice during the experimental period. Microbial communities in unpolluted ice and in cores contaminated with the paraffinic oil were examined by cloning and sequence analysis. In the contaminated cores, the communities became predominated by Gammaproteobacteria related to the genera Colwellia, Marinomonas, and Glaciecola, while clean ice included more heterogeneous populations. Chemical analysis of the oil-contaminated ice cores with determinations of n-C17/Pristane and naphthalene/phenanthrene ratios indicated slow oil biodegradation in the ice, primarily in the deeper parts of the ice with low hydrocarbon concentrations.  相似文献   

7.
Sparse Ulmus pumila woodlands play an important role in contributing to ecosystem function in semi-arid grassland of northern China. To understand the key attributes of soil carbon cycling in U. pumila woodland, we studied dynamics of soil respiration in the canopy field (i.e., the projected crown cover area) and the open field at locations differing in distance (i.e., at 1–1.5, 3–4, 10, and >15 m) to tree stems from July through September of 2005, and measured soil biotic factors (e.g., fine root mass, soil microbial biomass, and activity) and abiotic factors [e.g., soil water content (SWC) and organic carbon] in mid-August. Soil respiration was further separated into root component and microbial component at the end of the field measurement in September. Results showed that soil respiration had a significant exponent relationship with soil temperature at 10-cm depth. The temperature sensitivity index of soil respiration, Q 10, was lower than the global average of 2.0, and declined significantly (P < 0.05) with distance. The rate of soil respiration was generally greater in the canopy field than in the open field; monthly mean of soil respiration was 305.5–730.8 mg CO2 m−2 h−1 in the canopy field and 299.6–443.1 mg CO2 m−2 h−1 in the open field from July through September; basal soil respiration at 10°C declined with distance, and varied from ~250 mg CO2 m−2 h−1 near tree stems to <200 mg CO2 m−2 h−1 in the open field. Variations in soil respiration with distance were consistent with patterns of SWC, fine root mass, microbial biomass and activities. Regression analysis indicated that soil respiration was tightly coupled with microbial respiration and only weakly related to root respiration. Overall, variations in SWC, soil nutrients, microbial biomass, and microbial activity are largely responsible for the spatial heterogeneity of soil respiration in this semi-arid U. pumila woodland.  相似文献   

8.
ABSTRACT. High latitude microbial communities, incurring increased global warming, are a potential major source of respiratory CO2 contributing to an enhanced greenhouse effect. Data on respiration and microbial density are presented for a moist, high tussock site compared with a low, water saturated site. The density of bacteria and eukaryotic microbes was nearly equivalent at both sites and potentially could yield substantial release of respiratory CO2 with continued warming. Respiratory rates for soil from the high site were greater than the low. The Q10 of 2.4 for the high tussock sample was approximately 1.3 × that of the low site sample (Q10 of 1.7).  相似文献   

9.
10.
The effects of intensive recreation impacts and restoration amendments on soil parameters were assessed at four campsites in the Eagle Cap Wilderness, northeastern Oregon. Sites (2,215‐ to 2,300‐m elevation) are characterized by shallow granitic soils, an Abies lasiocarpa/Pinus albicaulis overstory, and a Vaccinium scoparium understory. In fall 1995, plots were established at four campsites on three subalpine lakes in which soils were scarified, compost amended, and planted to native species. In summer 1998, we sampled surface soils (0–15 cm) on undisturbed sites (between and under vegetation) and unamended and compost‐amended campsite soils. Samples were analyzed for total organic C, total N, potentially mineralizable N (PMN), NH4, soil moisture, microbial biomass, basal 5‐day respiration rates, and microbial community carbon utilization profiles. Unamended campsite soils had significantly lower levels of PMN, microbial biomass, basal respiration, and number of substrates metabolized in carbon utilization profiles. Compost addition elevated all these impacted parameters on campsite soils, although the increase in basal respiration rate was neither statistically significant nor sufficient to approach rates found underneath vegetation on undisturbed soils. Only the number of substrates metabolized in the carbon utilization profiles was significantly higher on compost‐amended soils than on undisturbed soils. Levels of PMN indicate that campsite soils may lack sufficient N for rapid plant regeneration, whereas amended and undisturbed soils contained adequate quantities of available N. This work suggests that compost amendments can ameliorate impacts to soil chemistry and microbial populations caused by camping, without exceeding the N fertility found on undisturbed soils.  相似文献   

11.
Below-ground carbon dioxide (CO2) emissions occur naturally at CO2 springs, but the risk of occurrence at other sites will increase as geologic CO2 storage is implemented to help mitigate climate change. This investigation examines the effects of elevated soil CO2 concentrations from such emissions on vegetation biomass and microbial community biomass, respiration and carbon utilisation in temperate grassland. Soil CO2 concentrations was increased by release of concentrated CO2 gas from a point source 0.6 m below the surface of the soil as a low-level leak (1 l min?1) for 10 weeks. The gassing resulted in reduced vegetation above- and below-ground biomass over time. No significant changes in microbial biomass or carbon utilisation were observed, but a trend towards reduced microbial respiration was apparent. This research provides a first step towards understanding the potential ecological risks of geologic carbon storage, the development of biological leak detection methods, and improved understanding of the effects of elevated soil CO2 concentrations on biological communities.  相似文献   

12.
揭示不同恢复阶段热带森林土壤细菌呼吸季节变化及其主控因素,对于探明土壤细菌呼吸对热带森林恢复的响应机制具有重要的科学意义。以西双版纳不同恢复阶段热带森林(白背桐群落、崖豆藤群落和高檐蒲桃群落)为研究对象,运用真菌呼吸抑制法及高通量宏基因组测序技术分别测定土壤细菌呼吸速率和细菌多样性,并采用回归分析及结构方程模型揭示热带森林恢复过程中土壤细菌多样性、pH、土壤碳氮组分变化对土壤细菌呼吸速率的影响特征。结果表明:1)不同恢复阶段热带森林土壤细菌呼吸速率表现为:高檐蒲桃群落((1.51±0.62)CO2 mg g-1 h-1)显著高于崖豆藤群落((1.16±0.56)CO2 mg g-1 h-1)和白背桐群落((0.82±0.60)CO2 mg g-1 h-1)(P<0.05)。2)不同恢复阶段土壤细菌呼吸速率呈显著的单峰型季节变化(P<0.05),最大值均出现在9月:高檐蒲桃群落((...  相似文献   

13.
14.
Culture‐dependent and culture‐independent methods were used in an investigation of the microbial diversity in a permafrost/massive ground ice core from the Canadian high Arctic. Denaturing gradient gel electrophoresis as well as Bacteria and Archaea 16S rRNA gene clone libraries showed differences in the composition of the microbial communities in the distinct core horizons. Microbial diversity was similar in the active layer (surface) soil, permafrost table and permafrost horizons while the ground ice microbial community showed low diversity. Bacteria and Archaea sequences related to the Actinobacteria (54%) and Crenarchaeota (100%) respectively were predominant in the active layer while the majority of sequences in the permafrost were related to the Proteobacteria (57%) and Euryarchaeota (76%). The most abundant phyla in the ground ice clone libraries were the Firmicutes (59%) and Crenarchaeota (82%). Isolates from the permafrost were both less abundant and diverse than in the active layer soil, while no culturable cells were recovered from the ground ice. Mineralization of [1‐14C] acetic acid and [2‐14C] glucose was used to detect microbial activity in the different horizons in the core. Mineralization was detected at near ambient permafrost temperatures (?15°C), indicating that permafrost may harbour an active microbial population, while the low microbial diversity, abundance and activity in ground ice suggests a less hospitable microbial habitat.  相似文献   

15.
Microbial life beneath a high arctic glacier   总被引:10,自引:0,他引:10  
The debris-rich basal ice layers of a high Arctic glacier were shown to contain metabolically diverse microbes that could be cultured oligotrophically at low temperatures (0.3 to 4 degrees C). These organisms included aerobic chemoheterotrophs and anaerobic nitrate reducers, sulfate reducers, and methanogens. Colonies purified from subglacial samples at 4 degrees C appeared to be predominantly psychrophilic. Aerobic chemoheterotrophs were metabolically active in unfrozen basal sediments when they were cultured at 0.3 degrees C in the dark (to simulate nearly in situ conditions), producing (14)CO(2) from radiolabeled sodium acetate with minimal organic amendment (> or =38 microM C). In contrast, no activity was observed when samples were cultured at subfreezing temperatures (< or =-1.8 degrees C) for 66 days. Electron microscopy of thawed basal ice samples revealed various cell morphologies, including dividing cells. This suggests that the subglacial environment beneath a polythermal glacier provides a viable habitat for life and that microbes may be widespread where the basal ice is temperate and water is present at the base of the glacier and where organic carbon from glacially overridden soils is present. Our observations raise the possibility that in situ microbial production of CO(2) and CH(4) beneath ice masses (e.g., the Northern Hemisphere ice sheets) is an important factor in carbon cycling during glacial periods. Moreover, this terrestrial environment may provide a model for viable habitats for life on Mars, since similar conditions may exist or may have existed in the basal sediments beneath the Martian north polar ice cap.  相似文献   

16.
Deep polar ice cores provide atmospheric records of nitrous oxide (N2O) and other trace gases reflecting climate history along with a parallel archive of microbial cells transported with mineral dust, marine and volcanic aerosols from around the globe. Our interdisciplinary study of 32 samples from different depths of the recently drilled NEEM Greenland ice core addressed the question whether the identified microorganisms were capable of post-depositional biological production of N2O in situ. We used high-resolution geochemical and microbiological approaches to examine the N2O concentrations, the quantitative distributions of dust, Ca+2, NH4+ and NO3? ions related to N cycle pathways, the microbial abundance and diversity at specific NEEM core depths from 1758 m to 1867.8 m. Results showed varying concentrations of N2O (220–271.5 ppb). Microbial abundance fluctuated between 3.3 × 104 and 3.3 × 106 cells mL?1 in direct correlation with dust and Ca2+ concentrations with higher cell numbers deposited during colder periods. The average values of NH4+ and NO3? indicated that substrates were available for the microorganisms capable of utilizing them. PCR amplification of selected functional genes involved in bacterial and archaeal nitrification and denitrification was not successful. Sanger and Illumina MiSeq sequence analyses of SSU rRNA genes showed variable representation of Alpha-, Beta- and Gammaproteobacteria, Firmicutes, Actinobacteria, chloroplasts and fungi. The metabolic potential of the dominant genera of Proteobacteria and Firmicutes as possible N2O producers suggested that denitrification activity may have led to in-situ production and accumulation of N2O.  相似文献   

17.
Temperature sensitivity of soil organic matter (SOM) decomposition may have a significant impact on global warming. Enzyme‐kinetic hypothesis suggests that decomposition of low‐quality substrate (recalcitrant molecular structure) requires higher activation energy and thus has greater temperature sensitivity than that of high‐quality, labile substrate. Supporting evidence, however, relies largely on indirect indices of substrate quality. Furthermore, the enzyme‐substrate reactions that drive decomposition may be regulated by microbial physiology and/or constrained by protective effects of soil mineral matrix. We thus tested the kinetic hypothesis by directly assessing the carbon molecular structure of low‐density fraction (LF) which represents readily accessible, mineral‐free SOM pool. Using five mineral soil samples of contrasting SOM concentrations, we conducted 30‐days incubations (15, 25, and 35 °C) to measure microbial respiration and quantified easily soluble C as well as microbial biomass C pools before and after the incubations. Carbon structure of LFs (<1.6 and 1.6–1.8 g cm?3) and bulk soil was measured by solid‐state 13C‐NMR. Decomposition Q10 was significantly correlated with the abundance of aromatic plus alkyl‐C relative to O‐alkyl‐C groups in LFs but not in bulk soil fraction or with the indirect C quality indices based on microbial respiration or biomass. The warming did not significantly change the concentration of biomass C or the three types of soluble C despite two‐ to three‐fold increase in respiration. Thus, enhanced microbial maintenance respiration (reduced C‐use efficiency) especially in the soils rich in recalcitrant LF might lead to the apparent equilibrium between SOM solubilization and microbial C uptake. Our results showed physical fractionation coupled with direct assessment of molecular structure as an effective approach and supported the enzyme‐kinetic interpretation of widely observed C quality‐temperature relationship for short‐term decomposition. Factors controlling long‐term decomposition Q10 are more complex due to protective effect of mineral matrix and thus remain as a central question.  相似文献   

18.
The purpose of this paper is to describe the effects of CO2 and N treatments on soil pCO2, calculated CO2 efflux, root biomass and soil carbon in open-top chambers planted with Pinus ponderosa seedlings. Based upon the literature, it was hypothesized that both elevated CO2 and N would cause increased root biomass which would in turn cause increases in both total soil CO2 efflux and microbial respiration. This hypothesis was only supported in part: both CO2 and N treatments caused significant increases in root biomass, soil pCO2, and calculated CO2 efflux, but there were no differences in soil microbial respiration measured in the laboratory. Both correlative and quantitative comparisons of CO2 efflux rates indicated that microbial respiration contributes little to total soil CO2 efflux in the field. Measurements of soil pCO2 and calculated CO2 efflux provided inexpensive, non-invasive, and relatively sensitive indices of belowground response to CO2 and N treatments.  相似文献   

19.
We have studied the effects of factorial combinations of lime and N additions on soil microbial biomass, respiration rates and phosphatase activity of an upland grassland. We also used an Agrostis capillaris seedling bioassay to assess the effect of the treatments on the activity of arbuscular-mycorrhizal (AM) fungi and root surface phosphatase enzymes and the concentrations of N and P in the bioassay plant shoots. In the F and H horizons, soil microbial biomass carbon (Cmic) decreased in response to the liming, while addition of lime and N together reduced basal respiration rates. In the Ah horizon, Cmic was unaffected by the treatments but basal respiration rates decreased in the plots receiving nitrogen. Soil phosphatase activity decreased only in the Ah horizon in plots receiving lime, either in combination with N or alone. The mass of root fwt. colonized by AM fungi increased in response to the treatments in the order nitrogenR2=28.7%, P=0.004). The results demonstrate the sensitivity of both free-living heterotrophic microorganisms and symbiotic mycorrhizal fungi to short-term (2 years) applications of lime and N to long-term upland grassland, particularly in relation to the key P cycling activities undertaken by these organisms.  相似文献   

20.
1. Benthic microbial respiration was measured in 214 streams in the Appalachian Mountain, Piedmont, and Coastal Plains regions of the eastern United States in summer 1997 and 1998. 2. Respiration was measured as both O2 consumption in sealed microcosms and as dehydrogenase activity (DHA) of the sediments contained within the microcosms. 3. Benthic microbial respiration in streams of the eastern U.S., as O2 consumption, was 0.37 ± 0.03 mg O2 m–2 day–1. Respiration as DHA averaged 1.21 ± 0.08 mg O2 m–2 day–1 4. No significant differences in O2 consumption or DHA were found among geographical provinces or stream size classes, nor among catchment basins for O2 consumption, but DHA was significantly higher in the other Atlantic (non‐Chesapeake Bay) catchment basins. 5. Canonical correlation analyses generated two environmental axes. The stronger canonical axis (W1) represented a chemical disturbance gradient that was negatively correlated with signatures of anthropogenic impacts (ANC, Cl, pH, SO42), and positively correlated with riparian canopy cover and stream water dissolved organic carbon concentration (DOC). A weaker canonical axis (W2) was postively correlated with pH, riparian zone agriculture, and stream depth, and negatively correlated with DOC and elevation of the stream. Oxygen consumption was significantly correlated with W2 whereas DHA was significantly correlated with W1. 6. The strengths of the correlations of DHA with environmental variables, particularly those that are proven indicators of catchment disturbances and with the canonical axis, suggest that DHA is a more responsive measure of benthic microbial activity than is O2 consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号